3@-08 Sparse Networks Tolerating Random Faults for Tree-Like and Butterfly-Like Networks *

Kumiko Nomura, Toshinori Yamada, and Shuichi Ueno [†]
Dept. of Communications and Integrated Systems,
Graduate School of Science and Engineering, Tokyo Institute of Technology [‡]

1 Introduction

This paper considers the following problem in connection with the design of fault-tolerant interconnection networks for multiprocessor systems: Given an N-vertex graph G, construct an O(N)vertex graph G^* with a minimum number of edges such that even after deleting each vertex from G^* independently with constant probability, the remaining graph contains G as a subgraph, with probability converging to 1, as $N \to \infty$. G^* is called an RFT(random-fault-tolerant) graph for G. Let V(G) and E(G) be the vertex set and edge set of a graph G, respectively. Fraigniaud, Kenyon, and Pelc showed in [4] that for any Nvertex graph G, there exists an RFT graph for Gwith $O(|E(G)|\log^2 N)$ edges, and that for any Nvertex graph G with O(N) edges and maximum degree of $\Omega(N)$, any RFT graph for G has $\omega(|E(G)|)$ edges. It is an interesting open problem posed in [4] to decide whether any N-vertex graph G has an RFT graph with $O(|E(G)|\log N)$ edges. It is known that if G is a path[1], cycle[4], or tree with bounded vertex degree[3], we can construct an RFT graph for G with O(|E(G)|) edges; if G is an N-vertex mesh or torus[5], we can construct an RFT graph for G with $O(|E(G)| \log \log N)$ edges; if G is an N-vertex tree [4], circulant graph, hypercube, de Bruijn graph, shuffle-exchange graph, or cube-connected-cycles[6], we can construct an RFT graph for G with $O(|E(G)| \log N)$ edges.

This paper shows that if G is an N-vertex partial k-tree, butterfly, wrapped butterfly, or Beneš graph, we can construct an RFT graph for G with $O(|E(G)|\log N)$ edges. The open problem mentioned above remains unresolved.

2 A General Construction of RFT Graphs

In this section, we review a general method to construct RFT graphs proposed in [6]. For any positive integer h, let $[h] = \{0, 1, \ldots, h-1\}$. A collection $\{S_0, S_1, \cdots, S_{h-1}\}$ of subsets of S is called a partition of S if $\bigcup_{i \in [h]} S_i = S$ and $S_i \cap S_j = \emptyset$ for

any $i \neq j$. For an N-vertex graph G and a partition $\mathcal{V} = \{V_0, V_1, \dots, V_{h-1}\}$ of V(G), define that $\Lambda(G, \mathcal{V}) = \{(i, j) | \exists (u, v) \in E(G) (u \in V_i, v \in V_j)\}$ and $\lambda(G, \mathcal{V}) = |\Lambda(G, \mathcal{V})|$. Let 0 be the probability for each vertex to be deleted.

Suppose that $\mathcal{V} = \{V_0, V_1, \dots, V_{h-1}\}$ is a partition of V(G) such that $|V_i| \leq \alpha \ln N$ for any $i \in [h]$ and $h \leq \beta N / \ln N$ for some fixed positive numbers α and β . Let $V_0^*, V_1^*, \dots, V_{h-1}^*$ be h sets such that $|V_i^*| = \lceil \gamma \ln N \rceil$ for any $i \in [h]$ and $V_i^* \cap V_j^* = \emptyset$ for any $i \neq j$, where $\gamma = (\sqrt{2\alpha + 1} + 1)^2/2(1 - p)$. $G^*[\mathcal{V}]$ is the graph defined as follows:

$$V(G^*[\mathcal{V}]) = V_0^* \cup V_1^* \cup \dots \cup V_{h-1}^*$$

$$E(G^*[\mathcal{V}]) = \left\{ (u^*, v^*) \middle| \begin{array}{c} u^* \in V_i^*, v^* \in V_j^* \\ (i, j) \in \Lambda(G, \mathcal{V}) \end{array} \right\}$$

The following theorem is proved in [6].

Theorem I $G^*[\mathcal{V}]$ is an RFT graph for G with $O(\lambda(G,\mathcal{V})\log^2 N)$ edges. In particular, if $\lambda(G,\mathcal{V}) = O(|E(G)|/\log N)$ then $G^*[\mathcal{V}]$ is an RFT graph with $O(|E(G)|\log N)$ edges.

3 RFT Graphs for Partial kTrees

3.1 Partial k-Trees

A tree decomposition of a graph G is a pair (T, \mathcal{X}) , where T is a tree and $\mathcal{X} = \{X_t \subseteq V(G) | t \in V(T)\}$ is a family of subsets of V(G), satisfying the following three conditions:

- 1. $V(G) = \bigcup_{t \in V(T)} X_t$;
- 2. for every $(u, v) \in E(G)$, there exists $t \in V(T)$ such that $u, v \in X_t$;
- 3. for every $r, s, t \in V(T)$, if s is on the path between r and t in T then $X_r \cap X_t \subseteq X_s$.

The width of (T, \mathcal{X}) is $\max\{|X_t| - 1|t \in V(T)\}$. The treewidth of G is the minimum width over all possible tree decompositions of G.

A graph of treewidth at most k is called a partial k-tree. It is easy to see that a tree is a partial 1-tree.

