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Abstract: We propose a novel human pose estimation framework for team sports videos captured by a fixed monocu-
lar camera. This framework is integrated with the standard tracking-by-detection approach and is able to estimate most
of the poses of the athletes, even with the side-view poses that frequently appear in team sport videos. The per-frame
pose estimator, i.e., the poselets-regressor, used in the present study estimates the relative joint position (e.g., the pelvis
center), which is also the local coordinate center of the appearance of the person used to estimate the target, from the
other joint positions (e.g., the head center). After tracking the head position of a subject athlete in a monocular input
video, we apply two independent modules per frame. The first module estimates the upper-body pose (upper-body ori-
entation and spine pose), and the second module estimates the lower-body pose (the positions of the four lower-body
joints). The proposed relative joint position estimation scheme based on window position alignment and the global
features of the appearance of a person provides a simple but robust human pose estimation process, which is similar
to the window sharing features of face detection and face recognition. Using the origin-aligned global appearance of
a person also leads to the typical failure of previous pose estimation methods with part detectors when the parts are
largely occluded. We demonstrate the effectiveness and robustness of the proposed method using soccer and American
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Human Body Pose Estimation for Team Sport Videos with

football videos.

1. Introduction

Data analysis for tactical use in professional team sports has
become crucial to winning games because sensor-based or vision-
based data acquisition has come into wide use. In order to semi-
automatically acquire tracking data in real matches, vision-based
multitarget tracking products, such as TRACAB [1] for soccer
and SportVU [2] for basketball, are used by professional sports
teams. Coaches and staff members can use the acquired trajecto-
ries of athletes to analyze the performance or tactics of both the
opposing team and their own team. If the poses and trajectories
of the athletes can be provided by the system, we can achieve
more detailed vision-based data analyses, such as action recog-
nition, skeleton-based pose-type classification, and head or body
directional attention analyses.

However, at present, state-of-the-art human pose estimators
are not suited to typical team sports videos. Human pose esti-
mation in computer vision has primarily been performed using
pose detection via the pictorial structures framework [3], which
assumes that whole parts of a person appear in images. While
popular methods based on part filters, such as Flexible-Mixtures-
of-Parts [4] or Convolutional Neural Networks [5], are able to
estimate only frontal and all-parts-shown poses, such as those in
the LEEDs dataset [6] and the FLIC dataset [7]. The previous
methods are rarely used with side-view poses (in which the body
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Fig. 1: Overview of the framework. (1) The left-hand side of the
figure shows the tracking-by-detection part of the framework, and
(2-A and 2-B) the right-hand side of the figure shows the two pose
estimators: the lower-body pose estimator [8] and the upper-body
pose estimator [9]. Both pose estimators use the center-aligned
global appearance of a person in each frame to estimate the cor-
responding output poses.

is facing left or right from the camera), which are not included
in [6], [7], or other public human pose estimation datasets. In
this sense, previous methods cannot be applied to all frames of
the team sports videos in the stadium because most athletes are
captured in side-view poses while running toward the goal.

1.1 Proposed method
In order to exceed the limited capability of these previous
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(a) The label-grid classifier (classifi- (b) The poselets-regressor (regres-
cation) estimates (discrete) the posi- sion) estimates the position of the
tions of joints (knee and foot) relative pelvis center (green circle) relative to
to the pelvis center (green circle).  the head center (blue circle).

Fig. 2: Proposed method. Per-frame estimation of the positions
of joints relative to an aligned center using the aligned global vi-
sual features obtained from person tracking or using detection
windows (blue rectangles).

methods, we separately proposed two half-body pose estimators
for team sports videos, namely, the lower-body joint position es-
timator [8] and the upper-body orientation estimator conditioned
by the 2D spine line angle (body tilt) [9].

Figure 1 shows the process flow common to these two estima-
tors [8] and [9], in which the person is first tracked in a tracking-
by-detection manner and pose estimators are then applied to the
aligned appearance of a person in each frame, which are the same
features typically used in pedestrian detection. Later, in the first
author’s dissertation [10], we integrated these two modules. In
this technical report, we summarize these three frameworks in
Sections 2, 3, and 4.

