
Abstract - This paper presents a comparative 
analysis between Reinforcement Learning (RL) 
and Evolutionary Strategy (ES) for training rollout 
bias in General Video Game Playing (GVGP). 
GVGP has become an emerging research field, 
where researchers attempt to develop AI programs 
that can play various types of video games without 
prior knowledge. Monte Carlo Tree Search 
(MCTS), which does not require explicit 
evaluation function, has been a popular technique 
in GVGP, and existing research as succeeded in 
improving its performance by biasing rollouts with 
a weight vector, which is trained by ES. This paper 
compares RL and ES, and investigates the 
advantages and disadvantages of both techniques 
as a rollout-bias-training-mechanism in the GVGP 
domain.  

Keywords - General Video Game Playing, Monte 
Carlo Tree Search, Game AI, Reinforcement 
Learning  

1. INTRODUCTION 
Similar to General Game Playing, GVGP aims at 

developing techniques that allow an AI bot to play 
various unknown games. However, GVGP mainly 
concerns real-time arcade games, such as Pac-Man or 
Space Invaders, rather than turn-based board games, 
such as Poker or Chess. Due to its flexibility and 
adaptability, MCTS is an useful technique in this 
field.  

MCTS relies on random rollouts to evaluate which 
action should be performed. Yet, exploring state space 
randomly may not be an efficient way to search, and 
existing researches have succeeded in improving 
MCTS by applying bias to the rollout process. Perez 
et al. proposed Fast-Evolutionary MCTS, which 
replaces random rollout with biased rollouts [1]. The 
weight vector, with which the rollout is biased, is 
trained by (1 + 1) ES, using reward gained from the 
rollout as the fitness to evolve the weight vector. 
While the use of (1 + 1) ES has produced satisfying 
results in the existing work, it remains unclear as of 
whether ES is the best training mechanism for rollout 
bias, and how the weight vector evolves and 
converges throughout the evaluation.  

Besides ES, RL is another common algorithm for 
game-playing AI, usually associated with neural 

networks such as Google’s deep-Q-network [2]. It is 
intriguing to see how RL would work as a learning 
mechanism for training rollout bias. In this research, 
we seek to compare the performance and behaviour of 
ES and RL as a rollout-bias-training-mechanism.  

2. EXISTING RESEARCHES 
Perez et al. proposed Knowledge-based Fast 

Evolutionary MCTS (KB Fast-Evo MCTS) for GVGP 
[1]. In this method, euclidean distances to the closest 
NPC, resource, non-static object and portal are 
extracted from each state as features, and a weight 
matrix is applied in biasing the rollouts. The relative 
strength of each action and the probability of selecting 
each action are calculated by formulae (1) and (2): 

In the above formulae, wij is the weight value that 
corresponds to action i and feature j, and fj is the value 
of that feature.   As suggested by the name, in Fast 
Evolutionary MCTS, the weight matrix is trained by 
(1 + 1) ES, using the reward gained at the end of each 
rollout as the fitness value. For details of the 
algorithm, readers are referred to [1]. In our previous 
research, we improved the above method by using (4 
+ 1) ES in lieu of (1 + 1) ES [3]. However, in this 
experiment, only (1 + 1) ES was compared with Q 
Learning.  

3. Q-LEARNING BIASED ROLLOUT 
In this work, the KB Fast-Evo MCTS was 

modified, by replacing the (1 + 1) ES with Q-
learning. In other words, the weights are trained by Q-
learning algorithm, instead of ES, so as to compare 
the effects and performance of two different training 
mechanisms. The pseudocode of the Q-learning 
algorithm used is shown in Algorithm 1, where s 
represents the current game state in a given rollout. 

In our Q-learning algorithm, the Q values are 
stored in a matrix, which bears the same structure and 
function as the weight matrix in Fast-Evo MCTS. 
While Fast-Evo MCTS trains its weights at the end of 
every rollout through mutation, our Q-learning bias 
algorithm updates the Q values after every step in a 
rollout, and the reward begot by the rolled action is 
directly added to the corresponding Q values. Also, 
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following the convention of Q-learning, the e-greedy 
algorithm instead of formula (2) is used  for selecting 
actions. Following the example set by the deep Q-
learning algorithm proposed in [2], mini-batch  and 
experience replay have been applied as well. Apart 
from the biased rollout, other parts of the MCTS 
algorithm follow the implementation in [1].  

