
Electronic Preprint for Journal of Information Processing Vol.24 No.3

Regular Paper

Energy Reduction of BTB
by Focusing on Number of Branches per Cache Line

Ryotaro Kobayashi1,a) Kaoru Saito2 Hajime Shimada3

Received: June 30, 2015, Accepted: January 12, 2016

Abstract: The latest processors exploit Instruction Level Parallelism to improve performance, but this strategy is lim-
ited by control dependency. To alleviate this problem, the most recent processors utilize branch prediction. A typical
branch predictor applies prediction to all instructions; however, this means that the branch predictor requires a high
energy input, especially to the BTB (branch target buffer). In this paper, we propose a method that reduces the number
of BTB accesses and abolishes the BTB tag by associating the instruction cache line and BTB entry. This proposal
allocates a fixed number of BTB entries to a cache line and allocates an index to the corresponding instruction in the
cache line as a substitute for the BTB tag. Due to the small fixed numbers of BTB entries compared to the fetch amount
and reduction of the BTB tag, our proposal can reduce BTB access energy requirements. Our proposal is anticipated
to cut energy consumption, but it cannot apply a branch target prediction to the entire set of instructions if there are
too many branch instructions per cache line. We therefore evaluated its effects on processor performance and energy
consumption. The evaluation results show that the proposal reduces BTB access energy requirements to 47.5% without
any performance loss.

Keywords: branch target buffer, branch prediction, energy reduction

1. Introduction

The most recently-developed processors show improved per-
formance by exploiting instruction-level parallelism (ILP). How-
ever, there are many obstacles to ILP, of which control depen-
dency is one of the best known. When the processor executes a
branch instruction, the next fetch instruction is decided by choos-
ing the Program Counter (PC) value from the branch target ad-
dress or a subsequent instruction address in the program order,
based on whether the branch condition has been satisfied or not.
The branch condition is defined at the execution stage in the latter
part of the pipeline, which means that the processor cannot define
the next fetch instruction until the branch instruction reaches the
execution stage. Thus, the processor has to stall instruction fetch,
which causes what is termed a pipeline bubble. This is why con-
trol dependency occurs.

Generally speaking, typical programs contain around 20%
branch instructions [1], which means that control dependency sig-
nificantly affects processor performance. Current processors are
apt to increase pipeline depth, which aggravates performance
degradation due to control dependency. So, to alleviate perfor-
mance degradation caused by control dependency, current pro-
cessors exploit speculative execution based on branch prediction.

Branch prediction is a mechanism in which the next fetch in-
struction is predicted based on past results of branch instruction.

1 Graduate School of Engineering, Toyohashi University of Technology,
Toyohashi, Aichi 441–8580, Japan

2 Toyohashi University of Technology, Toyohashi, Aichi 441–8580, Japan
3 Nagoya University, Nagoya, Aichi 464–8601, Japan
a) ryotaro.kobayashi@ppl.cs.tut.ac.jp

By fetching instructions based on the prediction result, branch
prediction alleviates performance degradation caused by control
dependency. The branch predictor is separated into a branch di-
rection predictor and a branch target predictor. The branch di-
rection predictor predicts whether the branch instruction is Taken
or Not Taken, based on past Taken or Not Taken histories. The
branch target predictor predicts the branch target address based
on the branch target address that was created in the previous ex-
ecution. A branch target buffer or BTB is a widely-used branch
target predictor scheme which is used in many types of proces-
sors, from embedded types to high-end models.

A branch predictor effectively alleviates control dependency;
however, if an error in branch prediction has occurred, the pro-
cessor needs to invalidate all the fetched instructions that were
based on the incorrectly predicted result and then fetch instruc-
tions from the correct branch result. The latest processors, which
have deep pipelines, suffer a serious penalty from errors in branch
prediction, because the processor has to invalidate all the instruc-
tions from the fetch stage to the execution stage. The number of
instructions to be invalidated thus increases in proportion to the
pipeline depth.

High energy consumption is one of the major drawbacks to
branch prediction. It is calculated by multiplying the energy
consumed per single access by the number of accesses, and in-
creases in proportion to the complexity of the mechanism. The
branch predictor needs to store multiple branch target addresses,
a comparatively large volume of data, which increases the en-
ergy needed per single access. Furthermore, the processor has to
access the branch predictor for all instructions, because the pro-
cessor itself cannot determine branch instructions. To achieve

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

speculative instruction fetch, the most commonly used method is
for the processor to access the branch predictor for all instruc-
tions. If the processor can obtain a branch prediction result from
the branch predator, the processor determines that the instruction
is a branch instruction. This increases the number of accesses to
the branch predictor.

In this paper, to reduce the total access count to the BTB and to
reduce the energy needed per single access to the BTB, we pro-
pose a mechanism which allocates BTB entries to a cache line.
We focused our attention on the average number of branch in-
structions per single cache line and allocated a moderate number
of BTB entries to each cache line. We found that by allowing the
instructions in each cache line to consist of 25% BTB entries, we
could achieve better energy efficiency overall, even taking into
account the energy overhead due to performance loss. Allocating
BTB entries to a cache line also makes it possible to share the
tag array between the BTB and cache line, thus reducing the en-
ergy needed for tag array access and tag comparison. By reducing
total access count and sharing tags with the cache line, the proces-
sor can reduce the power consumption of the BTB. We achieved
43.6% BTB access energy reduction without performance degra-
dation.

It has been reported that the branch predictor accounts for
around 10% of the processor’s overall energy consumption [2]
and that the target predictor accounts for around 87.5% of the
branch predictor’s overall energy consumption [3]. The BTB
therefore appears to consume approximately 8.75% of the total
processor energy. However, this is just a snapshot value since,
the rate varies from processor to processor; but the key point, that
the BTB accounts for a large proportion of the processor’s energy
consumption, remains true for all processors.

The latter part of this paper is organized as follows. Sec-
tion 2 explains branch prediction mechanism. Section 3 mentions
the related studies. Section 4 describes our strategy. Section 5
presents our proposed mechanism. In Section 6, we perform an
evaluation of our mechanism. Section 7 sets out our conclusions.

2. Branch Prediction Mechanism

2.1 Branch Predictor
A branch predictor predicts both a branch direction (Taken or

Not Taken) and a branch target address based on foregone execu-
tion result of the branch instruction. By fetching and executing
instructions with prediction result, the processor can improve per-
formance due to alleviation of control dependency.

The branch predictor contains two types of predictors: a branch
direction predictor and a branch target predictor. The branch di-
rection predictor predicts whether a branch is Taken or Not Taken.
On the other hand, the branch target predictor predicts a branch
target address. If the instruction is predicted as Taken and a
branch target address is predicted, the next PC is predicted as
the predicted branch target address. Otherwise, the next PC is
predicted as the next instruction address in sequential order.

