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Abstract: Human gait recognition is one of the most important authentication technologies as it can often happen
that people approach a computer system or a robot by walking. Therefore in this study, a multi-angle gait recognition
method has been proposed by using skeletal tracking data, measured by an RGB-D camera. The proposed method
includes a two stage process, which estimates an optimal gait angle view from the five discrete angles at the first stage
and subsequently recognizes human gait based on the specific features for the respective gait angle views. In order to
evaluate the proposed method, two types of experiments have been done: gait angle estimation and gait recognition.
From the result of the first experiment, the best estimation of 97.4% accuracy has been achieved. In the second ex-
periment, the best gait recognition accuracy was 96.4%. Finally the best gait recognition accuracy with the two stage
process has been estimated as 93.9%.
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1. Introduction

According to a report by Sumi [1], it is reported that the re-
search on soft biometrics can be applied to Human-Computer In-
teractions (HCI) and many commercial products. The term soft
biometrics is defined by Jain et al. [2] as follows; “soft biometric

traits as characteristics that provide some information about the

individual, but lack the distinctiveness and permanence to suffi-

ciently differentiate any two individuals”. Specifically it refers to
height, weight, skin color, eye color, hairstyle, facial mark, eth-
nicity and so on of a person. From the view point of the less
distinctiveness and permanence to identify individuals, most be-
havioral biometric traits such as handwritten signature, gait, lip
movement, etc. can be regarded as a kind of soft biometrics.

On the other hand, some advanced camera devices with a depth
sensor such as Kinect [3], Xtion [4], DepthSense [5] and Leap
Motion [6] have been recently developed and are established as
the next generation camera devices. These depth cameras can
be used and controlled with some freely available SDKs. A lot
of research has been driven by the depth camera devices and the
SDKs which can facilitate automatic human detection and skele-
tal tracking [7], [8], [9], [10], [11]. This means that we can easily
obtain many soft biometric traits such as body measurements and
movements which can be computed from skeletal tracking data
measured by the depth cameras.

In this paper, as an HCI application, we consider a personal or
family assistant system in a smart home. The system can recog-
nize and adaptively provide information and service to them in
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a specific room. Hence we postulate that the gait data of target
persons are in the system. Here the most important thing is to
naturally obtain the identity information from a person, without
the active authentication behaviors such as holding a fingerprint
to the sensor. In such an application scene, the system cannot ob-
tain sufficient information to identify individuals because of many
obstructions and restrictions such as a room layout, lighting con-
ditions, sensor settings and so on. In order to cope with such
actual problems, it is necessary to develop a recognition technol-
ogy which can extend the coverage of information and conditions
for humans in actual environment.

We consider a key component of success for the realization
of the above application system is to develop a recognition tech-
nology of individuals and activities of daily living (ADL) on the
basis of soft biometric traits obtained by depth camera devices.
Especially human gait recognition is the most important technol-
ogy because it can often arise that people approach a computer
system by walking. Moreover gait recognition has a quite long
history since 1964 in which Murray et al. first argued that human
walking patterns include individual variability [12].

Gait recognition techniques by using RGB cameras are divided
into two approaches; appearance-based approach and model-
based approach. The former characterizes the gait from the sil-
houette image of a human. The most of gait recognition meth-
ods fall into this category. The latter uses gait features extracted
from a body skeleton model fitted to a human area in image data.
On account of the difficulty of body skeleton estimation and the
occlusion problem of arms and legs, this approach does not con-
ventionally outperform the appearance-based one. In addition,
the applied model is a simple stick model as the human body is
composed of just three line segments, which mean the trunk and
the two legs of human [13], [14]. So it can be said that there
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is much smaller selection of model-based approaches [15] than
appearance-based ones. However, now depth camera devices and
their SDKs can encourage new solutions to overcome the draw-
backs in the model-based approaches. At least we can easily ob-
tain more precise model data than the conventional ones.