In our experiments, e was set to 0.1 for e-greedy. 
The learning rate α was set to 0.1. The 50 latest 
transitions were stored in memory, from which a 
mini-batch of size 10 was sampled every time. C was 
set to 500.  

4. EXPERIMENTS AND RESULTS 
Experiments were performed in the GVG-AI 

Framework1. Training Set 1 provided by the organiser 
of GVG-AI Competition, which is the most used 
game set in existing researches, was adopted as the 
test set in this research. There are three controllers 
being tested, namely Q-learning Bias Roller (the 
controller described in Section 3), ES Bias Roller 
(implemented based on [1]), and Vanilla MCTS. 
Following the convention of the GVG-AI 
Competition, each controller played 5 levels for each 
game, and the win rate were compared. To ensure 
fairness, each game used the same random seed for 
every controller. The result is illustrated in Table 1, 
where Avg and Win_Rate represent the average score 
and percentage of victory in a particular game 

respectively.  
Overall, Q-Learning Bias Roller had the best 

performance, by defeating Vanilla MCTS in 6 out of 
10 games, while ES Bias Roller defeated Vanilla 
MCTS in 5 games. A closer look at how weighted 
values evolved during a game is illustrated by Figure 
1. Figure 1 shows the normalised weight values for 
the “honey” feature in the f irs t level of 
survivezombies, a game where the player must collect 
as much honey as possible while avoiding zombies. In 
ES Bias Roller, the weight values converged quickly, 
since evolution depended solely on mutation. On the 
other hand, the weight values showed more 
fluctuations, because in Q-learning, rewards from 
rollout were directly applied to the weight values, thus 
encouraging more flexibility in searches.  

5. CONCLUSION AND FUTURE WORKS 
Our research tested Q-learning and (1 + 1) ES as 

learning mechanism for rollout bias in MCTS. 
Experiments showed that Q-learning performed 
slightly better in the game set being tested, and Q 
learning led to more fluctuations to the weight values 
being trained. In the future, we would like to explore 
different sets of features and further study the 
behaviours of different learning mechanisms in a 
GVGP setting.  
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Fig 1. Weight values for the “honey” feature in the first level of 
survivezombies

Algorithm 1: Q-Learning Biased Rollout

1. while rollout not finished do 
2.      F  ← extractFeatures(s) 
3.      a  ← e-greedy(F, Q) 
4.      s’  ← advanceStep(s, a) 
5.      r   ← getReward(s, s’) 
6.      F’ ← extractFeatures(s’) 
7.      store transition (F, a, r, F’) in D 
8.      sample a mini-batch of transitions T from D  

randomly 
9.      foreach ti in T 
10.           a’ ← greedy(ti.F’, Q) 
11.           foreach fj in ti.F 
12.                ΔQ ← α *(ti.r + Q(fj’, a’ ) - Q (fj, ti.a)) 
13.                Q (fj, ti.a) ← Q (fj, ti.a) + ΔQ  
14.           Every C steps reset Q = Q 
15. end while

^

^

TABLE I. EVALUATION RESULTS USING THE 2014 TRAINING SET

Q-Learning Bias Roller ES Bias Roller Vanilla MCTS
Avg Win_Rat Avg Win_Rat Avg Win_Rat

aliens 62.8 1 66.8 1 61.8 1
boulderdash 1.8 0 2.6 0 5.6 0
bu1erflies 38.4 1 31.2 0.8 30.4 1
chase 0.6 0 0.2 0 1.2 0
frogs -0.4 0.4 -1.2 0 -0.4 0.4
missilecomman
d 2.6 0.4 6.4 1 -0.2 0.4
portals	 0.2 0.2 0.2 0.2 0.2 0.2
sokoban 1 0.2 0.6 0.2 0.2 0
survivezombies 35 0.4 17 0.6 23.2 0.4
zelda 5 0 3.4 0 1.4 0
Win	Count 3	(2	draws) 3	(1	draw) 2	(2	draws)
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