Balanced bowtie decomposition algorithm of complete tripartite multi-graphs

Kazuhiko Ushio Hideaki Fujimoto
Department of Industrial Engineering Department of Electronic Engineering
Faculty of Science and Technology
Kinki University
ushio@is.kindai.ac.jp fujimoto@ele.kindai.ac.jp

1. Introduction

Let K_{n_1,n_2,n_3} denote the complete tripartite graph with partite sets V_1 , V_2 , V_3 of n_1 , n_2 , n_3 vertices each. The complete tripartite multi-graph $\lambda K_{n_1,n_2,n_3}$ is the complete tripartite graph K_{n_1,n_2,n_3} in which every edge is taken λ times. The bowtie (or the 2-windmill) is a graph of 2 edge-disjoint triangles with a common vertex and the common vertex is called the center of the bowtie. When $\lambda K_{n_1,n_2,n_3}$ is decomposed into edge-disjoint sum of bowties, it is called that $\lambda K_{n_1,n_2,n_3}$ has a bowtie decomposition. Moreover, when every vertex of $\lambda K_{n_1,n_2,n_3}$ appears in the same number of bowties, it is called that $\lambda K_{n_1,n_2,n_3}$ has a balanced bowtie decomposition and this number is called the replication number.

2. Balanced bowtie decomposition of $\lambda K_{n_1,n_2,n_3}$

Notation. We denote a bowtie passing through $v_1 - v_2 - v_3 - v_1 - v_4 - v_5 - v_1$ by $\{(v_1, v_2, v_3), (v_1, v_4, v_5)\}$.

Lemma 1. If $\lambda K_{n,n,n}$ has a balanced bowtie decomposition, then $s\lambda K_{n,n,n}$ has a balanced bowtie decomposition.

Lemma 2. If $\lambda K_{n,n,n}$ has a balanced bowtie decomposition, then $\lambda K_{sn,sn,sn}$ has a balanced bowtie decomposition.

Theorem 1. $\lambda K_{n_1,n_2,n_3}$ has a balanced bowtie decomposition if and only if $\lambda n_1 = \lambda n_2 = \lambda n_3 \equiv 0 \pmod{6}$, $n_1 \geq 2$.

Proof. (Necessity) Suppose that $\lambda K_{n_1,n_2,n_3}$ has a balanced bowtie decomposition. Let b be the number of bowties and r be the replication number. Then $b = \lambda(n_1n_2 + n_1n_3 + n_2n_3)/6$ and $r = 5\lambda(n_1n_2 + n_1n_3 + n_2n_3)/6(n_1 + n_2 + n_3)$. Among r bowties having vertex v in V_i , ler r_{ij} be the number of bowties in which the centers are in V_j . Then $r_{11} + r_{12} + r_{13} = r_{21} + r_{22} + r_{23} = r_{31} + r_{32} + r_{33} = r$. Counting the number of vertices adjacent to vertex v in V_1 , $2r_{11} + r_{12} + r_{13} = \lambda n_2$ and $2r_{11} + r_{12} + r_{13} = \lambda n_3$. Counting the number of vertices adjacent to vertex v in V_2 , $r_{21} + 2r_{22} + r_{23} = \lambda n_1$ and $r_{21} + 2r_{22} + r_{23} = \lambda n_3$. Counting the number of vertices adjacent to vertex v in V_3 , $r_{31} + r_{32} + 2r_{33} = \lambda n_1$ and $r_{31} + r_{32} + 2r_{33} = \lambda n_2$. Therefore, $n_1 = n_2 = n_3$. Put $n_1 = n_2 = n_3 = n$. Then $b = \lambda n^2/2$, $r = 5\lambda n/6$, $r_{11} = r_{22} = r_{33} = \lambda n/6$ and $r_{12} + r_{13} = r_{21} + r_{23} = r_{31} + r_{32} = 2\lambda n/3$. Thus $\lambda n \equiv 0$ (mod 6). Since a bowtie is a subgraph of $\lambda K_{n,n,n}$, $n \ge 2$.

(Sufficiency) Case 1. $n \equiv 0 \pmod{6}$. Put n = 6s. When s = 1, let $V_1 = \{1, 2, ..., 6\}$, $V_2 = \{7, 8, ..., 12\}$, $V_3 = \{13, 14, ..., 18\}$.