At the fetch stage, the processor cannot determine whether an
instruction is a branch or a nonbranch because it has defined
after decoding. However, if the BTB is accessed after decode
stage, the processor have to insert pipeline bubble after Taken

branch because the branch target address is obtained after decod-
ing. Hence, in order to achieve continuous instruction fetch with-
out the pipeline bubbles, we assume that the processor performs
both the branch prediction based on PC and instruction fetch si-
multaneously, regardless of whether the instruction is a branch
instruction or not.

2.2 Branch Direction Predictor
There are some well-known branch direction predictors such as

gshare [4] and perceptron predictor [5] and there are many varia-
tions related to them. Those predictor use a history related to
the branch directions that have been obtained in past branch re-
sults. The notable characteristic of gshare is that it utilizes XOR
of global history and PC value for index of pattern history table.
The perceptron prediction also utilizes global history but it cal-
culates Taken probability with multiplying weight to each history
similar to perceptron model. In this paper, we use gshare as a
direction predictor. We only touch energy consumption of the
branch target predictor so that the energy consumption reduction
of the branch direction predictor becomes a future work.

2.3 Branch Target Predictor
We introduce detail of the branch target prediction. Figure 1

shows the organization of the Branch Target Buffer (BTB).
Each BTB entry stores tag and branch target address (TPC:

Target PC). The index of BTB obtained from instruction address
by curving out middle “log2(the number of BTB sets)” bits. The
lower bits are 2-bit width word offset and the higher bits becomes
tag. An access to the BTB is separated into the reference access
and the update access.

The reference access is done in fetch stage and the BTB is ac-
cessed with PC for fetching. If one of the tags stored in corre-
sponding entries matches to the tag comes from PC, the stored
TPC becomes a predicted address when the branch direction pre-
dictor gives Taken result. Otherwise, a predicted address becomes
the next instruction address in sequential order.

The update access is done in commit stage. When a branch
instruction reaches commit stage, if the branch instruction is a
Taken branch, BTB is accessed with the instruction address of
the branch instruction. By comparison result of the tag stored
in corresponding entries and tag comes from the instruction ad-

Fig. 1 Branch target buffer.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

dress, the processor updates the BTB or updates LRU (Least Re-
cently Used) information. If the branch instruction is a Not Taken
branch, the processor does not update the BTB. So, the number of
reference access is much larger than that of the update access. In
latter part, we utilize “reference” notation for the reference access
and “update” for the update access.

With above operation, the BTB works as a branch instruction
detector in fetch stage. If the processor can obtain TPC from the
BTB, an instruction corresponding to the PC is a branch instruc-
tion. Otherwise, the instruction is not branch instruction and the
predicted address becomes the next instruction address in sequen-
tial order.

2.4 Energy Consumption of BTB
In this paper, we focus on the energy reduction of the BTB.

The energy reduction of direction predictors is investigated by
future work.

The energy consumption of the BTB is large. The reason for
this is as follows. The overall energy of the BTB is the product
of BTB energy per access and the number of BTB accesses. The
BTB energy per access depends on the BTB capacity increases,
where the capacity is the product of the entry length and the num-
ber of entries. The entry length is long since each entry holds a
tag and a branch target address. The number of entries is large
because the BTB needs to store many branch target addresses to
accomplish high prediction hit rate. Hence, the BTB capacity
is large, leading to high BTB energy per access. On the other
hand, the number of BTB accesses also becomes large because,
as already mentioned, we assume that every fetched instruction
accesses the BTB to effectively fetch instructions.

In this paper, in order to reduce energy consumption, we re-
move the tag field from the BTB entry to reduce the BTB energy
per access, and combine simultaneous accesses into one access to
reduce both the number of BTB ports and the number of the BTB
accesses.

3. Related Studies

There are several studies that aim to reduce the hardware cost
of the BTB. They include a mechanism that reduces the length
of the tag field [6] and mechanisms that reduce the length of the
TPC field [3], [7], [8]. Hardware cost reduction leads to energy
reduction. As described before, the overall energy consumption
of the BTB is determined by the product of energy per access and
number of accesses. If the bit length of the tag or the TPC field is
reduced, energy per access is reduced. As a result, overall energy
consumption by the BTB is also reduced.

Parikh et al. [9] utilize an I-cache to cut the number of BTB
accesses. The proposed mechanism, called a prediction proof de-
tector (PPD) is a dedicated table. A flag held by the table cor-
responds one-to-one to an instruction in the I-cache. The flag
identifies whether a corresponding instruction is a branch or not.
First of all, at the fetch stage, the flag corresponding to a fetched
instruction is acquired by accessing the PPD. If the flag indicates
that the fetched instruction is a branch, the BTB is accessed; oth-
erwise, it is not. As a result, some parts of the accesses are elim-
inated, but the PPD access delays the start time of the BTB ac-

cess or compromises the energy reduction effect, depending on
the configuration.

Petrov et al. [10] proposed a technique that reduces the num-
ber of accesses to the BTB. The technique consists of a dedi-
cated BTB and dedicated software. The dedicated BTB is called
an application customizable branch target buffer (ACBTB). The
software generates control-flow information related to the loops
at compilation time. This information is held by the ACBTB at
run time. The ACBTB is only accessed by branches at the ex-
ecution stage. The accessed information is used to identify the
branches in the fetch stage beforehand. This allows the number
of accesses to the ACBTB to be reduced. However, the ACBTB
is customized exclusively on single-issue and in-order processors.
Unlike hardware-based mechanisms, the ACBTB cannot predict
the branch target without control-flow information, since it does
not hold anything other than control-flow information.

Chung et al. [11] assumed that the next instruction is usually
the next sequential instruction and proposed a mechanism based
on this for reducing the number of accesses to the BTB. The
mechanism accesses gshare one cycle in advance to predict the
branch direction. If the predicted direction is Taken, the BTB
is accessed. Otherwise, the BTB is not accessed. The mecha-
nism works well if the fetched instruction is a branch, because
the gshare is designed for branch direction prediction. However,
if the fetched instruction is a nonbranch, the mechanism may or
may not work well because gshare predicts a branch direction in
spite of its being a nonbranch.

Kahn et al. [2] proposed a method that adopts a Bloom filter
and a small BTB to reduce the number of accesses to the BTB
and thus the BTB energy per access. Before the fetched instruc-
tion accesses to the BTB, the Bloom filter can indicate whether
the BTB hits or misses. The Bloom filter used in this method
is equivalent to the partitioned-address Bloom filter proposed by
Peir et al. [12]. The small BTB is the same as the BTB except for
its smaller size. The small BTB and the Bloom filter are accessed
by the fetch instruction at the same time. If the small BTB access
misses and the Bloom filter hits, the fetched instruction accesses
the BTB. Otherwise, it does not access the BTB. However, the
Bloom filter used in this method does not work well due to the
problem reported in Ref. [12].

