P—y o

6F—6

P
T
|

PSS-W: A New Efficient Caching Policy for the World Wide Web

Kai Cheng and Yahiko Kambayashi
Graduate School of Informatics, Kyoto University

1 Introduction

Web caching is a technique by storing popular objects near
the clients to improve response times, save network band-
width and distribute workload from server “hot spots”. In
general, three factors are most important to Web caching: ob-
Ject size, time since last access and reference times. How-
ever, due to the difficulty in incorporating all three factors in
a cache policy, current policies are mostly based on subset of
these factors.

In this paper, we propose a new cost-to-benefit model for
Web caching that takes into account all the three factors.
We then give a new implementation scheme, namely PSS-W,
which is a good approximation to our model but very simple
to implement. Trace-driven simulations demonstrate PSS-W
outperforms its predecessor PSS very much in terms of byte
hit rate meanwhile its hit rate is at least as good as PSS.

2 Design of PSS-W Caching Policy
2.1 SLRU/PSS

Due to the protocol restrictions, Web objects need to be
treated as a whole. To cope with variable sizes, a Size-
Adjusted LRU or SLRU has been proposed in a recent paper
as an generalization to traditional LRU[1]. SLRU is based on
the following cost-to-benefit model: an object being cached
will incur a cost of occupying a cache space (size) for cer-
tain time (atime), meanwhile it will benefit from saving a
latency (lat) to download the object from Web site. When
cache space runs out, the cache will purge the object with the
largest cost-to-benefit,

(atime * size)/lat

Since the latency of the same object usually varies signifi-
cantly from one access to another, it is often factored out in
Web caching and let laf = 1.

SLRU is unrealistic to implement in practice because of the
difficulty in comparing the product of size and atime for ev-
ery object in cache. A practical variant, Pyramidal Selection
Scheme or PSS is designed to implement SLRU. The caching
mechanism of PSS is:

1. Objects are classified into a limited number of groups
based on their size levels, i.c. [loga(size)|;

2. Each group is maintained using a LRU mechanism. A
hit will make the hit object move to the MRU end of this
LRU queue;

3. The SLRU policy is only applied to a limited set of
LRUs from all nonempty groups to make final decision.
The object with largest (atéime * size) will be purged
from the cache.

Eviction Largest: atime *size/nref

Stack-0, size/nref = 1

(size =6, nref = 3, size / nref = 2)

gast Recently Used Most Recently Used

Figure 1: PSS-W : An Efficient Improvement to PSS

PSS biases towards the smaller objects, so that after a long
time, the total number of objects in cache will grow but the
average object size will decrease. This has a positive effect on
hit rate but is negative to byte hit rate. In fact, there are quite
a fraction of smaller objects only get few re-references, on
the contrary, some bigger objects are really popular, however
they have little chance to stay in cache for more time to gather
subsequent references.

2.2 PSS-W

The limitation of SLRU/PSS roots in the SLRU policy which
only takes into account atime and size. This is unfair to
those objects with more accesses because the repeated ac-
cesses are served by cache and these accesses should share
the cost of caching the object. Numerous papers show that
the reference frequency or nref is a more important fac-
tor to Web caching. Here we propose an averaged cost
(atime % size/nref) for each object in cache. The cache
should purge the object with largest value of

(atime * size/nref)/lat



so as to gain more benefits. Here for the same reason as
above, we set lat = 1

Similarly, we propose a practical scheme to implement the
extended SLRU. The basic idea is to classify objects based on
the value level of (size/nref), instead of size. Since nref
changes with each hit, it is necessary to determine which
group the object betongs. This new scheme is referred to as
PSS-W. The outline of PSS-W is depicted in Figure 1.

1. Objects are classified into a limited number of
groups according to |logs(size/nref)|, instead of
[loga(size)].

2. Each group is managed using a LRU policy. A hit may
make the hit object move to new LRU queue according
to its new value of |logs(size/nref) .

3. The extended SLRU policy is applied to the eviction
candidates from all nonempty groups, purging the ob-
ject with largest {atime - size/nref).

One important concern is the temporary locality. In LRU-
based model, even average occurrence is same, temporary lo-
cality will influence the result. For example, if requests occur
periodically (Figure 2(a)), the object will stay in the cache. If
accesses are locally concentrated, the object will not be kept
in the cache (Figure 2(b)) even if average occurrence is same.

cache (a)

out|

time

in

b)
cache 1 (

out *—©
A n
time

Figure 2: Influence of locality for LRU-based cache

We will use accumulation of occurrences so that the effect
of localities will be removed. Figure 3(a) and Figure 3(b)
show the cases. If sum is greater than 0, the Object will stay
in the cache.

sum|

(b)

0 o oo oo

Figure 3: Removal of the effect of locality

One additional problem is how many groups should be set
in a PSS-W or PSS scheme. Our answer is not more than 24,
because objects larger than 16MB(2?*B) are very rare.

3 Performance Evaluation

Based on trace-driven simulations, we compare PSS with
PSS-W in terms of hit rate and byte hit rate. We use a one-
week proxy trace to drive our simulator. Itcontains 1,848,319
client requests with a maximum hit rate 0.228 and byte hit
rate 0.245

025} —
g 02 S g8
= jor A
£ 015/
FAPN": S e e S S S S
005
(
) 2 4 6 3 10
025
02 - wr?
2 e
& 0 g5 |-
STy [a—apss ™ |-
- # PSSW ]
005

0 2 4 6 8 10

Percentage of Maxium Cache Space Required (%)

Figure 4: Simulation Results (Upper:BHR,Lower:HR)

PSS-W has been proven an efficient improvement to PSS.
From Figure 4, we can see PSS-W outperforms PSS very
much in byte hit rate meanwhile the hit rate keeps at lest the
same as PSS. It demonstrates that objects with more accesses
are more popular and worth to stay in cache for long time.
In fact, we have compare PSS-W to various other algorithms,
demonstrating that PSS-W is the best algorithm in all cases.

4 Conclusion

In this paper, we propose a new efficient cache replacement
policy based on the consideration of reference frequency.
The new caching policy factors in three key parameters to
Web access so that it can achieve a high cache performance.
As future work, it is necessary to explore the mathemati-
cal/statistical explanation to this approach.

References

[1] Charu Aggarwal, Joel L. Wolf, and Philip S. Yu. Caching
on the World Wide Web. IEEE transactions on knowl-
edge and data engineering, 11(1), 1999.

[2] Yahiko Kambayashi. Fundamental Theory of Informa-
tion Science. SHOKODO CO., LTD., May 1997.



