5ZC-05

Fault-tolerant Distributed Systems

for Multimedia Objects *
Motokazu Yokoyama, Katsuya Tanaka, and Makoto Takizawa |
Tokyo Denki University *
Email : {moto, katsu, taki}@takilab.k.dendai.ac.jp

1 Introduction

Distributed applications like teleconferences using
high-speed networks are composed of multiple multi-
media objects. The multimedia objects are required
to be fault-tolerant in mission-critical applications. In
addition, each multimedia object is required to sup-
port applications with some quality of service (QoS)
even if the objects suffer from some fault or the system
environment. In this paper, we discuss how each mul-
timedia object supports QoS required by the applica-
tions in change of system environment and objects of
the system.

In the traditional systems, checkpoints and repli-
cations are used to make the systems fault-tolerant.
Larger and more complex multimedia objects are ma-
nipulated and transmitted in the multimedia applica-
tions than the traditional systems. Hence, it takes a
longer time to save a state in the log and a large vol-
ume of log storage is required to take a checkpoint.
It is also not easy to manipulate multiple replicas of
multimedia objects since large volume of storage and
computation overhead are required to store the repli-
cas and to perform the requests on the replicas.

It is significant for the multimedia objects to sup-
port the applications with QoS required by the appli-
cations. The reliability and availability are considered
to be kinds of QoS. The object fault is also consid-
ered to be change of some QoS parameters. At the
checkpoint, a state obtained by reducing QoS of the
multimedia object can be taken if the state satisfies
QoS required by the application. By this method,
we can reduce the volume of the log and the time
to take the checkpoints. Suppose an object is faulty.
The object can be rolled back to a state which is not
the same as the previous one but supports QoS re-
quired by the application. The state of the multime-
dia object is large. In stead of storing the state of the
object, methods performed on the object are logged.
The object is rolled back by performing compensating
method of the methods in the log. By this method,
we can reduce the time for objects to be rolled back.

In distributed systems, multiple objects are re-
quired to take consistent checkpoints. In the mul-
timedia applications, not only the state of the object
but also the size of message is so large that the events
for taking a checkpoint and sending and receiving the
messages are not atomic. We discuss what is a consis-
tent checkpoint to be taken in the multimedia objects.

CRVFRAFATAT P27 PREIZBT 573 -V L T2
N2 AT L

TR E— Wb Bth, IR R

TR B

2 System Model

2.1 Object-oriented model

A system is composed of objects which are dis-
tributed in computers interconnected by high-speed
networks. An object is an encapsulation of data and
methods for manipulating the data. Applications can
obtain service only through the methods supported by
the objects. There are two types of objects, classes
and instances. A class ¢ is composed of attributes
Aq, ..., Ay (m > 0) and methods opy, ..., op; (I >
1). The values of the attributes of the instance o are
changed only through the methods. A collection (vq,
.., V) of values of the attributes is a states of the
instance o where each v; is a value taken by the at-
tribute 4; (i =1, ..., m). An object has exactly one
state at a time.

A new class ¢ can be derived from an existing class
c1. Here, ¢y inherits the attributes and the methods
from ¢;. ¢2 can have additional attributes and meth-
ods. The attributes and methods inherited can be
overridden in ¢;. ¢y is a subclass of ¢y, i.e. ¢o is-a c1.

A class ¢ can be composed of other classes ¢y, ...,
Cn, 1.€. ¢; is referred to as a component class of the
class c. ¢; is a part-of c. Let ¢;(s) denote a projection
of a state s of the class ¢ to a subclass ¢; of c. Here,
the class ¢ includes an class ¢; as an attribute.

On receipt of a request of a method op, op is per-
formed on an object o. Let op(s) and [op(s)] denote a
state and response obtained by performing a method
op on a state s of an object o, respectively.

Let op; and opa be methods supported by an object
0. op1 o opy shows that a method ops is performed
after op; competes. op; || ope shows that op; and ops
are concurrently performed on o.

2.2 QoS model

Applications obtain service supported by an object
o through the methods of the object 0. Each service
is characterized by parameters like level of resolution
and number of colors. These parameters are referred
to as quality of service (QoS) supported by the object
0

The scheme of QoS is a tuple of QoS parameters
named attributes (a1, ..., am) (m > 1). Let dom(a;)
be a domain of an attribute a;, i.e. a set of possi-
ble values to be taken by a; (¢ = 1, ..., m). For
example, dom(resolution) is a set of numbers each
of which shows the number of pixels for each frame.
Each state s of an object o supports a QoS instance
denoted by Q(s). Q(s) of the scheme (a1, ... ay) is
given in a tuple of values (vy, ..., vy) € dom(as) X
... x dom(ay,). Let a;(Q(s)) show a value v; of an
attribute a; in Q(s). Let S be a set of possible QoS
instances. A QoS value v1 precedes another vy (v >
v2) in dom(a;) if v; shows better QoS than v;. For
example, 120 x 100 < 160 x 120 [pixels] for the at-
tribute resolution. Let A be a subset (by, ..., bg) of
the QoS scheme (a1, ..., am) where b; € {a1, ..., am}

(j=1,..,k) and k < m. A QoS instance g1 of a
scheme A1 partially dominates g of Ay iff a(qr) =

a{qp) for every attribute a in A; N As. g1 dominates
g2 (g1 = ¢2) iff ¢1 partially dominates g and A; O A,.
A QoS instance g; is minimal in S iff there is no QoS
instance g2 in S such that ¢s < ¢1. g1 is minimum iff
q1 =X qo for every gz in S. g1 is mazimal iff there is no
g2 in S such that ¢1 =< g2. q1 is mazimum iff g2 < ¢1
for every go in S.