Sadeghi et al. [3] proposed reducing the number of accesses
to the BTB and the BTB energy per access by adding a small
BTB and modifying both the BTB and the small BTB. The mod-
ified BTB provides the distance from the instruction address to
the branch target address on behalf of the branch target address.
The provided distance is then added to the address of the fetched
instruction, resulting in the predicted branch target address. Since
the bit length of the distance is smaller than the branch target ad-
dress, the BTB energy requirement per access decreases. More-
over, both the BTB and the small BTB provide the distance from
the branch target address to the next branch instruction address.
The provided distance is added to the predicted branch target ad-
dress to be the next branch address. When the PC changes be-
tween the branch target address and the next branch address, nei-
ther the BTB nor the small BTB is accessed. However, the next
branch address calculation performs two additions in series, in-

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

creasing the time needed for predicting the branch target address.

4. Our Strategy

The principle of our proposed mechanism is to reference a
branch target buffer (BTB) for the cache line, which is conven-
tionally performed for each instruction, and to predict branch tar-
get addresses for multiple branch instructions present in the cache
line by referencing the BTB only once. In the conventional mech-
anism, in which the BTB is referenced for each instruction, the
BTB is referenced as many times as is needed to fetch instruc-
tions. This requires a large number of references to the BTB.
However, the number of reference to the BTB can be reduced if
multiple branch target addresses required per cycle can be pre-
dicted by referencing the BTB only once, in the same way as the
most recent processors obtain multiple instructions by referenc-
ing the instruction cache only once.

All of the instructions fetched per cycle are stored in the cache
lines present in the instruction cache set to be referenced. Us-
ing this characteristic, branch target addresses for multiple in-
structions fetched per cycle are predicted by referencing the BTB
once. First, a BTB entry that can hold multiple target PCs (TPCs)
is prepared, and a one-to-one correspondence is established be-
tween the instruction cache set and the BTB entry. When fetch-
ing an instruction, the BTB entry corresponding to the instruc-
tion cache set containing the instruction is always referenced, and
multiple branch target addresses present in the BTB entry are read
by accessing the entry once. This makes it possible to predict
branch target addresses for multiple branch instructions fetched
per cycle by accessing the entry only once.

5. Proposed Mechanism

5.1 Configuration
Figure 2 shows the configuration of our proposed mechanism.

Fig. 2 Proposed mechanism.

In the figure, which shows a simplified explanation, the instruc-
tion cache is a two-way cache and the fetch width is 2. The spec-
ification of Comp. (Compare Circuit) and Comb. (Combinational
Circuit) in the figure is described later in this paper.

The number of BTB sets is made equal to the number of in-
struction cache sets to correlate them. The index used to access
the instruction cache is employed to access the BTB. With this
configuration, the instruction cache tag is the same as the BTB
tag. Therefore, the BTB tag is eliminated, and the decision of
whether the instruction cache tag is a correct or erroneous is used
to decide whether the BTB tag is correct or erroneous.

In our proposed mechanism, multiple branch target addresses
(in the figure, TPC refers to a target PC) are stored in one BTB
entry in the same way as multiple instructions are stored in the
cache line. To determine TPC information, the instruction num-
ber (IN in the figure) to indicate the ordinal position of the in-
struction corresponding to the TPC in the cache line and the
cache way number (WN in the figure) that indicates the way
where the corresponding instructions are stored in the instruc-
tion cache are held for each TPC. The instruction number is a
“log2(the number of instructions in the cache line)” bits and the
way number is a “log2(the degree of associations in the cache)”
bits. Therefore, the tag is smaller in size than that held in a con-
ventional BTB. This makes it possible to reduce the energy con-
sumption per access. It is not shown in the figure, but a valid bit
is held for each TPC that indicates whether the TPC is valid or
not.

In the proposed mechanism, if too many branch instructions
are present in the cache line, a sufficient number of TPCs cannot
be stored in one BTB entry. As a result, branch target addresses
cannot be predicted, and the performance of the processor de-
clines. The percentage of this reduction of an IPC is evaluated in
the evaluation section.

5.2 Referencing Operation
This section describes the operation for referencing the BTB

in the proposed mechanism. The BTB is referenced concurrently
when the instruction cache is referenced in the fetch stage. As
previously described, the index used to reference the BTB is cre-
ated using the same bits as for the instruction cache. All TPCs
present in the referenced set are read and controlled by compar-
ing the instruction number, the way number of the TPCs, and
the instruction cache tags. Each TPC is checked to ensure that
it is a TPC for the instruction fetched in the current cycle. This
process is performed by comparing the bit row corresponding to
the instruction number and each instruction number in the fetch
width in the PC with the instruction numbers in the BTB. This
is a process in Comp. shown in the figure. Comp. is a combi-
national circuit that checks each instruction number in the fetch
width, starting from the first instruction number of the fetch. Sub-
sequently, it is determined whether the way number is the same as
the number of the way hits in the instruction cache in the current
cycle. This is a process in the combinational circuit in Comb.;
the subsequent comparator circuit shown in the figure. Comb. is
a combinational circuit that outputs the number of way hits using
the results of a comparison of the tags in the instruction cache.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

The selection circuit is controlled by the above results, and the
TPC with the predicted address is determined. Only if all of the
above is determined to be true is the TPC set to the predicted ad-
dress. The predicted address along with the instruction number is
sent to the instruction fetch.

The tag is shared with the instruction cache even when the TPC
is set to the predicted address. Therefore, if a tag error occurs in
the instruction cache, the TPC is invalid.

5.3 Update Operation
This section describes the operation for updating the BTB in

the proposed mechanism. The BTB is updated at the commit
stage, as with a conventional BTB. When a branch instruction is
committed, the BTB is updated only if the branch instruction is
valid. If the committed instruction is a branch instruction that is
invalid or if it is a non-branch instruction, the BTB is not updated.

For an update, as with the reference, the BTB is accessed us-
ing the same index as that employed to reference the instruction
cache. To replace the BTB entry, the instruction number and the
way number of the TPCs present in the accessed set are compared
with the instruction number and the way number of the branch in-
struction to be committed. The LRU method is used to replace the
entry.

Figure 3 illustrates tag and data ports of the instruction cache,
revised for our proposed mechanism. For the comparison and the
storage of the way numbers, it is necessary to determine the way
in the instruction cache where the branch instruction to be com-
mitted is present. The way number is obtained by accessing only
the instruction cache tag. Since this operation may compete with
access to the instruction cache for a normal instruction fetch, the
number of instruction cache ports is increased only for the tag
in the proposed mechanism. The number of ports is one of the
factors that determine the energy of I-cache. If the number of
ports increases, the energy increases. Therefore, the increase in
the number of ports for the proposed BTB results in an increase in
energy consumption of the instruction cache per access. It is also
necessary to evaluate this negative impact of the proposed BTB
on the instruction cache when the proposed BTB is evaluated in
Section 6.

Fig. 3 Tag and data ports of instruction cache.