Construct a balanced bowtie decomposition of $K_{6,6,6}$:

```
B_1 = \{(1,7,13), (1,8,14)\}
B_2 = \{(2,7,14), (2,8,13)\}
B_3 = \{(3,9,15), (3,10,16)\}
B_4 = \{(4,9,16), (4,10,15)\}
```

```
B_5 = \{(5, 11, 17), (5, 12, 18)\}
B_6 = \{(6, 11, 18), (6, 12, 17)\}\
B_7 = \{(7, 15, 5), (7, 16, 6)\}
B_8 = \{(8, 15, 6), (8, 16, 5)\}
B_9 = \{(9, 17, 1), (9, 18, 2)\}
B_{10} = \{(10, 17, 2), (10, 18, 1)\}
B_{11} = \{(11, 13, 3), (11, 14, 4)\}
B_{12} = \{(12, 13, 4), (12, 14, 3)\}
B_{13} = \{(13, 5, 9), (13, 6, 10)\}
B_{14} = \{(14, 5, 10), (14, 6, 9)\}
B_{15} = \{(15, 1, 11), (15, 2, 12)\}
B_{16} = \{(16, 1, 12), (16, 2, 11)\}
B_{17} = \{(17, 3, 7), (17, 4, 8)\}
B_{18} = \{(18, 3, 8), (18, 4, 7)\}.
Therefore, \lambda K_{n,n,n} has a balanced bowtie decomposition.
Case 2. n \equiv 0 \pmod{3} and \lambda \equiv 0 \pmod{2}. Put n = 3s. When s = 1, let V_1 = \{1, 2, 3\},
V_2 = \{4, 5, 6\}, V_3 = \{7, 8, 9\}.
Construct a balanced bowtie decomposition of 2K_{3,3,3}:
B_1 = \{(1,4,7), (1,5,8)\}
B_2 = \{(2,5,8), (2,6,9)\}
B_3 = \{(3,6,9), (3,4,7)\}
B_4 = \{(4, 8, 3), (4, 9, 1)\}
B_5 = \{(5, 9, 1), (5, 7, 2)\}
B_6 = \{(6,7,2), (6,8,3)\}
B_7 = \{(7,3,5), (7,1,6)\}
B_8 = \{(8,1,6), (8,2,4)\}
B_9 = \{(9, 2, 4), (9, 3, 5)\}.
Therefore, \lambda K_{n,n,n} has a balanced bowtie decomposition.
Case 3. n \equiv 0 \pmod{2} and \lambda \equiv 0 \pmod{3}. Put n = 2s. When s = 1, let V_1 = \{1, 2\}, V_2 = \{3, 4\},
V_3 = \{5, 6\}.
Construct a balanced bowtie decomposition of 3K_{2,2,2}:
B_1 = \{(1,3,5), (1,4,6)\}
B_2 = \{(2,3,6), (2,4,5)\}
B_3 = \{(3,5,1), (3,6,2)\}
B_4 = \{(4,5,2), (4,6,1)\}
B_5 = \{(5,1,3), (5,2,4)\}
B_6 = \{(6, 1, 4), (6, 2, 3)\}.
Therefore, \lambda K_{n,n,n} has a balanced bowtie decomposition.
Case 4. n \ge 2 and \lambda \equiv 0 \pmod{6}. Let V_1 = \{1, 2, ..., n\}, V_2 = \{1', 2', ..., n'\}, V_3 = \{1'', 2'', ..., n''\}.
Construct a balanced bowtie decomposition of 6K_{n,n,n}:
B_{ij}^{(1)} = \{(i, j', (i+j-1)''), (i, (j+1)', (i+j)'')\}
B_{ij}^{(2)} = \{(i', j'', i+j-1), (i', (j+1)'', i+j)\}
B_{ij}^{(3)} = \{(i'', j, (i+j-1)'), (i'', j+1, (i+j)')\}.
Therefore, \lambda K_{n,n,n} has a balanced bowtie decomposition.
```

References

- [1] P. Horák and A. Rosa, Decomposing Steiner triple systems into small configurationa, $Ars\ Combinatoria\ 26\ (1988),\ pp.\ 91-105.$
- [2] W. D. Wallis, Combinatorial Designs. Marcel Dekker, New York and Basel (1988).