The proposed method is a simple human joint position estima-
tion method using only the global appearance features (Figure 2).
Note that we train the lower-body joint position estimators using
the left joint in the image coordinates, as typically used in monoc-
ular human joint position estimation, such as in [4] and [5]. For
instance, in the proposed method, the left knee is the knee joint
located on the left-hand side in the image coordinates and does
not necessarily refer to the joint of the left leg.

The lower-body joint estimation [8] used the label-grid classi-
fier (Figure 2(a)). In every frame of the input video, the label-
grid classifier estimates the joint position of the lower body us-
ing global histogram of oriented gradients (HOG) features [11]
within the tracked person window. We trained the person detector
using training images for which the window centers were aligned
to the pelvis center. The person detector uses the random forests
classifier [12] to classify the grid position of the target joint.

The upper-body estimation [9] introduced the poselets-
regressor (Figure 2(b)), which can be regarded as the regression
version of the label-grid classifier. Instead of using the person
tracker, we used the head tracker to estimate the head center of
the subject athlete. After tracking the head center, the poselets-
regressor estimates the pelvis center relative to the (tracked) head
center using upper-body region HOG features for which the local
origin is aligned to the position of the head center. In this pro-
cess, the 2D spine line pose, which consists of the head center
and the pelvis center, is obtained. The upper-body orientation is
then estimated using the body orientation estimator conditioned
by the 2D spine line angle. By adopting the upper-body region
alignment determined by the head tracking, the upper-body pose
of the athlete of interest can be estimated even when the lower
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Fig. 3: Meaning of each type of pose in the context of team sports.
The left-hand column shows the tracking summary and the five
key frames of this sequence, along with the estimated body pose
information, which is shown in red. In the right-hand column,
the blue rectangles show the pose type (underlined) and the cor-
responding pose of the lower body. The red rectangles show the
types of upper-body poses. The green rectangle shows the most
common pose type (pelvis center).

body is occluded by other athletes.

The integrated estimation method in [10] first tracks the head
region using the head tracker of Benfold and Reid [13]. The po-
sition of the pelvis center relative to the head center is then es-
timated using the first poselets-regressor. Finally, the positions
of the four lower-body joints (left knee, right knee, left foot, and
right foot) relative to the pelvis center are then estimated using the
first poselets-regressor and the corresponding poselets-regressor.
The person window is obtained by tracking-by-detection of the
pelvis-aligned person detector in the test stage.

1.2 Definition of Human Pose in Team Sports and Our Con-
tribution

The poses of athletes estimated by the proposed method may

be interpreted to have several meanings (Figure 3). These poses
have not been estimated in team sports videos because these un-
constrained pose patterns are not fully covered in previous human
pose estimation studies because typical human pose estimation
datasets [6] [7] only includes limited types of poses, as we al-
ready discussed. Moreover, by using the output poses from the
proposed pose estimation methods, tactical understanding using
poses as input features can be studied. In other words, our goal
is to provide monocular human motion capture for team sports
videos in order to develop pose-based analysis of athletes and
tactics.

The contributions of the proposed simple pose estimation

framework are summarized as follows:

e The proposed pose estimation based on person window
alignment provides a very simple and computationally ef-
fective pose estimation pipeline by eliminating the need for
the structural training procedure required in part-based pose
detectors, such as flexible mixtures-of-parts (FMP) models
and convolutional neural networks.
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Fig. 4: Label-grid classifier. The red circle on the grid is the clas-
sified joint position # € N? (red circle) on each athlete window
from the trained label-grid class candidates (pink circles). In this
example, the label-grid classifier for the j-th joint is on a (6 X 8)
grid structure, and the estimated label-grid is at l{ = (1,7) in all
three images. The number of classes for the left foot label-grid
classifier is 21 (= sum of pink circles and red circles).

e The alignment strategy also provides a visual feature-space
similar to the classical face recognition pipeline [14], which
uses the global window appearance given by the face detec-
tor. The behavior is easier to understand because we are very
familiar with face recognition algorithms.

e Using the proposed method, various partially occluded
skeleton poses, when the body direction is either right or
left, can be estimated, whereas previous parts-based meth-
ods have difficulty dealing with self-occluded poses. This is
important because athletes are captured primarily from the
side using fixed cameras and the captured images are fre-
quently self-occluded.

e An estimated 2D spine pose would provide novel cues for
clarifying sport-specific athlete behavior in the future, al-
though the computer vision community has been focusing
only on pedestrian detection and tracking for surveillance
applications.

e The proposed head tracker-based upper-body-pose estima-
tion allows stable person pose estimation, even when the
lower body of the athletes is occluded.