5.4 Victim BTB
In our proposed mechanism, if the cache line is replaced due

to an instruction cache error, all of the TPCs in the BTB for the
way where the replaced cache line was present are removed. The
purpose of this is to prevent a branch prediction error when the
TPC for the instruction replaced and removed from the instruc-
tion cache is stored in the BTB and an incorrect TPC is set to
the predicted address for the newly stored instruction. However,
removal of the TPC is not enough. When the cache line for the
TPC is stored in the instruction cache again, a branch prediction
cannot be made, and performance declines. To prevent this, we
propose a mechanism in which a table (a victim BTB) is added to
store the removed TPC and the TPC is returned from the victim
BTB to the BTB when the cache line containing the instruction
for the TPC returns to the instruction cache.

Figure 4 shows the relationship between the BTB and the vic-
tim BTB. The victim BTB is configured in the same way as a
normal BTB, except for the difference in the index and the tag.
The victim BTB is accessed for a reference and an update when a
tag error occurs in the L1 instruction cache and the cache line is
replaced.

When the victim BTB is updated, moderately significant to sig-
nificant bits of the instruction present in the cache line removed
due to a cache error and the instruction number of the TPC re-
moved as a result of the removal of the cache line are used as the
tag and the index (the instruction address of the branch instruc-
tion for the TPC can be reconstituted by combining the above
two), and the removed TPC is stored in the victim BTB.

A PC is used to reference the victim BTB if an instruction
cache error occurs. Entries in the victim BTB, in which the TPCs
for the branch instructions present in the cache line for the PC are
stored, are searched for, and as many relevant TPCs as possible
are returned to the BTB. “As many as possible” here means “as
long as there are empty BTB entries for the TPCs.” As described
above, as a reference, multiple instructions in the same cache line
must be searched for with one PC. Therefore, all TPCs for the in-
structions present in one cache line need to be stored in the same
set. As a result, the “log2(the number of victim BTB sets)” bits
after the exclusion of the line offset to achieve the above is the
index for the victim BTB.

Fig. 4 Victim BTB.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

The TPC needs to be returned from the victim BTB to the BTB
if an L1 instruction cache error occurs. In this case, the L2 cache
is referenced to obtain a new cache line, causing long latency. The
operation to return the TPC from the victim BTB to the BTB is
performed when the L2 cache is being referenced, so the latency
of this operation is hidden.

6. Evaluation

6.1 Evaluation Environment
To confirm the effectiveness of our proposal, we focused on

the following evaluation items: the overall energy consumption
of the conventional and the proposed BTBs and rate of reduction
in instructions per cycle (IPC) of the processor with a conven-
tional BTB or our proposed BTB. To check the overhead of our
proposal, we also evaluated the total area needed for implement-
ing the proposed BTB.

We revised the Simcore [13], which is a software-based proces-
sor simulator, to evaluate the IPC of a superscalar processor and
the number of accesses to the conventional and proposed BTBs
and I-cache, and also used CACTI [14] and the Synopsys Design
Compiler to evaluate the delay, the area, and the energy, which
includes both the dynamic energy per access and the static en-
ergy per cycle due to leakage current, of the conventional and
proposed BTBs and the I-cache.

We explained how to evaluate the delay, the area, and energy
in detail. We did not evaluate the whole processor, but instead
evaluated the following components.
• BTB which was evaluated by CACTI
• I-cache which was evaluated by CACTI
• victim BTB which was evaluated by CACTI
• “Others” which were evaluated by CACTI and DC *1

The BTB, the I-cache, and the victim BTB have already been de-
scribed. The reason that the I-cache is evaluated is mentioned in
Section 5.3. “Others” is the general term for all the other circuits
other than the BTB and victim BTB in the proposed BTB. For
example, in Fig. 2, comparators, AND gates, and so on under the
BTB and the I-cache are categorized as “Others.”

The BTB, I-cache, and victim BTB are buffers. The gate level
structures of buffers have already been defined and are able to be
evaluated by CACTI. We therefore evaluated the delay, the area,
and their energy using only CACTI.

On the other hand, “Others” are not buffers, and the gate level
structures of “Others” are unknown. It was impossible to evalu-
ate them by CACTI. We therefore evaluated the delay, the area,
and energy of “Others” as follows: Firstly, we wrote only “Oth-
ers” in Verilog HDL. Secondly, we performed logic synthesis
on them using Synopsys Design Compiler to generate gate level
structures. Thirdly, we revised CACTI for the gate structures.
Lastly, we evaluated the delay, the area, and energy of “Others”
using CACTI.

In the processor simulation, we employed Alpha instruction
set architecture. The SPEC benchmark is often used for evaluat-
ing the BTB. For example, in Section 3, which describes related
studies, all studies except for Ref. [10] used the SPEC benchmark

*1 ‘DC’ is short for ‘Design Compiler’.

Table 1 Processor configurations.

Fetch Width 4 instruction/cycle
Decode Width 4 instruction/cycle
Issue Width 4 instruction/cycle
Commit Width 4 instruction/cycle
Instruction Window 64 entry Register Update Unit,

64 entry Load/Store Queue
Functional Unit 4 iALU, 2 iMULT/DIV, 3 fpALU,

2 fpMULT/DIV/SQRT
L1 I-cache 32 kB *2, 2 way, 32 byte cache line,

1 cycle hit latency,
2 port for tag, 1 port for data

L1 D-cache 64 kB, 4 way, 64 byte cache line, 2 port,
1 cycle hit latency

L2 cache 256 kB, 4 way, 64 byte cache line,
10 cycle hit latency

Main memory 8 byte/cycle band width, 100 cycle latency
Branch predictor gshare (11 bit history, 8k entry PHT),

32 entry Return Address Stack

Fig. 5 Overall dynamic and static energy of conventional BTB.

for the evaluation. We therefore also chose the SPEC benchmark
and used bzip2, gobmk, h264ref, hmmer, mcf, omnetpp, perl-
bench, and sjeng from SPECint2006 as benchmark programs. To
skip the initialization phase of each benchmark program, 2 bil-
lion instructions were skipped before 100 million instructions are
run for the evaluation. Table 1 shows the processor configura-
tion used for measurement. As shown in Table 1, the number
of instruction cache ports for tags and the data are 2 and 1, re-
spectively. The reason for this instruction cache configuration is
described in Section 5.3. For our evaluation of delay, area, and
energy consumption, CACTI and the Synopsys Design Compiler
used the same 32 nm-process technologies and the same 0.9 V
supply voltage. The number of I/O ports of an evaluated table
(for example, a BTB) was set to the value needed to prevent com-
petition among ports.

6.2 The Conventional BTB
Figure 5 shows the overall energy consumption including both

dynamic and static of the conventional BTB. Table 2 shows the
IPC degradation rate of the conventional BTB. The number of
entries of the BTB ranged from 128 to 1,024. The number of
ways of the BTB was fixed at 2.

In Fig. 5, the vertical axis indicates the overall energy con-
sumption of the conventional BTB with each number of entries,
normalized to that of the 1,024-entry conventional BTB. The hor-

*2 Only in Section 6.3.3, we varied the I-cache capacity from 16 kB to
64 kB.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

Table 2 IPC degradation rate of conventional BTB.

