Balanced trefoil decomposition algorithm of complete tripartite multi-graphs

Hideaki Fujimoto Kazuhiko Ushio
Department of Electronic Engineering Department of Industrial Engineering
Faculty of Science and Technology
Kinki University
fujimoto@ele.kindai.ac.jp ushio@is.kindai.ac.jp

1. Introduction

Let K_{n_1,n_2,n_3} denote the complete tripartite graph with partite sets V_1 , V_2 , V_3 of n_1 , n_2 , n_3 vertices each. The complete tripartite multi-graph $\lambda K_{n_1,n_2,n_3}$ is the complete tripartite graph K_{n_1,n_2,n_3} in which every edge is taken λ times. The trefoil (or the 3-windmill) is a graph of 3 edge-disjoint triangles with a common vertex and the common vertex is called the center of the trefoil. When $\lambda K_{n_1,n_2,n_3}$ is decomposed into edge-disjoint sum of trefoils, it is called that $\lambda K_{n_1,n_2,n_3}$ has a trefoil decomposition. Moreover, when every vertex of $\lambda K_{n_1,n_2,n_3}$ appears in the same number of trefoils, it is called that $\lambda K_{n_1,n_2,n_3}$ has a balanced trefoil decomposition and this number is called the replication number.

2. Balanced trefoil decomposition of $\lambda K_{n_1,n_2,n_3}$

Notation. We denote a trefoil passing through $v_1 - v_2 - v_3 - v_1 - v_4 - v_5 - v_1 - v_6 - v_7 - v_1$ by $\{(v_1, v_2, v_3), (v_1, v_4, v_5), (v_1, v_6, v_7)\}.$

Lemma 1. If $\lambda K_{n,n,n}$ has a balanced trefoil decomposition, then $s\lambda K_{n,n,n}$ has a balanced trefoil decomposition.

Lemma 2. If $\lambda K_{n,n,n}$ has a balanced trefoil decomposition, then $\lambda K_{sn,sn,sn}$ has a balanced trefoil decomposition.

Theorem 1. $\lambda K_{n_1,n_2,n_3}$ has a balanced trefoil decomposition if and only if $\lambda n_1 = \lambda n_2 = \lambda n_3 \equiv 0 \pmod{9}$, $n_1 \geq 3$.

Proof. (Necessity) Suppose that $\lambda K_{n_1,n_2,n_3}$ has a balanced trefoil decomposition. Let b be the number of trefoils and r be the replication number. Then $b=\lambda(n_1n_2+n_1n_3+n_2n_3)/9$ and $r=7\lambda(n_1n_2+n_1n_3+n_2n_3)/9(n_1+n_2+n_3)$. Among r trefoils having vertex v in V_i , ler r_{ij} be the number of trefoils in which the centers are in V_j . Then $r_{11}+r_{12}+r_{13}=r_{21}+r_{22}+r_{23}=r_{31}+r_{32}+r_{33}=r$. Counting the number of vertices adjacent to vertex v in V_1 , $3r_{11}+r_{12}+r_{13}=\lambda n_2$ and $3r_{11}+r_{12}+r_{13}=\lambda n_3$. Counting the number of vertices adjacent to vertex v in V_2 , $r_{21}+3r_{22}+r_{23}=\lambda n_1$ and $r_{21}+3r_{22}+r_{23}=\lambda n_3$. Counting the number of vertices adjacent to vertex v in V_3 , $r_{31}+r_{32}+3r_{33}=\lambda n_1$ and $r_{31}+r_{32}+3r_{33}=\lambda n_2$. Therefore, $n_1=n_2=n_3$. Put $n_1=n_2=n_3=n$. Then $b=\lambda n^2/3$, $r=7\lambda n/9$, $r_{11}=r_{22}=r_{33}=\lambda n/9$ and $r_{12}+r_{13}=r_{13}$

Fut $n_1 = n_2 = n_3 = n$. Then $b = \lambda n^2/3$, $r = t\lambda n/9$, $r_{11} = r_{22} = r_{33} = \lambda n/9$ and $r_{12} + r_{13} = r_{21} + r_{23} = r_{31} + r_{32} = 2\lambda n/3$. Thus $\lambda n \equiv 0 \pmod{9}$. Since a trefoil is a subgraph of $\lambda K_{n,n,n}$, $n \ge 3$.