2. Lower-Body Pose Estimation Using the
Label-Grid Classifier

The proposed lower-body pose estimation method [8] is the
human joint position estimation that is integrated by a popular
tracking-by-detection approach to provide the appearance win-
dow of a whole person whose center is aligned to the pelvis cen-
ter. In [8], we proposed a label-grid classifier that estimates the
discretized grid position ¥ € N? of the j-th lower-body joint
from the HOG features within the person window obtained by
the tracking-by-detection approach (see Figure 4).

We trained the athlete window detector with training samples
for which the window centers are aligned with the pelvis center
position. Tracking-by-detection using the trained detector and a
Kalman filter provides pelvis-aligned person windows for every
frame of the video. Then, we use the label-grid classifier in each
frame ¢ to estimate the relative joint position ¥/ from the pelvis
center obtained by tracking-by-detection.
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(a) Example images from scaled dataset D;., with different
athlete scales s = {0.7, 0.8, 0.9} (note that all athlete windows
for the label-grid (purple grid) have the same fixed window

size)

(b) Example images from mirrored dataset D,,;, created
from images and labels D,

Fig. 5: Data augmentation. Using A/ 4 (the height of the blue win-
dow), images are scaled to scale s so that the center position pf el
remains at the center of the label-grid, even in the resized images.

2.1 Data Augmentation for Learning Multiple Appearance
Scales

In [8], we independently trained four lower-body joint label-
grid classifiers (left knee, right knee, left foot, and right foot)
with an American football training dataset collected by ourselves
(Figure 2 (a)). Using the trained label-grid classifiers, we per-
formed tracking and pose estimation of one target athlete in each
test video. The training multi-scale dataset Dj., was created by
applying data augmentation to the original dataset so as to be ap-
plicable to multiple human scales s = {0.7,0.75, ..., 1.0} (Fig-
ure 5). In addition to augmenting resized images of multiple
scales, flipping images is also performed in order to create mir-
rored dataset 9,,;». In order to perform this data augmentation
procedure, each image is labeled with human height % in order
to scale images to the target scale s. The training dataset for the
j-thjointis D = {(x, 5, h, I/);}, where x € R is the N dimensional
HOG feature vector of the i-th sample, s is the augmented scale of
the person, £ is the person height, and I € N? is the grid position
in the person window.

2.2 Visual Features and Classifier

We used the random forests classifier as a label-grid classifier
and used HOG features [11] as the input features for the label-
grid classifier. The random forests classifier selects the hierar-
chical HOG feature space calculated from only the pelvis-center-
aligned person windows in all training samples. We normally use
a 64 x 96 person window and a label-grid size of 8 x 8, which
is equal to the HOG cell size. For example, if the dataset D in-
cludes 32 label-grid positions in all training samples, we train 32
class random forests, and each // indicates one of the 32 label-grid
classes.

2.3 Experiments
In [8], we performed experiments involving the lower-body
joint position estimation framework using American football
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(a) Test (1) (b) Test (2) (c) Test (3) (d) Test (4)
Fig. 6: Example results from frontal pose experiments. The pan-
els on the left-hand side in each subfigure [(a) through (e)] show
the results for the label-grid classifiers, and the panels on the
right-hand side show the results for the FMP model, where only
the four detected joints are shown. (A lack of visualization of
joints indicates that the FMP model could not detect anyone in

the frame.)

videos captured in a stadium. The test dataset included ten 40-
frame videos of a target athlete. The first five tests were frontal
poses, and the other five tests were side-view videos in which ath-
letes were primarily running or walking to the left or right with
no body tilt. Hence, the primary focus of the experiment was to
determine the usefulness of side-view running poses, which occur
very frequently in team sports videos.

The average estimation error in pixels for each joint was ap-
proximately 10 to 20 pixels in 10 tests. Since the label-grid unit
size is 8 X 8, the errors are within twice the label-grid size. Please
refer to [8] for further details on the experimental results of each
test.