Benchmark
Num. of BTB Entries

128 256 512 1,024
bzip2 0.00% 0.00% 0.00% 0.00%
gobmk 4.73% 3.29% 1.35% 0.00%
hmmer 0.00% 0.00% 0.00% 0.00%
h264ref 1.82% 0.72% 0.10% 0.00%
mcf 0.00% 0.00% 0.00% 0.00%
omnetpp 2.20% 1.10% 0.34% 0.00%
perlbench 14.31% 9.16% 3.66% 0.00%
sjeng 8.59% 4.92% 1.81% 0.00%
average 4.08% 2.45% 0.92% 0.00%

izontal axis shows the benchmarks. Each group of four bars rep-
resents the normalized overall energy consumption for the 128-,
256-, 512-, and 1,024-entry BTBs. Each bar has two parts: “dy-
namic” and “static,” which respectively indicate the dynamic en-
ergy and the static energy. Table 2 shows the IPC degradation rate
of the conventional BTB with each number of entries compared
with that for the 1,024-entry conventional BTB.

Figure 5 confirms that both of overall dynamic and static en-
ergy consumption grow as entry size increases. Table 2 shows
that the IPC degradation rate gradually approaches 0% as the en-
try size increases. When the number of entries of the BTB is
increased from 512 to 1,024, the change in IPC degradation rate
is less than 1%. In other words, it approaches the lower limit.
This makes the 2-way and 1,024-entry conventional BTB more
suitable if higher performance is required, although it consumes
more energy overall.

Based on the above evaluation results, we used the 2-way and
1,024-entry conventional BTB as our benchmark for the follow-
ing evaluation of the overall energy consumption and the IPC re-
duction rate of our proposed BTB unless stated otherwise. In this
configuration, the ratio of dynamic to static is about 4 to 1 on
average.

6.3 Proposed BTB
6.3.1 Influence of BTB Size

Figures 6, 7, and Table 3 show the overall dynamic energy
consumption, the overall static energy consumption, and the IPC
degradation rate, respectively, of the proposed BTB. We varied
the number of entries of the BTB from 1,024 to 4,096. It should
be noted that the number of BTB sets is always equal to the num-
ber of I-cache sets in the proposed BTB. Therefore, the number
of the BTB sets is fixed at 512 and the number of ways of the
BTB changes from 2 to 8 as the number of the BTB entries in-
creases. On the other hand, the number of ways and entries of the
victim BTB are fixed at 4 and 128, respectively.

In Fig. 6, the vertical axis indicates the overall dynamic en-
ergy consumption of the proposed BTB, normalized to that of
the 1,024-entry conventional BTB. The horizontal axis shows
the benchmarks. Each group of three bars indicates the normal-
ized overall dynamic energy consumption for the 1,024-, 2,048-,
and 4,096-entry BTB from left to right, respectively. Each bar
has four parts: “others,” “victim,” “i-cache,” and “btb.” “btb”
indicates the dynamic energy consumed by the BTB. “i-cache”
indicates the increments in I-cache dynamic energy due to the in-
crease in the I-cache ports and accesses. “victim” indicates the
dynamic energy consumed by the victim BTB. “others” indicates

Fig. 6 Overall dynamic energy of proposed BTB (4-way and 128-entry
victim BTB).

Fig. 7 Overall static energy of proposed BTB (4-way and 128-entry victim
BTB).

Table 3 IPC degradation rate of proposed BTB (4-way and 128-entry
victim BTB).

Benchmark
Num. of BTB Entries

1,024 2,048 4,096
bzip2 0.00% 0.00% 0.00%
gobmk 0.59% 0.00% 0.00%
hmmer 0.00% 0.00% 0.00%
h264ref 0.19% −0.05% −0.05%
mcf 0.00% 0.00% 0.00%
omnetpp 0.21% 0.00% 0.00%
perlbench 1.13% −0.70% −0.87%
sjeng 1.58% 0.23% −0.06%
average 0.46% −0.06% −0.12%

the dynamic energy consumed by the other circuits which do not
belong to the BTB, the I-cache, or the victim BTB. For example,
in Fig. 2, the “other” circuits are comparators, AND gates, and
so on under the BTB and the I-cache. The sum of “others,” “vic-
tim,” and “i-cache” is the additional dynamic energy consumption
which is required only in the processor with the proposed BTB.

Figure 7 is the same as Fig. 6, except that the vertical axis indi-
cates the overall static energy consumption of the proposed BTB,
normalized to that of the 1,024-entry conventional BTB. Table 3
shows the IPC degradation rate of the proposed BTB for each
number of BTB entries compared with the 1,024-entry conven-
tional BTB.

Figure 6 confirms that the overall dynamic energy consumption
of the proposed BTB is significantly reduced when the number of
BTB entries is equal to or fewer than 2,048. When the number of
BTB entries increases, the additional dynamic energy (the sum of
“others”, “victim”, and “i-cache” denoted in the figure) changes

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

very little. This is because the number of BTB entries is not di-
rectly related to I-cache accesses or victim BTB accesses. On
the other hand, the BTB dynamic energy (denoted “btb” in the
figure) can be reduced using our proposed mechanism, but in-
creases almost proportionally to the number of entries, since the
number of BTB entries increases the BTB dynamic energy re-
quirement per access. As a result, although the overall dynamic
energy consumption is low, at 60.6% on average if the number
of BTB entries is 1,024, the effect of the overall dynamic energy
reduction is significantly decreased when the number of the BTB
entries reaches 4,096.

The overall trend shown in Fig. 7 is similar to that shown in
Fig. 6. However, there are differences, as shown below. A) The
static energy depends little on benchmarks because the proposed
mechanism has zero or negligible influence on the IPC, as ex-
plained in the next paragraph. B) The reduction rate in the static
energy is lower than that in the dynamic energy. Therefore, if the
BTB entry size is equal to or less than 2,048, the overall static en-
ergy can be reduced; however, otherwise, the overall static energy
significantly exceeds 100%. The reason that the static energy re-
duction is possible in the 1,024- and 2,048-entry BTBs is that the
tag field is removed from the proposed BTB and the static energy
reduction due to the elimination of the tag field is greater than
the static energy increase due to the other additional components,
“i-cache,” “victim,” and “others,” in Fig. 7.

Meanwhile, Table 3 confirms that the proposed BTB can main-
tain almost the same IPC regardless of the number of BTB en-
tries. When the number of the BTB entries is 1,024, in some
benchmarks, the IPC is slightly degraded, although the average
IPC degradation rate is less than 1%. The slight degradation of
the IPC is caused by competition between the branches associ-
ated with the same entry of the BTB. On the other hand, if the
BTB size is 2,048 entries or bigger, there is no IPC degradation
in the results due to the alleviation of BTB competition.

Figures 6, 7, and Table 3 indicate that if some IPC degradation
is acceptable, the 1,024-entry BTB is most appropriate, because
the overall energy consumption including both dynamic and static
can be reduced by as much as 70.1% on average. Otherwise,
if lower energy is required without IPC degradation, the 2,048-
entry BTB, which can reduce the overall energy consumption by
52.5%, is the most suitable. It should be noted that the overall
energy reduction rate is not equal to the arithmetic mean of the
dynamic and static energy reduction rates shown in Figs. 6 and 7,
because the ratio of dynamic to static is not one to one as shown
in Fig. 5.

