
Lazy Evaluation Schemes for Efficient Implementation of
Multi-Context Algebraic Reasoning Systems

ChengCheng Ji1,a) Haruhiko Sato1,b) Masahito Kurihara1,c)

1. Introduction
An algebraic inductive theorem is a proposition for algebraic

specifications defined on inductively-defined data structures such
as natural numbers and lists. The proof of such inductive theo-
rems plays a fundamental role in the field of formal verification
of information systems. There are many single procedures of au-
tomatable proving methods such as KB [1] and RI [3]. Com-
monly, the nondeterministic choices of these procedures are es-
sential to their successes. One may notice that running paral-
lel processes could be a way to handle this problem. How-
ever, it is not a trivial task to implement these procedures in a
physically paralleled way. Multi-context algebraic reasoning sys-
tems can efficiently simulate parallel processes each executing
an algebraic reasoning procedure under a particular context (or a
premise). Those systems are used to reason about algebraic com-
putational systems such as term rewriting systems (TRSs), which
are a concise and rigorous representation of computational sys-
tems in terms of rewrite rules. In fact, TRSs are studied and used
in various areas of computer science, including automated alge-
braic inductive theorem proving, analysis and implementation of
abstract data types, and decidability of word problems.

2. Multi-context Reasoning Systems
2.1 MKB

Knuth and Bendix have proposed a standard completion pro-
cedure called KB to generate a complete TRS [1]. Given a set of
equations and a reduction ordering on a set of terms, the proce-
dure uses the ordering to orient equations (either from left to right
or from right to left to transform them into rewrite rules) and tries
to generate a complete TRS equationally equivalent to the input
set of equations.

However, the KB leads to three possible results: success, fail-

1 Division of Computer Science and Information Technology in Graduate
School of Information Science and Technology, Hokkaido University,
Sappro, 060-0814, Japan

a) kisyousei@complex.ist.hokudai.ac.jp
b) haru@complex.ist.hokudai.ac.jp
c) kurihara@ist.hokudai.ac.jp

ure, or divergence. According to the possibility of divergence,
we cannot try candidate orderings one by one. Also, it is not ef-
ficient to simply create processes for each different ordering and
run them in parallel on a machine, because the number of candi-
date orderings normally exceeds ten thousands even for a small
problem.

In 1999, this problem was partially solved by a completion
procedure called MKB [2]. MKB is a single procedure that ef-
ficiently simulates execution of multiple processes each running
KB with a different reduction ordering. The key idea of MKB
lies in a data structure called node. The node contains a pair s : t
of terms and three sets of indices to orderings to show whether
or not each process contains rules s → t, t → s, or an equation
s = t. The well-designed inference rules of MKB allows an effi-
cient simulation of multiple inferences in several processes all in
a single operation.

DELETE: N ∪ {〈s : s, ∅, ∅, E〉} ` N
if E , ∅

ORIENT: N ∪ {〈s : t,R0,R1, E ∪ E′〉} `
N ∪ {〈s : t,R0 ∪ E′,R1, E〉}
if E′ , ∅, E ∩ E′ = ∅,
and s �i t for all i ∈ E′

REWRITE 1: N ∪ {〈s : t,R0,R1, E〉} `

N∪
 〈s : t,R0\R,R1, E\R〉
〈s : u,R0 ∩ R, ∅, E ∩ R〉

if 〈l : r,R, . . . , . . . 〉 ∈ N, t →{l→r} u,
t � l, and (R0 ∪ E) ∩ R , ∅

REWRITE 2: N ∪ {〈s : t,R0,R1, E〉} ` N∪ 〈s : t,R0\R,R1\R, E\R〉
〈s : u,R0 ∩ R, ∅, (R1 ∪ E) ∩ R〉

if 〈l : r,R, . . . , . . . 〉 ∈ N, t →{l→r} u,
t B l, and (R0 ∪ R1 ∪ E) ∩ R , ∅

DEDUCE: N ` N ∪ {〈s : t, ∅, ∅,R ∩ R′〉}
if 〈l : r,R, . . . , . . . 〉 ∈ N,
〈l′ : r′,R′, . . . , . . . 〉 ∈ N,R ∩ R′ , ∅,

c© 2013 Information Processing Society of Japan 1
Copyright 2016 Information Processing Society of Japan.
All Rights Reserved.2-609

7R-06

情報処理学会第78回全国大会

and s←{l→r} u→{l′→r′} t

GC: N ∪ {〈s : t, ∅, ∅, ∅〉} ` N

SUBSUME: N ∪
 〈s : t,R0,R1, E〉
〈s′ : t′,R′0,R

′
1, E

′〉

 `
N ∪ {〈s : t,R0 ∪ R′0,R1 ∪ R′1, E

′′〉}
if s : t and s′ : t′ are variants and
E′′ = (E\(R′0 ∪ R′1)) ∪ (E′\(R0 ∪ R1))

2.2 MRIt
Term rewriting induction (RI) proposed by Reddy [3], is a au-

tomatable proof principle for proving inductive theorems on term
rewriting systems. The RI method relies on the termination of the
given term rewriting systems representing the axioms, because
if we have a terminating term rewriting system (i.e., there exists
no infinite rewrite sequence), we can use the transitive closure of
the corresponding rewrite relation of the system as a wellfounded
order over terms for the basis of induction.