In gait recognition, regardless of either model-based approach
or appearence-based approach, human gait is generally captured
in the side view from which gait cycles and strides can be easily
estimated. Some recent researches have challenged gait recog-
nition from the front view [16], [17], [18], [19], [20], [21], [22].
Soriano et al. claims that front-view gait recognition has an ad-
vantage that it is compatible with the ability of humans to rec-
ognize their fellow beings from their front-view gaits [16]. In
appearance-based approaches, there are many contributions for
multi-angle view gait recognition [23]. It is significant to support
multi-angle view gait because the computer system or a robot is
not always able to capture the human gait pattern in the real envi-
ronment from a particular view. We need to develop a gait recog-
nition system which successfully works in an unconstrained en-
vironment where humans can freely walk in a natural way. How-
ever, compared with appearance-based approaches, there are few
model-based recognition methods which can support multi-angle
view gait. Development of multi-angle human recognition tech-
nology based on model-based data is beneficial to an improve-
ment of human recognition accuracy because it can be integrated
conventional to appearance-based technologies.

Therefore in this study we propose a novel multi-angle gait
recognition method based on skeletal tracking data measured by
an RGB-D camera. Specifically our method can estimate an op-
timal gait angle view from the five discrete angles at the first
stage and subsequently recognize human gait based on the op-
timal features for the respective gait angle views. As far as we
know, there does not exist researches of evaluating model-based
gait data from the viewpoint of human discriminability in multi-
angles.

The organization of the paper is as follows. Section 2 shows
our gait angle estimation method and gait recognition method.
Section 3 describes the design of the feature vector and the fea-
ture evaluation method in detail. Sections 4 and 5 describe two
experiments performed in order to evaluate the proposed method
and their results. Finally, Section 6 contains conclusion.

2. Multi-angle Gait Recognition Method

This section describes the proposed method: gait angle estima-
tion and gait recognition.

2.1 Overview
Figure 1 shows the processing diagram of the proposed

method, which is divided into two flows: an enrollment flow and
a recognition flow.

In the enrollment flow, human gait pattern is measured as a
three-dimensional time series of skeletal tracking data. Kinect
and a Kinect SDK are used as the RGB-D camera and the devel-
opment kit of the data measurement program respectively. Fig-
ure 2 shows a joint type enumeration for the skeletal tracking by
the Kinect SDK. Here let it be noted that each joint ID is as-

Fig. 1 Processing diagram of proposed gait recognition method.

Fig. 2 Joint type enumeration for skeletal tracking.

Fig. 3 Relation between RGB-D camera and gait angles.

signed by us. In this study we collect the gait data for multi-angle
view based on relative positions between the RGB-D camera and
the human. Figure 3 shows the relation between the camera and
the gait angles. In this figure, the circle denotes the measurement
scope of the RGB-D camera and the five red arrows denote gait
angles: 90, 135, 180, 225 and 270 degrees. A human subject
walks from the right side of the camera at angles of 90 and 135
degrees, and walks from the left side at angles of 225 and 270
degrees. At an angle of 180 degrees, a subject approaches the
camera straight. After measurement, gait data is preprocessed for
computing thresholds for gait angle estimation. The computed
thresholds are stored in the system and it is used in the recogni-
tion flow. Finally the gait data is processed and some soft bio-
metric features are extracted from the preprocessed gait data for
designing multi-angle gait recognizers. The gait recognizers are
stored in the system, and are used at the time of recognition.
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Algorithm 1 Gait Angle Estimation
1: (xs, zs)← detect the start point S

2: (xe, ze)← detect the end point E

3: Ψ← compute the cosine based on Eq. (1)

4: if φ180 ≤ Ψ ≤ Φ180 then

5: Gait Angle is estimated as 180 degrees.

6: else

7: if xs < 0 then

8: if φ90 ≤ Ψ ≤ Φ90 then

9: Gait Angle is estimated as 90 degrees.

10: else if φ135 ≤ Ψ ≤ Φ135 then

11: Gait Angle is estimated as 135 degrees.

12: else

13: Gait Angle is not estimated.

14: end if

15: else

16: if φ225 ≤ Ψ ≤ Φ225 then

17: Gait Angle is estimated as 225 degrees.

18: else if φ270 ≤ Ψ ≤ Φ270 then

19: Gait Angle is estimated as 270 degrees.

20: else

21: Gait Angle is not estimated.