For the parameters used in this subsection, we evaluated the
total area of all the components of the proposed mechanism and
the increment in the I-cache due to the proposed mechanism.
The evaluation results show that the total area is 0.040 mm2,
0.059 mm2, and 0.100 mm2 when the number of the BTB entries
is 1,024, 2,048, and 4,096, respectively.
6.3.2 Influence of Victim BTB Size

Figures 8, 9, and Table 4 show the overall dynamic energy
consumption, the overall static energy consumption, and the IPC
degradation rate, respectively, of the proposed BTB. In this sub-
section, we vary the number of entries of the victim BTB from

Fig. 8 Overall dynamic energy of proposed BTB (4-way and 2,048-entry
BTB).

Fig. 9 Overall static energy of proposed BTB (4-way and 2,048-entry
BTB).

Table 4 IPC degradation rate of proposed BTB (4-way and 2,048-entry
BTB).

Benchmark
Num. of victim BTB Entries
64 128 256

bzip2 0.00% 0.00% 0.00%
gobmk 0.34% 0.00% −0.25%
hmmer 0.00% 0.00% 0.00%
h264ref −0.05% −0.05% −0.05%
mcf 0.00% 0.00% 0.00%
omnetpp 0.14% 0.00% 0.00%
perlbench 1.13% −0.70% −1.48%
sjeng 0.45% 0.23% 0.17%
average 0.25% −0.06% −0.20%

64 to 256. The number of ways of the victim BTB is fixed at 4,
and the number of ways and entries of the BTB are fixed at 4 and
2,048, respectively.

There is a great deal of similarity between Fig. 6 and Fig. 8.
The differences are as follows. In Fig. 8, each group of three bars
indicates the normalized overall dynamic energy consumption for
the 64-, 128-, and 256-entry victim BTB from left to right, re-
spectively. Figure 9 is the same as Fig. 8, except that the vertical
axis indicates the overall static energy consumption of the pro-
posed BTB, normalized to that of the 1,024-entry conventional
BTB. Table 4 shows the IPC degradation rate of the proposed
BTB for each number of victim BTB entries compared with the
1,024-entry conventional BTB.

Figure 8 confirms that the overall dynamic energy consump-
tion of the proposed BTB changes little in relation to the number
of victim BTB entries. The reason is as follows. The dynamic
energy per access of the victim BTB significantly increases as its

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

size increases. However, the number of accesses to the victim
BTB is very small, because the victim BTB is accessed when an
I-cache error occurs, so any change in victim BTB dynamic en-
ergy consumption will have a negligible influence on the overall
dynamic energy consumption requirements of the proposed BTB.

Figure 9 confirms that the overall static energy consumption
of the proposed BTB can still be reduced, although the static en-
ergy of the victim BTB steadily increases as the number of victim
BTB entries increases. The reason is that the static energy reduc-
tion due to the elimination of the tag field is large enough to be
above the static energy of the additional components.

Table 4 confirms that our proposed BTB sustains almost the
same number of IPC if the number of the victim BTB entries
changes. If the number of victim BTB entries is 64, the IPC is
slightly degraded by up to 1.13%, or by an average of 0.25%.
However, if the victim BTB size is equal to or larger than 128
entries, there is no degradation in IPC in all benchmarks except
for sjeng.

Based on the results of Figs. 8, 9, and Table 4, the 128-entry
victim BTB is enough to significantly reduce the overall energy
consumption without any IPC degradation on average.

The total area required for implementing the proposed BTB in
the cases of 64-, 128-, and 256-entry victim BTB is 0.058 mm2,
0.059 mm2, and 0.062 mm2, respectively. As in the previous sub-
section, the total area includes the area of the additional circuits
in addition to that of the BTB.
6.3.3 Influence of I-cache Capacity

The number of sets of the proposed BTB is always equivalent
to the sets of the I-cache. In other words, the configuration of
the proposed BTB depends partially on that of the I-cache. The
I-cache capacity might therefore have an influence on the over-
all energy consumption and the IPC degradation of the proposed
BTB. To confirm the influence of I-cache capacity, in this sec-
tion, we varied the I-cache capacity from 16 kB to 64 kB while
maintaining the ways at 2 and the line size at 32 bytes. The
number of BTB sets therefore changes from 256 to 1,024 as the
I-cache capacity increases. For each I-cache capacity, we also
determined the appropriate parameters for the conventional and
proposed BTBs in the same ways as for Sections 6.2, 6.3.1, and
6.3.2. The determined parameters are shown in Table 5.

Figures 10, 11, and Table 6 show the overall dynamic energy
consumption, the overall static energy consumption, and the IPC
degradation rate of the proposed BTB when the I-cache capacity
is varied. Figure 10 is quite similar to Figs. 6 and 8. The differ-
ence is as follows. In Fig. 10, each group of three bars indicates,
from left to right, the normalized overall dynamic energy of the
conventional BTBs in the cases of 16-kB, 32-kB, and 64-kB I-

Table 5 Configurations of conventional and proposed BTBs for each
I-cache capacity.

I-cache Proposed BTB
Conventional BTB

Capacity BTB victim

16 kB
4 way, 4 way,

2 way, 1,024 entry
1,024 entry 128 entry

32 kB
4 way, 4 way,

2 way, 1,024 entry
2,048 entry 128 entry

64 kB
4 way, 4 way,

2 way, 2,048 entry
4,096 entry 128 entry

caches. Figure 11 is the same as Fig. 10, except that the vertical
axis indicates the overall static energy consumption of the pro-
posed BTB, normalized to that of the 1,024-entry conventional
BTB. Table 6 shows the IPC degradation rate of the proposed
BTB in the cases of the 16-kB, 32-kB, and 64-kB I-caches. The
configuration of the conventional BTB, which is used as a ba-
sis for the calculations of the normalized dynamic energy, the
normalized static energy, and the IPC degradation rate, in each
I-cache capacity is shown in Table 5, as already noted.

Figures 10, 11, and Table 6 confirm that the proposed BTB sig-
nificantly reduces the overall energy consumption while retaining
almost the same IPC as the conventional BTB, even when the I-
cache capacity is changed. Only when the I-cache capacity is
16 kB does the IPC slightly decrease on average. The reason for
this IPC degradation is that the small size of the BTB sets causes
competition between branches during BTB entry.

Table 5 confirms that the sum of the BTB entry size and the

Fig. 10 Influence of I-cache capacity overall on dynamic energy of
proposed BTB.

Fig. 11 Influence of I-cache capacity on overall static energy of
proposed BTB.

Table 6 Influence of I-cache capacity on IPC degradation rate of proposed
BTB.