However, there are several strategic issues in RI: (1) which re-
duction order should be applied, (2) which (axiomatic or hypo-
thetical) rules should be applied during rewriting, and (3) which
variables should be instantiated for induction.

The multi-context rewriting induction with termination
checker (MRIt) solved these problems by creating virtual parallel
processes dynamically to handle the nondeterministic choices.

3. Implementations and Experiments
We implemented both lz-mkb (based on MKB) and lz-itp

(based on MRIt) by using lazy evaluation mechanism of the pro-
gramming language Scala. The program was designed in an
object-oriented way so that we could build and reuse the classes to
organize the term structures, subsitutions, nodes, inference rules,
etc. At the same time, we also followed the discipline of func-
tional programming (e.g.,“ uniform return type”principle [4])
in coding so that it could be safer and easier to execute the pro-
gram in a physically parallel computational environment.

To the lz-mkb case, we implemented the node (a basic unit of
MKB) as as a class which contains an equation object as a datum
and three bitsets as labels. We chose bitset*1to gain efficiency
because there were numerous set operations during the computa-
tion. We also created a class called nodes for the set N of nodes
for which several inference rules of MKB are defined. We embed-
ded lazy values into these classes to gain efficiency. For example,
during the whole procedure, the inference rule subsume would
be invoked frequently due to the node comparisons. We created
a lazy hash map [Is,N], where N is a list of nodes and Is is a
lazy value defined in the node class as the size of the node (i.e.,
for a node n = 〈s : t, r0, r1, e〉, n.size = s.size + t.size), so that
we only need check the nodes with the same size as the original
nodes. This check can be done efficiently by using the hash map
with the node size as its key. In other words, for every n ∈ N, n
uses its size In as the key to [Is,N], then the set Nn containing all
the nodes with same size In is looked up for the nodes with vari-
ant data. In our Scala program, the hash map [Is,N] is declared

*1 a data structure defined in Scala’s library

to be lazy, because it is calculated only once and then be stored
as a constant object ready to be returned for repeated calculation
requests afterwards.

Table 1 computation time of mkb and lz-mkb

problem mkb(ms) lz-mkb(ms) reduced time reduced(%)

1 15003 1959 13044 86.94
2 160 130 30 18.75
5 14997 2738 12259 81.74
8 275 205 70 25.45

11 90 60 30 33.33
14 480 351 129 26.88
17 85 65 20 23.53
19 730 471 259 35.48
30 140 95 45 32.14

avg. - - - 40.47

The computation time for each examined completion problems
is summarized in Table 1. The results obtained by the program
using the lazy evaluation are labeled lz-mkb, and those obtained
by the original one are labeled mkb. We can see, lz-mkb is more
efficient (about 40% faster in average) than mkb in all the prob-
lems examined.

Since lz-itp also works on the set of nodes, we exploited the
lazy evaluation scheme for the nodes manipulation to gain more
efficiency. Moreover, we implemented the lemma exploration
function with divergence analyzation [5] to deal with the lemma-
required problems. From the Table 2, we can see lz-itp which
used the lazy evaluation schemas was more efficient than mrit.

Table 2 Computation time of mrit and lz-itp

problem lem 1 lem 2 lem 3 lem 4 lem 5 lem 6
lz-itp 602 932 12379 17738 1050 1023
mrit 615 969 12801 18090 1075 1049

4. Summary
We have presented two new implementations of the multi-

context reasoning system: lz-mkb and lz-itp. We applied lazy
evaluation schemas with several heuristic ideas in our implemen-
tation [6] [7]. The experiments show that our new implementa-
tions are more efficient than the original ones in all the problems
examined.

References
[1] D. E. Knuth and P. B. Bendix,“Simple word problems in universal al-

gebras,”J. Leech(ed.), Computational Problems in Abstract Algebra,
Pergamon Press, 1970, pp.263-297.

[2] M. Kurihara and H. Kondo,“Completion for multiple reduction order-
ings,”Journal of Automated Reasoning, Vol.23, No.1, 1999, pp.25-42.

[3] U. Reddy, “Term rewriting induction,” 10th Int. Conf. on Automated
Deduction, vol.814 of Lecture Notes in Computer Science, pp.162-
177, 1990.

[4] M. Odersky, Programming in Scala, 2nd ed., Artima Press, 2010.
[5] T. Walsh , “A divergence critic for inductive proof”, Journal of Artifi-

cial Intelligence Research, vol. 4, pp. 209-235, 1996.
[6] CC. Ji, H. Sato, M. Kurihara, ”Lazy Evaluation Schemes for Effi-

cient Implementation of Multi-Context Algebraic Completion Sys-
tem,” IAENG International Journal of Computer Science, vol. 42, no.
3, pp.282-287, 2015.

[7] CC Ji, H. Sato, and M. Kurihara, ”A New Implementation of Multi-
Context Algebraic Inductive Theorem Prover,” Lecture Notes in Engi-
neering and Computer Science: Proceedings of The World Congress
on Engineering and Computer Science 2015, 21-23 October, 2015,
San Francisco, USA, pp.109-114.

c© 2013 Information Processing Society of Japan
Copyright 2016 Information Processing Society of Japan.
All Rights Reserved.2-610

情報処理学会第78回全国大会