We also compared FMP models [4]. Figure 6 shows the re-
sults of FMP models for frontal pose tests. Although FMP mod-
els sometimes misdetected the person or fitted the pictorial struc-
tures incorrectly when some leg regions were self-occluded, the
proposed methods correctly estimated all four joints owing to the
globally aligned appearance feature usage. Moreover, in side-
view pose tests (Figure 7), the proposed methods can estimate
joint positions, whereas the FMP models could not deal with side-
view appearances in the presence of severe partial occlusion.

The proposed framework does have limitations. In the exper-
iments of our previous study on lower-body pose estimation [8],
no body tilt was assumed because a person detector was used to
align the person window and the joint position resolution could
not be smaller than the label-grid size. We later addressed these
limitations in the integrated method by proposing the use of a
head tracker for continuous position estimation using a poselets-
regressor (Section 4).

3. Upper-Body Pose Estimator Using a
Poselets-Regressor

In our previous upper-body pose estimation study [9], we pro-
posed the following two pose estimation modules:

e We proposed the poselets-regressor, which is a regression
version of the label-grid classifier, and used it to estimate the
relative pelvis center position from the head center position.
Applying the poselets-regressor with the head center tracker
provides a 2D spine line approximation of the tracked ath-
lete.

e We proposed conditional regression forests [15] for body ori-
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(a) Test (6)

(b) Test (7)
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Fig. 7: Example results of side pose experiments.

z

(a) Example of (b) Visualized pose estimation re-
upper-body pose sults in 3D space

estimation results

in image coordi-

nates

Fig. 8: System output of the proposed upper-body pose estimator
laid over the original image and in 3D spatial coordinates. The
purple line is the spine line formed by the head center and the
pelvis center. The orange arrows show the eight quantized hori-
zontal body directions. The number indicates the s-th spine angle
class. Note that we only estimate the 2D spine pose projected
onto the image plane in (a) but assume the original 3D pose in

(b).

entation estimation, which is conditioned by the 2D spine an-
gle range. Conditioning the body appearance feature space
with the 2D spine angle range allows training of the spine-
angle-specific body orientation classifier, which only knows
the appearance pattern within the spine angle range. This is
possible as a result of the newly proposed poselets-regressor
of the spine line pose.

In summary, the proposed upper-body pose estimation method

[9] consists of the following three steps:

(1) Tracking the head center of a target athlete using the head
tracking method of [13] (Section 3.1).

(2) 2D spine pose estimation using the poselets-regressor (Sec-
tion 3.2).

(3) Body orientation estimation using conditional regression
forests using the spine angle estimated in the previous step
(Section 3.3).

The proposed method estimates the spine pose and the body
orientation of the head-tracked target athlete (see Figure 8). We
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Fig. 9: Example results for estimating the relative position of the
pelvis using a poselets-regressor.

summarize the above steps in the following subsections.

3.1 Head Tracking

We use the multitarget head tracking method of Benfold and
Reid [13] to track the head position h, € N? of the target athlete in
each frame ¢ of a test video. The approach of [13] uses HOG fea-
tures and a support vector machine (SVM) classifier for the likeli-
hood of the Kalman filter and uses optical flow keypoint tracking
for the motion prediction of the Kalman filter. Whereas the orig-
inal approach [13] uses a multitarget state space for the Kalman
filter, we use the state space of only one target head because our
objective is to track only one target athlete to estimate his or her
pose. Another difference is that we train sport-specific HOG-
SVM head detectors (e.g., the head detector of American football
athletes and the head detector of soccer athletes), whereas [13]
trained and used a more generic head detector.

3.2 2D Spine Pose Estimation Using a Poselets-Regressor

Given the head center position h, at frame ¢, we estimate the
pelvis center position p, € N? at frame ¢ using the poselets-
regressor, which was newly proposed in [9]. Figure 9 shows some
estimation results obtained using our spine poselets-regressor,
where the purple line indicates the 2D spine line formed by h;
at frame ¢ and p,. The smaller blue rectangle is the head re-
gion given by the head tracker, and the larger blue rectangle is
the upper-body region used to calculate the HOG features for the
poselets-regressor to estimate the relative pelvis center from h;, at
frame ¢.