(Sufficiency) Case 1. $n \equiv 0 \pmod{9}$. Put n = 9s. When s = 1, let $V_1 = \{1, 2, ..., 9\}$, $V_2 = \{10, 11, ..., 18\}$, $V_3 = \{19, 20, ..., 27\}$. Construct a balanced trefoil decomposition of $K_{9,9,9}$:

 $B_1 = \{(1, 10, 19), (1, 11, 20), (1, 12, 21)\}$

 $B_2 = \{(2, 10, 20), (2, 11, 21), (2, 12, 19)\}$

```
B_3 = \{(3, 10, 21), (3, 11, 19), (3, 12, 20)\}
B_4 = \{(4, 13, 22), (4, 14, 23), (4, 15, 24)\}
B_5 = \{(5, 13, 23), (5, 14, 24), (5, 15, 22)\}\
B_6 = \{(6, 13, 24), (6, 14, 22), (6, 15, 23)\}
B_7 = \{(7, 16, 25), (7, 17, 26), (7, 18, 27)\}\
B_8 = \{(8, 16, 26), (8, 17, 27), (8, 18, 25)\}\
B_9 = \{(9, 16, 27), (9, 17, 25), (9, 18, 26)\}\
B_{10} = \{(10, 22, 7), (10, 23, 8), (10, 24, 9)\}
B_{11} = \{(11, 22, 8), (11, 23, 9), (11, 24, 7)\}
B_{12} = \{(12, 22, 9), (12, 23, 7), (12, 24, 8)\}
B_{13} = \{(13, 25, 1), (13, 26, 2), (13, 27, 3)\}
B_{14} = \{(14, 25, 2), (14, 26, 3), (14, 27, 1)\}
B_{15} = \{(15, 25, 3), (15, 26, 1), (15, 27, 2)\}
B_{16} = \{(16, 19, 4), (16, 20, 5), (16, 21, 6)\}
B_{17} = \{(17, 19, 5), (17, 20, 6), (17, 21, 4)\}
B_{18} = \{(18, 19, 6), (18, 20, 4), (18, 21, 5)\}
B_{19} = \{(19, 7, 13), (19, 8, 14), (19, 9, 15)\}
B_{20} = \{(20, 7, 14), (20, 8, 15), (20, 9, 13)\}
B_{21} = \{(21, 7, 15), (21, 8, 13), (21, 9, 14)\}
B_{22} = \{(22, 1, 16), (22, 2, 17), (22, 3, 18)\}
B_{23} = \{(23, 1, 17), (23, 2, 18), (23, 3, 16)\}
B_{24} = \{(24, 1, 18), (24, 2, 16), (24, 3, 17)\}
B_{25} = \{(25, 4, 10), (25, 5, 11), (25, 6, 12)\}
B_{26} = \{(26, 4, 11), (26, 5, 12), (26, 6, 10)\}
B_{27} = \{(27, 4, 12), (27, 5, 10), (27, 6, 11)\}.
Therefore, \lambda K_{n,n,n} has a balanced trefoil decomposition.
Case 2. n \equiv 0 \pmod{3} and \lambda \equiv 0 \pmod{3}. Put n = 3s. When s = 1, let V_1 = \{1, 2, 3\},
V_2 = \{4, 5, 6\}, V_3 = \{7, 8, 9\}.
Construct a balanced trefoil decomposition of 3K_{3,3,3}:
B_1 = \{(1,4,7), (1,5,8), (1,6,9)\}
B_2 = \{(2,4,8), (2,5,9), (2,6,7)\}
B_3 = \{(3,4,9), (3,5,7), (3,6,8)\}
B_4 = \{(4,7,1), (4,8,2), (4,9,3)\}
B_5 = \{(5,7,2), (5,8,3), (5,9,1)\}
B_6 = \{(6,7,3), (6,8,1), (6,9,2)\}
B_7 = \{(7,1,4), (7,2,5), (7,3,6)\}
B_8 = \{(8, 1, 5), (8, 2, 6), (8, 3, 4)\}
B_9 = \{(9,1,6), (9,2,4), (9,3,5)\}.
Therefore, \lambda K_{n,n,n} has a balanced trefoil decomposition.
Case 3. n \ge 3 and \lambda \equiv 0 \pmod{9}. Let V_1 = \{1, 2, ..., n\}, V_2 = \{1', 2', ..., n'\}, V_3 = \{1'', 2'', ..., n''\}.
Construct a balanced trefoil decomposition of 9K_{n,n,n}:
B_{ij}^{(1)} = \{(i, j', (i+j-1)''), (i, (j+1)', (i+j)''), (i, (j+2)', (i+j+1)'')\}
B_{ij}^{(2)} = \{(i', j'', i+j-1), (i', (j+1)'', i+j), (i', (j+2)'', i+j+1)\}
B_{ij}^{(3)} = \{(i'', j, (i+j-1)'), (i'', j+1, (i+j)'), (i'', j+2, (i+j+1)')\}.
Therefore, \lambda K_{n,n,n} has a balanced trefoil decomposition.
```

References

- [1] P. Horák and A. Rosa, Decomposing Steiner triple systems into small configurationa, Ars Combinatoria 26 (1988), pp. 91–105.
- [2] W. D. Wallis, Combinatorial Designs. Marcel Dekker, New York and Basel (1988).