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1 Introduction

This paper considers the following problem in con-
nection with the design of fault-tolerant inter-
connection networks for multiprocessor systems:
Given an N-vertex graph G, construct an O(N)-
vertex graph G* with a minimum number of edges
such that even after deleting each vertex from G*
independently with constant probability, the re-
maining graph contains G as a subgraph, with
probability converging to 1, as N — oco. G* is
called an RFT(random-fault-tolerant) graph for
G. Let V(G) and E(G) be the vertex set and
edge set of a graph G, respectively. Fraigniaud,
Kenyon, and Pelc showed in [4] that for any V-
vertex graph G, there exists an RFT graph for G
with O(|E(G)|log? N) edges, and that for any N-
vertex graph G with O(N) edges and maximum de-
gree of Q(N), any RFT graph for G has w(|E(G)|)
edges. It is an interesting open problem posed in
[4] to decide whether any N-vertex graph G has
an RFT graph with O(|E(G)|log N) edges. It
is known that if G is a path[l], cycle[4], or tree
with bounded vertex degree[3], we can construct
an RFT graph for G with O(|E(G)|) edges ; if G is
an N-vertex mesh or torus[5], we can construct an
RFT graph for G with O(|E(G)|loglog N) edges;
if G is an N-vertex tree[4], circulant graph, hy-
percube, de Bruijn graph, shuffle-exchange graph,
or cube-connected-cycles[6], we can construct an
RFT graph for G with O(|E(G)|log N) edges.

This paper shows that if G is an N-vertex par-
tial k-tree, butterfly, wrapped butterfly, or Benes
graph, we can construct an RFT graph for G with
O(|E(G)|log N) edges. The open problem men-
tioned above remains unresolved.

2 A General Construction of
RFT Graphs

In this section, we review a general method to con-
struct RFT graphs proposed in [6]. For any posi-
tive integer h, let [h] = {0,1,...,h —1}. A collec-
tion {So, S1,---,Sp—1} of subsets of S is called a
partition of S if Uep Si = S and ;N S; = 0 for
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any 1 # j. For an N-vertex graph G and a par-
tition V = {Vp, V1, ..., Vh—1} of V(G), define that
AG,Y) = {(0,)3(u,v) € B(G)(u € Viyv € V;)}
and \(G,V) = |A(G,V)|. Let 0 < p < 1 be the
probability for each vertex to be deleted.

Suppose that V = {Vy,V1,...,Vh_1} is a parti-
tion of V(@) such that |V;| < aln N for any i € [h]
and h < SN/In N for some fixed positive numbers
aand 3. Let V&, V', ..., V)" | be h sets such that
[Vi*| = [yInNT] for any 4 € [h] and V* NV} =0
for any ¢ # j, where v = (v2a + 1 + 1)2/2(1 — p).
G*[V] is the graph defined as follows:

V(G V) = VFUuVfu---uvy,
sem = {wor | 5T |

The following theorem is proved in [6].

Theorem I G*[V] is an RFT graph for G
with O(MNG,V)log? N) edges. In particular, if
MG,V) = O(|E(G)|/ log N) then G*[V] is an RFT

graph with O(|E(G)|log N) edges. |
3 RFT Graphs for Partial k-
Trees

3.1 Partial k-Trees
A tree decomposition of a graph G is a pair (T, X),
where T is a tree and X = {X; C V(G)|t € V(T)}
is a family of subsets of V(G), satisfying the fol-
lowing three conditions:

1. V(G) = UtEV(T) Xt 5

2. for every (u,v) € E(G), there exists t € V(T')
such that u,v € Xy ;

3. for every r,s,t € V(T), if s is on the path
between r and t in T then X, N X; C X;.

The width of (T, X) is max{| X — 1|t € V(T)}.
The treewidth of G is the minimum width over all
possible tree decompositions of G.

A graph of treewidth at most k is called a partial
k-tree. It is easy to see that a tree is a partial 1-
tree.



3.2 RFT Graphs

We assume in this section that k is a fixed positive
integer. Let G be a connected partial k-tree with
N vertices, and let (T, X') be a tree decomposition
of G with width at most k, where X = {X; C
V(G) |t € V(T)}, and T is considered as a rooted
tree with root r. It is not difficult to see that

|E(G)| < kN.
Lemma 1 There exists a partition Y =
{Yo,Y1,..., Y11} of V(T) that satisfies the

following four conditions:
1. 1=0O(N/logN);

2. For any i € [l — 1], there ezists a vertex t; €
V(T) such that the parent of each vertex of Y;
is contained in Y; U {t;};

8. r € Y_1, and the parent of each vertex of
Y1 — {r} is contained in Y;_;.

4.V ={Utey; Xe =Xy, |1 € =1} U{Usev;_, Xt}
is a partition of V(G) such that the size of
each block is O(log N).

Theorem 1 A partial k-tree G with N vertices
has an RFT graph with O(|E(G)|log N) edges.

Proof : (Sketch) We can prove that
AMG,V) = O(|E(G)|/logN) for partition V
defined in Lemma 1. Thus we have the theorem
from Theorem 1.

It should be noted that Theorem 1 is a natural
generalization of a result for trees shown in [4],
since trees are partial 1-trees.

4 RFT Graphs for Butterfly-
Like Graphs

4.1 Butterfly-Like Graphs

For any v = [vi,v2,...,v5] € [2]", let
xi(v) = [vi,v2,...,0-1,%,Vi41,..-,0,] and
pi(v) = [v1,v2,...,v;], where ¥; denotes the com-
plement of v;, that is v; = 1 if v; = 0, and
7; = 0 otherwise. The n-dimensional butterfly
B(n) is the graph defined as follows: V(B(n)) =
[2]* x [n + 1] ; E(B(n)) = {([u,i],[v,i + 1])[v =
uwor v = Yit+1(u)}, where u,v € [2]" and i € [n].
It is easy to see that |[V(B(n))| = N = (n + 1)27,
and |E(B(n))| <2N.

The n-dimensional wrapped butterfly is the
graph obtained from B(n) by merging vertices
[v,0] and [v,n] for each v € [2]". The n-
demensional wrapped butterfly has n2" vertices,
each of degree 4. The Benes graph consists of
back-to-back butterflies. The n-dimensional Bene§
graph has (2n + 1)2" vertices.

4.2 RFT Graphs

Let V[x,z] = {['LL,Z] € V(B(’Il)) | Pn—[logn] (U) = {E}
for any z € [2]>~1°8"] and i € [n + 1], and let
V = (Vg | @ € 21187 € [+ 1)), I s
easy to see that V is a partition of V(B(n)) such
that [V, ;)| = O(log N) for any = € [2]r—Tlegn] and
i € [n+ 1], and [V| = O(N/log N).

Theorem 2 An N-vertex butterfly B(n) has an
RFT graph with O(|E(B(n))|log N) edges.

Proof : (Sketch) We can prove that
AB(n),V) = O(|E(G)|/logN) for partition
VY of V(B(n)) defined above. Thus we have the
theorem from Theorem 1. i

Similar argument can be applied to wrapped
butterflies and Benes graphs.

Theorem 3 If G is a wrapped butterfly or Benes
graph with N wvertices, G has an RFT graph with
O(|E(G)|log N) edges.

Notice that Theorems 2 and 3 together with
results in [6] cover the well-known classes of
hypercubic graphs.
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