An application requires an object o to support some
QoS which is referred to as requirement QoS (RoS).
Let r be an RoS instance. Here, suppose an object o
supports a QoS instance g. If ¢ > r, the applications
can obtain enough service from the object o. Here, ¢
is referred to as satisfy r. Otherwise, q is less qualified
than r.

3 QoS Based Relations among Meth-
ods

3.1 QoS equivalency

Suppose that a class ¢ is composed of component
classes ci, ..., ¢m {m > 0). An application specifies
whether each subclass ¢; is mandatory or optional for
the class c. If ¢; is mandatory, every object o of the
class ¢ is required to include an object o; of ¢;. If ¢;
is optional, 0 may not include any object of the class

[Deﬁmtxon] A state s1 of a class c is referred to as
semantzcallu equivalent with a state sy of ¢ (81 =
so) iff s1 is the same as 83 or ¢;(s1) = ¢;(s2) for every
mandatory component class ¢; of the class c¢. O

Let si and s» be states of an object 0. Here, suppose

that the state s is obtained by reducing the QoS of
s1, L.e. So supports monaural type of sound while s;
supports stereo type of sound. Q(s1) = Q(sz2). Here,
sy is referred to as state-equivalent with sa (s1 = s2)
although s1 # sa.
[Definition] A state s; of a class c is state-equivalent
with another state sp of ¢ (s1 & s1) iff ¢;(s1) and
ci(s2) are obtained by less qualifying s, i.e. Q(ci(s1))
N Q(ci(s2)) = Q(s), for every mandatory class ¢; of ¢
and some state s of c. O

If 51 = so, s1 and s show the same state but their
QoSs are different, Q(s1) # Q(s2).

Next, suppose each application requires to get ser-
vice with requirement QoS (RoS) R from an object o.
Suppose that there are two states s; and s of an ob-
ject o, which are state-equivalent (s1 ~ s2) and Q(s1)
= Q(s2). If sy satisfies R, the application can use s;.
We define the equivalent relation on RoS as follows.
[Definition] A state s, of a class c is RoS-equivalent
with a state s, of con RoS R (s; =g sy,) iff Q(op(s))
N Q(opyu(s)) = R and opt(s) & opy(s) for every state
s of the class ¢. O
[Definition] A state s; of a class c is semantically
RoS-equivalent with a state s, of c on RoS R (s; &g
5 1 opu(s) = op(s) and Qlope(s)) 1 Qlopuls) =
R for every state s of the class c.

A method op; is semantzcally RoS-equzvalent ‘with
op, of a class ¢ on RoS R (op: 2g op,,) iff opi(s) =g
opu(s) for every state s of the class c.

4 Compensation

Let op; and op, be methods supported by a class ¢
and o be an object of ¢. A method op, is a compen-
sating method of another method op; if op; o opy,(s)
= s for every state s of an object o Let s; be a state
obtained by performing op; on a state s of the object

0, i.e. s1 = op(s). Here, o can be rolled back to the
initial state s from the state sy if the compensating
method of op is performed on s;. For example, append
is a compensating method of delete.
[Definition] A method op,, semantically compensates
another method op; in a class ¢ iff op; o op,(s) = s
for every state s of ¢ . O

RoS-compensating methods are defined as follows
based on the RoS-equivalent relations.
[Definition] A method op, RoS-compensates another
method op; on RoS R in a class c iff op, o op,(s) =g
s for every state s of ¢ and RoS R. O
[Definition] A method op, semantically RoS-
compensates another method op, on RoS R in a class
c iff op; o op,(s) =g s for every state s of ¢. O

5 QoS Based Consistent State

Multimedia Objects o1, ..., o, are distributed in
the network, where each object o; is created from a
class ¢;. A global state s is a tuple of local states (sq,

o Sn) where each s; is a local state of an object o; (i
= 1 The classes cy, ..., ¢, are structured in
the p(mf-o f relation. A global scheme c is a collection
{¢1, ..., cp} of the classes which are related in the
part-of relation. A global instance o of the global
scheme ¢ is a collection {o1, ..., on} of the objects
where each o; is an object of the class ¢;. According
to the part-of hierarchy of the classes, the objects o1,

.., 0, are also related in the part-of relation. We
define a semantically equivalent relation among the
global states.

[Definition] A pair of global states s; = (s11, . .., Sin)
and sp = (821, . . ., Sop) are semantically equivalent (s
= g9) iff 814 = s9; for every mandatory class ¢;. O

Even if a pair of states s1, and ss, for an optional
class ¢, are not semantically equivalent (s1,, # S24),
81 = 89 if 81; = s9; for every mandatory class c¢;.

Next, we consider the QoS based equivalency of the

global states s; and ss.
[Definition] A pair of global states s; = (s11, ...,
s1n) and sy = { S21, ..., Sgn) are RoS-equivalent on
RoS R (s1 =g s2) iff s11 =R s2 for every mandatory
class ¢;. O

If some object oy is faulty, all the objects are rolled
back to a state equivalent with the current states.
The system can take a state which is semantically or
RoS equivalent state in the multimedia application.
It is not easy to take a checkpoint where a state of
a multimedia object is stored in a log due the large
volume and complex structure of the object. Instead
of taking a checkpoint, each object is compensated
by performing compensating methods of the methods
which have so far been performed on the object.

6 Concluding Remarks

This paper has discussed how to treat the QoS
change of the object. We have defined semantically,
RoS and semantically RoS equivalent relations among
states of multimedia objects. By using the relation,
we have defined the new types of conflicting and com-
pensating methods.

References
[1] Kanezuka, T., Higaki, H., Takizawa, M., and
Katsumoto, M., “QoS Oriented Flexible Dis-
tributed Systems for Multimedia Applications,”
Proc. of the 13th Int’l Conf on Information Net-
working (ICOIN-18), 1999, 7C-4.

