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1 Introduction

The ATM(Asynchronous Transfer Mode) is well-known as a multiplexing and switching technology
for multipurpose broadband high-speed networks. We follow a mathematical model of ATM networks
which was introduced by Cidon, Gerstel, and Zaks [CGZ94], and further developed by Kranakis,
Krizanc, and Pelc [KKP95]. In an ATM network, pairs of nodes exchange messages along pre-defined
paths, called virtual paths. Each connection between two nodes must consist of a concatenation of
such virtual paths. The layout is a collection of virtual paths that guarantees the connection for every
pair of nodes. The hop number of a layout is the maximum, taken over all pairs of nodes, of the
smallest number of virtual paths used to connect a pair of nodes. The congestion of a layout is the
maximum number of virtual paths that pass through a link. The hop number corresponds to the time
to set up a connection between a pair of nodes, and the congestion measures the load of the routing
tables at the nodes.

It is a fundamental problem to construct a layout minimizing the hop number as a function of
the congestion. For a network G, H¢(c) is the minimum hop number over all layouts with congestion
at most ¢. Kranakis, Krizanc, and Pelc [KKP95] showed a general lower bound for Hg(c). They
proved that for any N-node network G with maximum node degree A, and for any positive integer
¢, Ha(c) > log N/ log(cA) — 1. On the other hand, Stacho and Vrfo [SV00] showed a general layout
with hop number O(diam(G)log A/logc), where diam(G) is the diameter of G. It follows that if
A = O(1) and diam(G) = O(log N) then Hg(c) = O(log N/logc) for any c. In particular, we have
asymptotically optimal bounds for H¢(c) if G is a mesh of trees, butterfly, cube-connected-cycles,
de Bruijn network, shuffle-exchange network, or complete binary tree network. However, there is a
considerable gap between the upper and lower bounds above.

The purpose of the paper is to close the gap for complete binary tree networks. We show the exact
value of minimum hop number for complete binary tree networks. Our results are presented in the
following theorem. '

Theorem 1 For an N-node complete binary tree network By with height L and a positive interger
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Theorem 1 is proved by showing tight upper and lower bounds. We just show layouts and give a
sketch of the proof for upper bounds.

2 Layouts

Case 1. 1 < L < |log(1 ++/1 + 4c¢)] — 1: The layout is the set of paths connecting every pair of
distinct vertices. It is easy to see that the congestion of the layout is ¢, and the minimum hop number
is 1.

Case 2. |log(1++/1+4c)] <L < [log(c+1)]: The layout is the set of paths connecting the root
of the tree and all the other vertices. It is easy to see that the congestion of the layout is ¢, and the
minimum hop number is 2.

Case 3. L > |log(c+1)+1]: Let m be the integer satisfying L = |log(c+1)] +m(|logc| +1) +z,
where 0 < z < [logc]. Let P be the set of paths connecting each vertex v on level L — |log(c + 1)]
and the descendants of v. For 0 < ¢ < m, let Q; be the set of paths connecting each vertex v on level
L—|log(c+1)]—i(|logc|+1) and the ancestors of v on levels [ for L— |log(c+1)] —(i+1)([logc]+1) <
I <L-—log(c+1)] —i(lloge] +1) —1.

Subcase-3-1. = = 0: The layout is U ;' Q; UP.

Subcase 3-2. 1 < z < ([logc] + 1)/2: Let R be the set of two paths connecting the root r and

two children s,t of 7, A be the set of paths connecting each vertex v on level z and the ancestors

of v except r, and B be the set of paths connecting each descendant of s on level z and each
descendant of ¢ on level x. The layout is Ug’;‘ll QUPURUAUB.

Subcase 3-3. ([logc] +1)/2 < z < [logc]: The layout is U%; Q; UP.

It can be proved that for any subcase, the congestion of the layout is ¢, and the minimum hop number
is 3+ [(2L — 2|log(c + 1)] — [logc] — 1)/(|logc] + 1)].

3 Generalization

Theorem 1 can be generalized to complete k-ary tree networks as follows.

Theorem 2 For an N-node complete k-ary tree network Ty n with height L and a positive interger
c)
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where L = log,(k—1)N+1)—-1. O
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