2F-5

Authorization Model in Object-Oriented Systems *

Keiji Izaki, Katsuya Tanaka, and Makoto Takizawa, '
’ Tokyo Denki University *
Email : {izaki, katsu, taki}@takilab.k.dendai.ac.jp

1 Introduction

Various kinds of applications like electronic com-
merce are required to be realized in secure informa-
tion systems. The system is secure only if authorized
subjects are allowed to manipulate objects in autho-
rized ways. Various kinds of access control models are
discussed so far, e.g. basic model [1] and lattice-based
model. An access rule is specified in a form (s, 0, op)
which means that a subject s is allowed to manipu-
late an object o by an operation op. Here, s is granted
an access right {0,op). In the mandatory model, the
access rules are defined only by an authorizer. On
the other hand, a subject granted an access right can
grant the access right to another subject in the dis-
cretionary model like relational database systems. In
addition, objects mean simple files with simple meth-
ods read and write.

The distributed systems are now being devel-
oped according to the object-oriented frameworks like
CORBA. An object is an encapsulation of data and
methods for manipulating the data. There are two
types of objects, i.e. classes and instances. An in-
stance is created from a class. The objects are struc-
tured in is-a and part-of relations.

The object-based system supports only the encap-
sulation of data and methods and the message-passing
means for invoking the methods. In object-oriented
programming languages C++ and Java, variables and
methods in a class are defined to be public ones which
can be used by the outside of the class or private ones
which can be used only in the class. However, the ac-
cess rules cannot be specified for each subject.

The object-oriented system is composed of various
kinds of classes and instances like systems including
various database systems. It is cumbersome to autho-
rize access rules for the objects. For example, if access
rules for a class are inherited to instances of the class,
access rules are easily authorized for the instances.
We discuss how to authorize and inherit access rules
on classes and instances structured in instance-of,
1s-a, and part-of relations.

In section 2, we present how to authorize access
rules. In section 3, we discuss how to inherit access
rules in the object-oriented model.

2 Authorization

2.1 Class

First, the owner s of the system grants & subject
sc an access right (m,create class) on a metaclass
m of the system. Then, s. can define a class ¢ with
attributes Ay, ..., Ay, and methods opi, ..., op;. by
using the create class method as follows:

create class ¢ {

I T U MBS AT LB HHBRK5ET
S 2, B B, R
R

Al .T|,

Here, A; is an attribute of a type 1; (i = 1. ..., m,.).
The type is a primitive class like integer or another
class. Let m, and g, be a set {Aq, ..., A, } of the
attributes and a set {opy, ..., op;, } of the methods of
the class ¢, respectively. s, is now an owuner of the
class c.

A subject cannot manipulate the class ¢ without
obtaining an access right on ¢. The owner s. can
grant an access right (¢, op;) to a subject s and revoke
the access right by the following grant and revoke
methods :

s A, Loy opis o, opr b

grant op; on c to s;
revoke op; on ¢ from s [with cascading):

The subject s can grant the access right {c,op,} to
other subjects. If the cascading option is specified,
the access right (¢, op;) is revoked from not only the
subject s but also every subject granted by s.

The access rules are specified in a form (s, ¢, op;)
where s is a subject, ¢ is a class, and op; is a method.
(s, c,op;) is referred to as class access rule. Here, let
. be a set of access rules authorized for the class ¢.

2.2 Object

The owner s, of a class ¢ grants a subject s, an
access right (¢, create object) as follows :

grant create object on ¢ to s,;

Then, the subject s, can create an object a of tae
class ¢ as follows:

create object z from c;

The methods of the class ¢ are inherited by the
object . The values of & can be manipulated only
through the methods opy, op;. of ¢. Let o, be a
set, of values of the object z, i.e. state of x. The owner
S, grants an access right (x,op;) te a subject s by the
following grant method.

grant op; on & to s;

Access rules on objects are referred to as object
access rule. The access rules authorized for the class
¢ are also inherited by an object x of ¢. Let o, be a
set of access rules for z. The class access rules in o,
are inherited by the object z as follows:

e For each (s,c,op;) € g, (s,2,0p;) € .

If a subject s is granted a class access right (¢, op,).
s is also allowed to manipulate every object x of the
class ¢ through op;. Here, x inherits an object rule
{s,x,op;) from ¢. The owner s, of the object x can
grant (r,op;) to a subject s and revoke (x,op;) by

following grant and revoke methods:
grant op; on z to.s;
revoke op; on z from s [with cascading |;

If {c, op;) is revoked from s, an access right (z, op;)
for every object = of the class ¢ is also revoked.