The proposed poselets-regressor is the regression version of the
label-grid classifier [8] by simply replacing classification forests
with regression forests. The poselets-regressor estimates the rel-
ative joint position j € N? of a target joint ¢ from another joint
position j° € N? using the person HOG features within the HOG
window for which the local origin is aligned with another joint
.
trained a poselets-regressor that estimates the relative position of

In our previous upper-body pose estimation study [9], we

the pelvis center p, based on the position of the head center h;
given by the head tracker using global upper-body HOG features
as an input vector for the regression forests (see Figure 8 for the
upper-body HOG region). Data augmentation is also performed
by a label-grid classifier to train the models that know multiple
scales of athlete poses.

We referred to this label-grid classifier as the poselets-regressor
in [9] because this classifier can be regarded as regressing the
original poselets. The poselets-regressor is a detector of one spe-
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Fig. 10: Spine angle classes. The blue and green circles indicate
the head center h, and pelvis center p;, respectively, of the subject
athlete. The spine angle range of the training dataset is divided
into five spine angle classes.
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Fig. 11: Learning multiple body orientation classifiers by group-
ing datasets into subsets having the same spine angle range. The
images are average images for each D;.

cific pose in which the joints are aligned. The poselets-regressor
uses the known local origin of the joint position j° and can regress
the other target joint position j'.

3.3 Estimating Body Orientation Using Conditional Ran-
dom Forests Classifiers

Inspired by conditional pose estimation approaches [15], [16],
we proposed the conditional classification forest for estimating
the discretized horizontal body orientation otb € {0,1,...,7} us-
ing the 2D spine angle range as the conditional prior.

Given the 2D spine pose in Section 3.2, we first calculate the
2D spine angle 6, at frame ¢ and discretize 6, into the spine angle
class s using the following condition:

1 (60> 8)
2 (80 > 6, > 60)
s={3 (100> 6, > 80)
4 (120 > 6, > 100)
5 (6, > 120)

Figure 10 also shows the visual illustration of spine angle class
s. Using the spine angle class s, we estimate the body orienta-
tion o using a corresponding classifier f? (classification forests)
trained with only the samples within the spine angle range in

Equation 3.3 (see Figure 11 for the training procedure). For the
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(b)s=4 (c)s=3 ds=2 e)s=1

Fig. 12: Visualization of the importance of HOG features of each
body orientation classifier for spine angle class s trained from the
American football dataset. Whiter orientations indicate greater
importance in trained random forests. See Figure 11 for the aver-

age image of the training samples for each spine angle class.

input features of each f”, we also used the same features as the
spine poselets-regressor described in Section 3.2, which are the
HOG features within the head-center-aligned upper-body region.

3.4 Comparison with Related Methods and the Advantage
of the Proposed Method

The advantage of the proposed conditional upper-body orien-
tation estimation strategy is that random forests can only focus on
a sample in which the spine angle is roughly aligned with the cor-
responding spine class s to extract features by which to classify
the body orientation class with only a compact random forest tree
structure. Since upper-body angles are roughly aligned in each
spine angle class and edges around a body boundary appear in
the same position, selecting important HOG features or disregard-
ing non-discriminative features with a smaller feature distribution
is easier using random forests. Figure 12 shows the HOG fea-
tures selected through random forests training for each spine an-
gle class. Without spine angle priors, random forests must cluster
the feature space by itself and cannot guarantee good feature se-
lection from the various pose appearances in the training dataset.

Previous body orientation estimation approaches applied to
surveillance videos, such as [17], [18], typically used pedestrian
detector output rectangles for the feature region of body orien-
tation estimators. On the other hand, the proposed method uses
head-center-aligned upper-body regions for body orientation es-
timation. For standing pedestrians only, good region alignment
is easy to obtain using a pedestrian detector. However, since ath-
letes tend to have various spine angles (body tilt angles), per-
son detectors cannot always provide aligned person appearances.
This is the main reason why we used head tracking results as the
alignment center for both the body orientation estimators and the
poselets-regressor of the relative pelvis position. Compared with
the other alignment keypoint of the person appearance, the head
center of an athlete, which often becomes stable for team sports
videos (in which head appearances tend to be similar), is easier
to estimate using only a head tracker.

