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1 Introduction

It has been widely considered that gquantum mecha-
nism gives new great power for computation after Shor
[6] showed the existence of quantum polynomial time
algorithm for integer factoring problem. However, it
has been still unclear why quantum computers are so
powerful. In this context, it is worth considering sim-
pler models such as finite automata.

Quantum finite automata were introduced by Moore
and Crutchfield [5] and Kondacs and Watrous [3], in-
dependently. The latter showed that the class of lan-
guages recognizable by bounded error 1-way quantum
finite automata (1QFAs) is properly contained in the
class of regular languages.Ambainis and Freivalds [2]
studied the characterizations of 1QFAs in more de-
tail by comparing 1QFAs with 1-way probabilistic re-
versible finite automata (1PRFAs), since 1PRFAs are
clearly special cases of 1QFAs. They showed that there
exist languages, such as {a*b*}, which can be recog-
nized by bounded error 1QFAs but not by bounded
error IPRFAs. However, as we show in this paper, this
situation seems different in case of automata with one
counter.

Kravtsev [4] introduced 1-way quantum l-counter
automata (1Q1CAs), and showed that several non-
context-free languages can be recognized by bounded
error 1Q1CAs. No clear comparisons with other
automata such as l-way deterministic 1-counter au-
tomata (1D1CAs) or 1-way probabilistic reversible 1-
counter automata (1PR1CAs) were done in [4]. In this
paper, we investigate the power of 1Q1CAs in compar-
ison with 1IPR1CAs.

2 Definitions

Definition 1 A I-way deterministic 1-counter au-
tomaton (1D1CA) is defined by a 6-tuple M
(@,%,0,90, Qacc, @rej), where Q is a finite set of states,
Y is a finite input alphabet, qo is the initial state,
Qace C Q is a set of accepting states, Qrej C () @5 a set
of rejecting states, and § : @ xT' xS — @ x{-1,0,+1}
is a transition function, where I' = T U {4, 8}, symbol
¢t & T is the left end-marker, symbol $ € X is the right
end-marker, and S = {0, 1}.

We assume that each 1D1CA has a counter which
can contain an arbitrary integer and the counter value
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is 0 at the start of computation. —1,0, +1 respectively,
decreases by 1, retains the same and increases by 1 the
counter value. Let s = sign(k), where & is the counter
value and sign{k) = 0 if k = 0, otherwise 1. We also
assume that all inputs are started by ¢ and terminated
by §.

The automaton starts in gg and reads an input w
from left to right. At the ith step, it reads a symbol w;
in the state g, checks whether the counter value is 0 or
not (i.e. checks s) and finds an appropriate transition
0{(q,w;, ) = (¢’,d). Then it updates its state to ¢
and the counter value according to d. The automaton
accepts w if it enters the final state in Q... and rejects
if it enters the final state in Qrej.

Definition 2 A I-way probabilistic 1-counter au-
tomaton (1P1CA) is defined by a G6-tuple M
(Q,%,9, g0, Qaces @rej). A transition function & is de-
ﬁnedastFxSxQx{ 1,0,+1} —» R*.

The definition of a counter remains the same as for
1D1CAs.

A language L is said recognizable by a 1IP1CA with
probability p if there exists a 1P1CA which accepts
any input z € L with probability at least p > 1/2 and
rejects any input x € L with probability at least p. We
may use the term “accepting probability” for denoting
this probability p.

Definition 3 A 1-way probabilistic reversible 1-
counter automaton (1PR1CA) is defined as a 1P1CA
such that, for any ¢ € Q, 0 € T and s € {0,1}, there
is at most one state ¢’ € @ such that §(¢', 0,5, q,d) is
non-zero.

Definition 4 A 1-way quantum I-counter automa-
ton (1Q1CA) is defined by a G6-tuple M
(@,%,4, 90, Qace; @rej)- A transition function 6 is de-
ﬁnedastI‘xSxQx{ 10+1}—><C+, where

I,¢,3.

The definition of a counter remains the same as for
1D1CAs. The definition of the recognizability remains
the same as for 1P1CAs.

The number of configurations of a 1Q1CA on any
imput z of length n is precisely (2n + 1)|Q|, since there
are 2n+1 possible counter value and |Q)| internal states.
For fixed M, let C,, denote this set of configurations.

A computation on an input z of length n corre-
sponds to a unitary evolution in the Hilbert space
Hn, = 12(C). For each (¢,k) € Cp,q € Q,k € [-n,n],
let |g, k) denote the basis vector in I5(C,,).

A unitary operator U? for a symbol ¢ on H,
fined as follows:

Uglq) k) = Zq’,d

is de-

6(q’ 0—7 Sign(k)’ ql’ d) Iqlﬂ k + d>7



3 Recognizability of L cq

Here we show that non-context-free language Ly oq =
{alaZ - -al} for each fixed k > 2, is recognizable by a
bounded error IPR1CA.

Theorem 1 For each k > 2, there exists o IPR1CA
Mpg(Li order) for Li order with probability 1/2+1/(4k—
6).

It has been known that, while there exists a 1QFA
which recognizes Ly orger With bounded error, any
1PRFA cannot recognize Ly order With bounded error
[2, 1]. In this point, Theorem 1 gives a contrastive
result between no-counter and one-counter cases.

Theorem 2 For each k > 2, there exists a 1PR1CA
Mpr(Li,eq) for Ly, eq with probability 1/2+1/(8k—10).

4 TImproving the accepting prob-
ability of 1Q1CA for Ly eq

In the previous section, we showed that Lpe.q, =
{a}a% ---a}} is recognizable by a bounded error
1PR1CA. In this section, we show that, in a quan-
tum case, we can improve the accepting probability in
a strict sense by using quantum interference.

4.1

Theorem 3 By using quantum interference of the
states, for each k > 2, Lpeq can be recognized by a
1Q1CA Mg (Ly, eq) with probability p, where p is the
root of p*t1/(k=1) 4 5 — 1 in the interval of (1/2,1).

Quantum interference of states

Proposition 1 For each k > 2,1/24+1/(8k—10) < p,
where p is the root of pthtD/(k=1) 4 p— 1,

4.2 Quantum interference of states and
counter value

Here we consider quantum interference of not only the
states, but also the counter value.

Theorem 4 By using quantum interference of the
states and the counter value, for fizred k > 2, Ly oq can
be recognized by a 1Q1CA Mqs(Lk,eq) with probability
1/2+ (k- 1)/2(k* — k+ 1).

Proposition 2 For each k > 3, p < 1/2 + (k —
1)/2(k2—k+1), where p is the root of ptF+1)/(F=1) p —
1.

5 Relation between 1D1CAs

and 1Q1CAs

As we have seen in previous sections, some non-
context-free languages can be recognized by bounded
error 1Q1CAs. This indicates the strength of 1Q1CAs.
Conversely, we present the weakness of 1Q1CAs by

showing that there is a regular language which can
be recognized by a 1D1CA but not by a 1Q1CA with
bounded error.

Theorem 5 The language {{a,b}*a} cannot be recog-
nized by a 1Q1CA with bounded error.

6 Conclusions and open prob-
lems

In this paper, we showed that a family of non-context-
free languages L oq = {af'a} ---a}} can be recognized
by 1PR1CAs and 1Q1CAs. By using quantum interfer-
ence of the states, we can improve the accepting prob-
ability. Further, by using quantum interference of not
only the states but also the counter value, we can again
improve the accepting probability.

These facts indicate that 1Q1CAs are more powerful
than 1PR1CAs.

However, it is still open whether there exist lan-
guages which can be recognized with bounded error
by 1Q1CAs but not by 1PR1CAs.
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