Benchmark
I-Cache Capacity

16 kB 32 kB 64 kB
bzip2 0.00% 0.00% 0.00%
gobmk 0.94% 0.00% 0.07%
hmmer 0.05% 0.00% 0.00%
h264ref 0.00% −0.05% −0.05%
mcf 0.00% 0.00% 0.00%
omnetpp 0.29% 0.00% −0.20%
perlbench 3.06% −0.70% −0.19%
sjeng 1.17% 0.23% 0.11%
average 0.69% −0.06% −0.03%

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

victim BTB entry size in the proposed BTB is greater than the
BTB entry size in the conventional BTB. However, since our pro-
posed BTB eliminates the tag array and reduces both the number
of BTB ports and the number of accesses to the BTB, the increase
in the number of entries has no negative effect on overall energy
consumption.

The total area required for implementing the proposed BTB in
the cases of a 16-kB, 32-kB, and 64-kB I-cache is 0.038 mm2,
0.059 mm2, and 0.114 mm2, respectively. The total area includes
the area taken up by the additional circuits described in the previ-
ous subsections in addition to that of the BTB.
6.3.4 Influence on Delay

In the conventional BTB, the delay of the branch target predic-
tion is determined exclusively by the BTB. On the other hand,
in the proposed BTB, the delay depends on the BTB, the victim
BTB, and “Others” as noted in Section 6.1.

To facilitate understanding, firstly, we focus solely on the con-
ventional and proposed BTBs. We evaluated the delay of the 2-
way and 1,024-entry conventional BTB and the proposed BTB
with the 4-way and 128-entry victim BTB and the 4-way and
2,048-entry BTB. The evaluation results show that the delay of
the conventional and proposed BTBs is 281.3 ps and 266.3 ps, re-
spectively. These results confirm that the proposed BTB improves
the delay of the branch target prediction. The reason is as follows.
In a conventional BTB, the critical path is determined exclusively
by the BTB. Meanwhile, in the proposed BTB, the critical path
is determined by the BTB and “Others.” The delay of “Others”
is 35.9 ps, negatively affecting the critical path of the proposed
BTB. However, the delay of the BTB is reduced to 230.4 ps by
deletion of the tag field. The effect of this deletion more than
compensates for the loss caused by “Others.”

Secondly, we focus on the proposed BTB and the revised in-
struction cache for the proposed BTB. As shown in Fig. 2, the tag
array of the instruction cache and part of “Others” are connected
in series. There is a possibility that the delay of the path passing
through the above two components is longer than the delay of the
instruction cache or the delay of the proposed BTB. Therefore, in
addition to the proposed BTB, we evaluated the delay of the data
array and the tag array of the instruction cache and the relevant
part of “Others” which are connected to the tag array in series.
The evaluation results are as follows: The delay of the data array
is 289.2 ps. The delay of the tag array is 230.3 ps. The delay of
the relevant part of “Others” is 36.2 ps. The above results confirm
that the delay of the path passing through the tag array and the rel-
evant part of “Others” is 266.5 ps, almost equivalent to the delay
of the proposed BTB, and shorter than the delay of the data array.
Therefore, the delay of the instruction cache is not affected by the
proposed BTB and the delay of the proposed BTB is minimally
affected by the instruction cache.

6.4 Comparison with Related BTB
In this section, we compare the proposed BTB with two re-

lated mechanisms (RMs), which incur one or no delay cycles per
branch prediction. We denote them RM1 and RM2. RM1 was
proposed by Kahn et al. [2]. RM2 was proposed by Chung et
al. [11]. Summaries of these have been given in Section 3.

Fig. 12 Overall dynamic energy of related mechanisms.

Fig. 13 Overall static energy of related mechanisms.

Table 7 IPC degradation rate of related mechanisms.

Benchmark RM1 RM2 Proposal
bzip2 1.25% 3.92% 0.00%
gobmk 4.81% 1.35% 0.00%
hmmer 0.05% 7.06% 0.00%
h264ref 3.63% 0.19% −0.05%
mcf 0.00% 5.06% 0.00%
omnetpp 13.96% 5.09% 0.00%
perlbench 6.98% 4.45% −0.70%
sjeng 7.06% 2.77% 0.23%
average 4.82% 3.76% −0.06%

Figures 12, 13, and Table 7 show the total dynamic energy de-
mand, the total static energy demand, and the IPCs, respectively,
of our proposed BTB, RM1, and RM2. A 32-kB I-cache is used.
In the proposed BTB, we use a 4-way and 2,048-entry BTB and
4-way and a 128-entry victim BTB. In RM1 and RM2, each con-
figuration of BTBs is the same as that of a conventional BTB. In
RM1, the 2-way and 64-entry small BTB is used and the configu-
ration of the Bloom filter is the same as that described in Ref. [11].
The 2-way and 1,024-entry conventional BTB is used as a basis
for the calculations of the normalized dynamic energy, the nor-
malized static energy, and the IPC degradation rate. In Fig. 12,
each group of three bars indicates, from left to right, the normal-
ized overall dynamic energy of RM1, RM2, and the proposed
BTB. In the figure, there are six explanatory notes: “others,”
“bf,” “small,” “victim,” “i-cache,” and “btb.” “btb” indicates the
dynamic energy consumed by the BTB. The meanings of “vic-
tim” and “i-cache” are the same as those in Fig. 6–Fig. 11. “bf”
and “small” indicate the dynamic energy consumed by the Bloom
filter and the small BTB, respectively, in RM1. “others” indicates
the dynamic energy consumed by the other circuits which are not

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

categorized as “bf,” “small,” “victim,” “i-cache,” or “btb,” but
are required for implementing the proposed BTB, RM1, or RM2.
For example, “others” in the proposed BTB is already explained
in Section 6.3.1. Table 7 shows the IPC degradation rate for each
mechanism compared with the conventional BTB.

Figure 12 confirms that the proposed BTB reduces the overall
dynamic energy consumption on average more than the others.
In RM1, the overall dynamic energy is increased by an average
of 14.9%. The reason for the increase is as follows. RM1 uses a
Bloom filter to detect any instructions that are not registered in the
BTB, regardless of branch or nonbranch. The instruction uses an
instruction address to access some entries in the Bloom filter. If
at least one of the accessed entries is zero, the instruction is found
not to be registered in the BTB and is filtered out. However, in
most cases, the Bloom filter does not work effectively because
the lowest partition of the address used for accesses to the Bloom
filter provides the most information. This problem is reported in
Ref. [12]. As a result, many instructions reach the BTB without
being filtered out. Another drawback is that the Bloom filter and
the small BTB require dynamic energy. In RM2, the average dy-
namic energy reduction rate averages 13.9%. The reason that the
rate is lower is as follows. RM2 accesses gshare to predict the
branch direction of an instruction one cycle earlier than the in-
struction is fetched. If the predicted direction is Taken, the BTB
is accessed. Otherwise, it is not accessed. If the fetched instruc-
tion is a branch, this mechanism works well. The accesses to
the BTB from Not Taken branches are eliminated. However, if it
is a nonbranch, this mechanism cannot accurately judge whether
to stop BTB access, since gshare is a prediction mechanism for
branches.