2.3 Subclass

A subject s4 can create a subclass d from a class ¢ if
sq is granted an access right ((, create class from).
The subclass d is defined by using a following create
class from method:

create class d from c {
By Ul: =y B}m de,; OPdys --+5

The attributes Ay, ..., A,,. and methods op, ..., op;,
of the class ¢ are inherited by the subclass d. In ad-
dltlon, the attributes Bi, ..., B, and methods opqg,,

, 0pd,,, are defined for the class d. Here, U, denotes
a typeﬂ 1 e. a primitive class or a class of an attribute
B; (i=1, ..., kg). The access rights, attributes, and
methods of the class ¢ are inherited by the (la»ss d. If
a new access right (op;,c) is granted to a subject s,
an access right (op;,d) is also granted to s. A ma-
nipulation method inherited from ¢ can be applied on
only the attributes of d inherited from c¢. A definition
method inherited from ¢ can be one of d.

The owner s, of the class ¢ can newly grant access
rights of the class d to other subjects by using the
grant method.

OoPd, , }

3 Inheritance of Access Rules

3.1 Instance-of relation

First, suppose an object x is created from a class c.
In the instance-of relation, a set of a of the access
rules of the class ¢ are inherited by the object = as
presented in the preceding section. The owner of the
object x can define additional access rules and can
revoke the access rules inherited from the class ¢. If
a class access right (¢, op;) is revoked from a subject
s, the object access right {z,0p;) is also revoked from
s. If a new class access right {(c,op;) is defined, the
object access right (x,op;) is also authorized for every
object @ of the class c.

3.2 Is-a relation of classes

Let d be a subclass of a class ¢. The access rules
of ¢ are inherited by the subclass d. Let o, show a
set of access rules of the class ¢. There are following
approaches to inheriting access rules of the class ¢ to
the subclass d :

1. The access rules of «. are inherited by d.
2. The access rules of «. are copied to d.
3. No access rule of the class ¢ is inherited by d.

In the first approach, the access rules inherited by
the subclass d depend on the class ¢. If the access
rules in o are changed, the access rules in a4 are also
changed. In the second approach, the access rules of
a. on ¢ are copied to the subclass d. After defining
the class d from ¢, the access rules of the class d are
independent of the class ¢. In the last approach, the
access rules of ¢ are not inherited by d. The access
rules of d are defined independently of ¢. The subclass
d is defined as follows:

create class d from ¢ { ... }

{ with normal | copy | independent }:

Here, normal, copy, and independent show the
cases 1, 2, and 3, respectively.

3.3 Multiple inheritance

A class ¢ can be derived from multiple classes ¢y,
ey Cn (n > 1). The attributes and methods of the
classes ¢1, ..., ¢p are inherited by the class ¢. The ac-
cess rules O{Cl of the class ¢; are also mheut(‘(l by the
class ¢. Suppose a pair of classes ¢; and ¢; have a same
attribute A and support a same method op which ma-
nipulates the attribute A by the polymorhisim. Sup-
pose an access right {¢;,op) is granted to a subject s
but (¢;,0p) is not granted to s. That is, s is allowed
to use op for ¢; but not for ¢;. The class ¢ inherits
an access rule (s,c.A,op) from ¢; and not the access
rule from ¢;. That is, the access rules inherited from
¢; and ¢; conflict. It is problem to decide if s can
manipulate ¢.A by op.

\ Eﬂ

Figure 1: Multiple inheritance.

Suppose that each class ¢; supports a method op
(i=1, ..., n). Let s;(op) be a set of subjects who are
granted an access right (¢;,op) for a method op. A
new class ¢ is derived from the classes ¢y, ..., ¢,. There
are two approaches to inheriting access rules to ¢:

1. s(op) = s1(op) N ... N sp(op).

2. s(op) = s1(op) U ... U s,(op).
In the first case, only subject who is granted an access
right for every class is granted an access right, {¢. op).
This is the most closed way. In the second case, a
subject s is allowed to manipulate the class ¢ by op it s
is granted an access right for at least one class. This is
the most open way. Thus, the access rights inherited
from multiple classes may conflict. The owner of ¢
decides which access rules to be inherited to resolve
the conflict.

4 Concluding Remarks

This paper discussed a discretionary access con-
trol model in the object-oriented systeni. The object-
oriented system supports data encapsulation, class
and instance, is-a and part-of relation, inheritance,
and nested invocation of methods We made clear how
to inherit the access rules in the instance-of. is-u,
and part-of relations. By using the inheritance of
the access rules, it is easy to grant and revoke access
rules in systems which are composed of various kinds
of classes and objects.

References
[1] Lampson, B. W., “Protection,” Proc. of the 5th
Princeton Symp. on Information Sciences and
Systems, 1971, pp.437-443.

[2] Izaki, K., Tanaka, K., and Takizawa, M., *“Ac-
cess Control Model in Object-Oriented Sys-
tems,” Proc. of the ICPADS-00 Workshops,
2000, pp.69-T74.