3.5 Experiments

We performed experiments on both spine pose estimation and
body orientation estimation. We used American football and
women’s soccer videos in the experiments and trained a sport-
specific spine poselets-regressor and a conditional regression for-
est for estimating body orientation. Test sequences consist of 12
American football videos and 10 soccer videos. Each video con-
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Table 1: Average estimation error (in degrees) of the body orien-
tation in each scene dataset.

Dataset Proposed method [19]
American football scenes 20.90 23.57
Women’s soccer scenes 39.99 47.02

(a) Correct samples from test 6 (b) Incorrect samples from test 6

(c) Correct samples from test 12 (d) Incorrect samples from test 12

Fig. 13: Sample results of bending poses obtained through Amer-
ican football tests. Head center misalignment tends to result in
incorrect body orientation.

tains 80 frames of the target athlete. The athletes in the videos
sometimes bend their upper body and change their upper-body
direction.

3.5.1 Spine Pose Evaluation

For both FMP models and the proposed method (head tracking
and the poselets-regressor of the pelvis center position), the av-
erage head center position error and the pelvis center errors were
small and were approximately the same. However, FMP models
tend to misfit some of body parts while the spine pose itself is cor-
rect, and we cannot determine whether the spine pose is correct
when this misfitting occurs . See Figure 14 for the FMP detection
results in our test videos.

3.5.2 Body Orientation Evaluation

We applied both the proposed method and a commonly used
previous procedure using only one body orientation classifier for
the whole-spine angle classes in our previous method [19], which
is the same type of approach used in typical classical body ori-
entation estimation [17]. Note that we trained a sport-specific
classifier. That is, we trained body orientation classifiers with
only American football data and tested the classifiers with only
the American football test sequences.

Table 1 shows the average body orientation errors (in degrees)
for angles converted from the eight body-direction classes. Fig-
ure 15 shows the body orientation estimation results as confusion
matrices. While the average body orientation errors of the pro-
posed method are slightly better those of the previous method
[19], the confusion matrices of the propose method have smaller
errors because the diagonal grids are thicker, as shown in Fig-
ures 15(b) and 15(d). This indicates that conditional classifier
separation results in better fitting and focuses on smaller varia-
tions of patterns in each spine angle class, as discussed in Section
3.4. Note that these results are obtained from head-center-aligned
HOG features, whereas previous body orientation papers use per-
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Fig. 14: Example results of skeletal pose estimation using the
FMP model [4]. The purple line indicates the spine line formed
by the head center and the pelvis center.
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Fig. 15: Confusion matrices of body orientation estimation re-
sults.

son detectors designed for detecting pedestrians and ignore the
person appearance when body tilt occurs. Hence, the results also
indicate that body orientation estimation can be performed using
head-center-aligned person (upper-body) HOG features.

Although promising results were obtained through the experi-
ments, some frames had errors that are thought to originate from
the alignment-based algorithm. Figure 13 shows the typical er-
rors that occur when the alignment of the upper-body region is
insufficient. While HOG features are pooled and quantized as the
resolution of cell grid size, the body orientation estimator tends to
fail when the error of the tracked head position is larger than the
cell size. Thus, the proposed framework may be too dependent
on the head-center alignment as compared with part-based pose
estimators, which can use many anchor points via multiple part
detections.

4. Whole-Body Pose Estimator with Two
Stages of Poselets-regressor

In the first author’s doctoral thesis [10], we integrated our

lower-body pose estimator [8] and our upper-body pose estima-

tor [9] into a single framework by simply using the pelvis cen-

ter as the connecting point between two estimators (see Figure
16). Namely, we first apply a head tracker and a spine pose esti-
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(a) Step 1: The head (b) Step 2: The 2D spine (c) Step 3: The lower-
region (blue rectangle) pose is estimated by the body joints are estimated
in each frame is tracked poselets-regressor. The by  poselets-regressors
by the head tracker. larger rectangle indicates for each joint. The larger
the HOG features region. rectangle indicates the

HOG features region.

Fig. 16: Pose estimation procedure of the integrated method.

mator in the manner described in [9] to estimate the pelvis cen-
ter position in each frame. Then, we use four lower-body joint
poselets-regressors by using the pelvis-center-aligned HOG fea-
tures as input features, as we did in the label-grid classifier [8]. In
other words, we generalize the poselets-regressor to the relative
landmark position regression between any pair of landmarks by
applying lower-body landmarks regression.