Figure 13 confirms that the proposed BTB reduces the over-
all static energy consumption on average more than “others.”
In RM1, the overall static energy is increased by an average of
15.0% for the following reasons. For the reduction of the dynamic
BTB energy, RM1 prepares additional components that consume
static energy: “small,” “bf,” and “others” in Fig. 13. RM1 also de-
grades the IPC in most cases, as mentioned in the next paragraph,
increasing the time during which the leakage current is flowing.
In RM2, the overall static energy increases by an average of 3.9%
because the IPC is increased, similar to RM1. A more detailed
explanation of IPC degradation is given in the next paragraph.
To reduce the dynamic energy of the BTB, RM2 uses the out-
put of the already existing branch direction predictor. Therefore,
unlike RM1 or the proposed BTB, RM2 does not need to pre-
pare any dedicated buffers that consume static energy. Although
small-scale circuits such as multiplexers are required to imple-
ment RM2, their static energy (denoted “others”) is too small to
see in Fig. 13.

Meanwhile, Table 7 shows that the average IPC of the pro-
posed BTB is larger than that of the others. RM1 degrades the
IPC by 4.82% on average. If the small BTB access misses and
the Bloom Filter hits, the fetched instruction accesses the BTB,
delaying the branch prediction. This delay adversely affects the
IPC. RM2 degrades the IPC by 3.76% on average. The reason
is that the gshare used in RM2 is revised to assist dynamic en-
ergy reduction, but the revision has a negative impact on branch

prediction.
The total areas required for implementing the proposed BTB,

RM1, and RM2 are 0.059 mm2, 0.182 mm2, and 0.159 mm2, re-
spectively. As in the previous subsection, the total area includes
the area of the additional circuits in addition to that of the BTB.
The area of the proposed BTB is the smallest because the tag
field is removed; the area of the removed tag field is greater than
that of the other additional components. The area of RM1 is the
largest because RM1 requires additional components irrespective
of any area reduction of the BTB, unlike the proposed BTB. The
area of RM2 is close to that of the conventional BTB because
RM2 makes use of pre-existing components plus only a few extra
circuits.

7. Conclusion

In this paper, we propose a method that reduces energy de-
mand by branch target prediction by cutting the number of BTB
accesses. In our proposed mechanism, we integrate the BTB tag
and I-cache tag. Further, we predict the branch target in units
of cache lines. We then predict the branch target address of a
plurality of instructions present in the cache line using one BTB
reference. As a consequence, we reduce the number of BTB ac-
cesses and cut the energy cost of branch target prediction without
any performance loss.

To evaluate the proposed mechanism, we varied the number
of entries of the BTB from 1,024 to 4,096. The results showed
that, for BTB 2,048-entry, the energy consumption was reduced
to 47.5% of that required by a conventional mechanism, without
causing any decline in IPC.

Acknowledgments A part of this research has been sup-
ported by JSPS KAKENHI Grant Number 25330060 and
26330063. The authors wish to thank Hiroki Yamamoto for tech-
nical assistance and helpful discussions that he provided when he
was a master student at Toyohashi University of Technology.

References

[1] Hennessy, J.L. and Patterson, D.A.: Computer Architecture: A Quan-
titative Approach, Morgan Kaufmann Publishers, Inc., 2nd edition
(1996).

[2] Kahn, R. and Weiss, S.: Thrifty BTB: A Comprehensive Solution for
Dynamic Power Reduction in Branch Target Buffers, Microprocess.
Microsyst., Vol.32, No.8, pp.425–436 (2008).

[3] Sadeghi, H., Sarbazi-Azad, H. and Zarandi, H.R.: Power-aware
branch target prediction using a new BTB architecture, 2009 17th IFIP
International Conference on Very Large Scale Integration (VLSI-SoC),
pp.53–58 (2009).

[4] McFarling, S.: Combining branch predictors, WRL Technical Note,
TN-36, Digital Equipment Corporation (1993).

[5] Jiménez, D.A. and Lin, C.: Dynamic branch prediction with percep-
trons, Proc. 7th International Symposium on High-Performance Com-
puter Architecture, pp.197–206 (2001).

[6] Fagin, B. and Russell, K.: Partial resolution in branch target buffers,
Proc. 28th Annual ACM/IEEE International Symposium on Microar-
chitecture, pp.193–198 (1995).

[7] Calder, B. and Grunwald, D.: Fast and accurate instruction fetch
and branch prediction, Proc. 21st Annual International Symposium on
Computer Architecture, pp.2–11 (1994).

[8] Driesen, K. and Hölzle, U.: The cascaded predictor: Economical and
adaptive branch target prediction, Proc. 31st Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, pp.249–258 (1998).

[9] Parikh, D., Skadron, K., Zhang, Y., Barcella, M. and Stan, M.R.:
Power issues related to branch prediction, Proc. 8th International
Symposium on High-Performance Computer Architecture, pp.233–
244 (2002).

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

[10] Petrov, P. and Orailoglu, A.: Low-power Branch Target Buffer for
Application-Specific Embedded Processors, Proc. Euromicro Sympo-
sium on Digital Systems Design, pp.158–165 (2003).

[11] Chung, S.W. and Park, S.B.: A Low Power Branch Predictor to Selec-
tively Access the BTB, Advances in Computer Systems Architecture,
pp.374–384 (2004).

[12] Peir, J.K., Lai, S.C. and Lu, S.L.: Bloom filtering cache misses for
accurate data speculation and prefetching, Proc. 16th Annual ACM In-
ternational Conference on Supercomputing, pp.189–198 (2002).

[13] Kise, K., Honda, H. and Yuba, T.: SimAlpha Version 1.0: Simple and
Readable Alpha Processor Simulator, LNCS, Vol.2823, pp.122–136
(2003).

[14] Muralimanohar, N., Balasubramonian, R. and Jouppi, N.P.: CACTI
6.0: A tool to model large caches, HP Laboratories (2009).

Ryotaro Kobayashi received his B.E.,
M.E., and D.E. degrees from Nagoya Uni-
versity in 1995, 1997, and 2001, respec-
tively. He had been a research assistant in
Nagoya University from 2000 to 2008. He
is currently a lecturer at Toyohashi Uni-
versity of Technology. His research inter-
ests include computer architecture, paral-

lel processing, and network security.

Kaoru Saito is currently a Bachelor
Course student of Toyohashi University
of Technology. His research interests in-
clude computer architecture.

Hajime Shimada was born in 1976 and
received his B.E., M.E. and D.E. degrees
from Nagoya University, Japan in 1998,
2000 and 2004 respectively. He was an as-
sistant professor in Kyoto University from
2005 to 2009. He wan an associate pro-
fessor in NAIST from 2009 to 2013. He
is now an associate professor in Nagoya

University, Japan since 2013. He is currently focusing on com-
puter architecture and network related researches with low power
consumption and high dependability techniques. He is a member
of IEEE, IPSJ, and IEICE.

c© 2016 Information Processing Society of Japan