^{*}確率的故障に耐える疎なネットワーク

[†]野村 久美子, 山田 敏規, 上野 修一

[‡]東京工業大学 大学院 理工学研究科 集積システム専攻

3.2 RFT Graphs

We assume in this section that k is a fixed positive integer. Let G be a connected partial k-tree with N vertices, and let (T, \mathcal{X}) be a tree decomposition of G with width at most k, where $\mathcal{X} = \{X_t \subseteq V(G) \mid t \in V(T)\}$, and T is considered as a rooted tree with root r. It is not difficult to see that $|E(G)| \leq kN$.

Lemma 1 There exists a partition $\mathcal{Y} = \{Y_0, Y_1, \dots, Y_{l-1}\}$ of V(T) that satisfies the following four conditions:

- 1. $l = O(N/\log N);$
- 2. For any $i \in [l-1]$, there exists a vertex $t_i \in V(T)$ such that the parent of each vertex of Y_i is contained in $Y_i \cup \{t_i\}$;
- 3. $r \in Y_{l-1}$, and the parent of each vertex of $Y_{l-1} \{r\}$ is contained in Y_{l-1} .
- 4. $\mathcal{V} = \{\bigcup_{t \in Y_i} X_t X_{t_i} \mid i \in [l-1]\} \cup \{\bigcup_{t \in Y_{l-1}} X_t\}$ is a partition of V(G) such that the size of each block is $O(\log N)$.

Theorem 1 A partial k-tree G with N vertices has an RFT graph with $O(|E(G)| \log N)$ edges.

Proof: (Sketch) We can prove that $\lambda(G, \mathcal{V}) = O(|E(G)|/\log N)$ for partition \mathcal{V} defined in Lemma 1. Thus we have the theorem from Theorem I.

It should be noted that Theorem 1 is a natural generalization of a result for trees shown in [4], since trees are partial 1-trees.

4 RFT Graphs for Butterfly-Like Graphs

4.1 Butterfly-Like Graphs

For any $v = [v_1, v_2, \dots, v_n] \in [2]^n$, let $\chi_i(v) = [v_1, v_2, \dots, v_{i-1}, \bar{v}_i, v_{i+1}, \dots, v_n]$ and $\rho_i(v) = [v_1, v_2, \dots, v_i]$, where \bar{v}_i denotes the complement of v_i , that is $\bar{v}_i = 1$ if $v_i = 0$, and $\bar{v}_i = 0$ otherwise. The *n*-dimensional butterfly B(n) is the graph defined as follows: $V(B(n)) = [2]^n \times [n+1]$; $E(B(n)) = \{([u,i],[v,i+1])|v = u \text{ or } v = \chi_{i+1}(u)\}$, where $u,v \in [2]^n$ and $i \in [n]$. It is easy to see that $|V(B(n))| = N = (n+1)2^n$, and $|E(B(n))| \leq 2N$.

The n-dimensional wrapped butterfly is the graph obtained from B(n) by merging vertices [v,0] and [v,n] for each $v \in [2]^n$. The n-demensional wrapped butterfly has $n2^n$ vertices, each of degree 4. The Beneš graph consists of back-to-back butterflies. The n-dimensional Beneš graph has $(2n+1)2^n$ vertices.

4.2 RFT Graphs

Let $V_{[x,i]} = \{[u,i] \in V(B(n)) \mid \rho_{n-\lceil \log n \rceil}(u) = x\}$ for any $x \in [2]^{n-\lceil \log n \rceil}$ and $i \in [n+1]$, and let $\mathcal{V} = \{V_{[x,i]} \mid x \in [2]^{n-\lceil \log n \rceil}, i \in [n+1]\}$. It is easy to see that \mathcal{V} is a partition of V(B(n)) such that $|V_{[x,i]}| = O(\log N)$ for any $x \in [2]^{n-\lceil \log n \rceil}$ and $i \in [n+1]$, and $|\mathcal{V}| = O(N/\log N)$.

Theorem 2 An N-vertex butterfly B(n) has an RFT graph with $O(|E(B(n))| \log N)$ edges.

Proof: (Sketch) We can prove that $\lambda(B(n), \mathcal{V}) = O(|E(G)|/\log N)$ for partition \mathcal{V} of V(B(n)) defined above. Thus we have the theorem from Theorem I.

Similar argument can be applied to wrapped butterflies and Beneš graphs.

Theorem 3 If G is a wrapped butterfly or Beneš graph with N vertices, G has an RFT graph with $O(|E(G)| \log N)$ edges.

Notice that Theorems 2 and 3 together with results in [6] cover the well-known classes of hypercubic graphs.

Acknowledgments: The authors are grateful to Prof. Y. Kajitani for his encouragement. The research is a part of CAD21 Project at TIT.

References

- [1] N. Alon and F.R.K. Chung. Explicit construction of linear sized tolerant networks. *Discrete Mathematics*, Vol. 72, pp. 15–19, 1988.
- [2] R. Diestel. Graph Theory, pp. 253–257. Springer Verlag, 1997.
- [3] J. Fraidman and N. Pippenger. Expanding graphs contain all small trees. *Combinatorica*, Vol. 7, No. 1, 1987.
- [4] P. Fraigniaud, C. Kenyon, and A. Pelc. Finding a target subnetwork in sparse networks with random faults. *Information Processing Letters*, Vol. 48, pp. 297–303, 1993.
- [5] H. Tamaki. Construction of the mesh and the torus tolerating a large number of faults. *Proc.* of SPAA '94, pp. 268–277, 1994.
- [6] T. Yamada and S. Ueno. Sparse networks tolerating random faults. Proc. of I-SPAN '99, pp. 114–118, 1999.