4.1 Proposed Method

The proposed method consists of the following steps:

(1) Tracking the head center of a target athlete using the head
tracking method of [13] (Section 3.1).

(2) 2D spine pose estimation using a poselets-regressor (Section
3.2) to estimate the pelvis center position.

(3) Estimation of four lower-body landmarks using four
poselets-regressors.

The first two steps are as described in our previous upper-body
pose estimation paper [9], and the third step uses the same align-
ment landmark and features as our previous lower-body pose es-
timation paper [8]. We use two stages of poselets-regressors by
regarding the pelvis center as the connection point between two
stages.

4.2 Experiments

The proposed integrated framework is similar to our previous
approaches. In order to examine our previous frameworks [8] and
[9] in greater detail, in our thesis, we performed experiments on
lower-body joint position estimation accuracy using the follow-
ing settings, which were not considered in our previous studies
[8] and [9]:

o Different cell sizes of HOG features (8 X 8 or 4 x 4).

e Comparison of whole-body region HOG features (as in [8])
and lower-body region HOG features.

e Comparison joint labeling approaches between the approach
(1) based on the left or right joint on image coordinate
(which is usually used in human pose estimation studies) and
(2) that based on the joint of left leg or joint of right leg.

Table 2 shows the estimation errors for combinations of set-

tings. Based on the results shown in the table, changing both the
body region size and the HOG cell size does not appear to affect
the estimation accuracy for all four joints in American football
appearance patterns. Basing the labeling policy on the left leg or
right leg rather than the left joint or right joint on image coordi-
nate deteriorates the accuracy of the estimation.
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Table 2: Average estimation error for each joint in American foot-
ball tests (1) through (10) for four settings. All errors are in pix-
els. The columns list the results with the combination of prepared
conditions. The results are obtained using the poselets-regressor
to estimate the position of the specified joint.

Input region | Whole Whole Lower Whole
body body body body
Label policy | Image Image Image Leg
(left/right)| (left/right)| (left/right)| (left/right)
Cell size 8 x8 4 x4 8 x8 8 x8
Left knee 6.73 8.35 7.85 11.57
Right knee 9.07 10.18 9.98 18.04
Left foot 6.92 7.50 7.96 8.88
Right foot 5.56 6.72 6.69 10.44
Head 0.60
Pelvis 7.06

(a) Example results for Test (1) (b) Example results for Test (3)

Fig. 17: Results of window-shifted tests. The columns indicate
the movement along the x-axis (-8, —4,0, 4, 8), and the rows in-
dicate movement along the y-axis (—8,—-4,0,4,8). The central
figure shows the movement of point (0,0) with the ground-truth
position of the pelvis center.

4.3 Shifting the Input Window for the Lower-Body Joint
Poselets-Regressors

In another experiment, we deliberately shift the pelvis center
from the ground-truth position in order to provide the shifted
HOG features for the lower-body joint poselets-regressor. We de-
termined how the estimation errors change when the appearance
window is deviated along the x-axis with (-8, —4,0, 4, 8) moves
and along the y-axis with (-8, —4,0, 4, 8) moves.

As a result, we confirmed that the joint estimation error in-
creases as the pelvis center error increases. Figure 17 shows ex-
ample test results. As indicated by the result, the more the pelvis
center moves, the greater the joint estimation error becomes. Ad-
ditional details are provided in Chapter 5 of the thesis [10].

5. Conclusion

We proposed a human pose estimation approach, which we
refer to as the poselets-regressor, based on the window align-
ment and relative joint position estimation method. To the best
of our knowledge, the proposed approach for team sports videos
is the first method that can deal with all types of poses, including
poses that have been previously ignored in human pose estimation
studies, such as side-view poses, poses with body tilt, and poses
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with severe partial occlusions. Although the proposed method is
too dependent on the alignment of the origin landmark for the
poselets-regressor, it can approximately estimate the correct joint
positions as long as the alignment by the tracker or the first-stage
poselets-regressor is adequate.

We would like to increase the robustness of the proposed
method by combining typical part-based human pose detection
approaches. Moreover, we would like to develop pose-based ath-
lete behavior recognition using the spine pose, body orientation,
and leg poses.
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