22: end if

23: end if

24: end if

In the recognition flow, first a human gait is captured by an
RGB-D camera and gait data is measured and preprocessed by
the same manner as ones in the enrollment flow. Secondly, gait
angle estimation is performed by the stored thresholds. The al-
gorithm is described in the next subsection. Finally, on the basis
of the estimated gait angle, the optimal feature sets are extracted
and the human gait is recognized by the stored optimal gait rec-
ognizer. The recognition method is described in a later subsection
and the feature extraction and selection methods are described in
the next section.

2.2 Gait Angle Estimation
It is easy to estimate the gait angles because we can track the

positions of the joints in the three-dimensional coordinates built
up by RGB-D camera. The two-dimensional coordinates (the x-z
plane) are sufficient as we assume that humans walk on the flat
floor. We estimate the gait angle from the cosine between the
start point S = (xs, zs) and the end point E = (xe, ze) on the two-
dimensional coordinates,

Ψ =
xsxe + zsze√

xs
2 + zs

2
√

xe
2 + ze

2
, (1)

where (xs, zs) denotes the HIP CENTER position at the place
where a human is first detected within the measurement scope,
(xe, ze) denotes the same one at the place where a human is last
detected within the scope. The gait angle estimation based on the
equation is shown as Algorithm 1.

The algorithm is quite simple. First it estimates the 180 de-
grees gait by the lower threshold φ180 and the upper threshold
Φ180 because the Ψ is definitely close to zero. Next, the sign of
xs is found out which determines whether the gait was performed
from the right side or from the left side. This classification is
important because the Ψ values in 90 or 135 degrees are approxi-

mately equivalent to the ones in 270 or 225 degrees respectively.
When the gait was performed from the right side, it estimates the
90 degrees or the 135 degrees gait by using the corresponding
thresholds (φ90, Φ90, φ135 and Φ135). In the other case it estimates
the 225 degrees or the 270 degrees gait by using the correspond-
ing thresholds (φ225, Φ225, φ270 and Φ270). Each of the lower and
the upper thresholds (φg,Φg, g = 90, 135, 180, 225, 270) is com-
puted from the training data samples measured in advance.

2.3 Preprocessing for Gait Recognition
Three-dimensional position time series data is processed to ex-

tract features easily. First the three dimensional position time
series P j

t is converted into one dimensional distance time series
d j(t) with the SPINE position P0

t as a reference point by the fol-
lowing Eq. (2);

d j
t = ||P j

t − P0
t || (t = 1, 2, · · · ,N), (2)

where t denotes discrete the time stamp, N is the length of time
series, j is a joint ID in Fig. 2, ||.|| denotes Euclidean distance in
three-dimensional space, P j

t denotes {x j
t, y

j
t, z

j
t} and P0

t denotes
{x0

t, y
0

t, z
0

t}. This is equivalent to the processing represented in
[22]. The raw position time series is distance data from the RGB-
D camera so it monotonously changes on some axes in response
to the gait angles. By using this conversion, the periodicity orig-
inated by walking comes to emerge in the distance time series
of each joint. Furthermore the obtained distance time series is
less affected by the change of the gait angles because it does not
depend on the position of the RGB-D camera.

After the conversion, a simple moving average smoothing is
repeated five times by the following Eq. (3);

s j
t =

1
3

1∑
k=−1

d j
t+k (t = 2, 3, · · · ,N − 1). (3)

2.4 Gait Recognition
In this study human gait is recognized by using a description

of a gait pattern on the basis of some soft biometric features from
the smoothed time series. Moreover we select the optimal feature
vectors for each gait angle. The details of feature extraction and
selection techniques are described in the next section.

Finally the gait data is recognized by using the optimal feature
vectors and machine learning methods. In this study we employ
linear discriminant analysis (LDA) methods as gait recognizers.
The recognizers are prepared for every gait angles by using the
training data samples measured in advance.

3. Feature Extraction

In this section, the details of feature extraction and selection
methods are explained. The features are mainly related to the
physical measurements of human body parts. These features are
kinds of soft biometric traits.

3.1 Features Design by The Fisher Criterion
We compute four soft biometric features: minimum, maxi-

mum, mean and standard deviation for the distance time series
of each joint. Consequently we deal with 76 kinds of features (4
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features × 19 joints) in total. The four features are calculated as
follows:

α j = min{ s j
t, t = 1, 2, · · · ,N }, (4)

β j = max{ s j
t, t = 1, 2, · · · ,N }, (5)

γ j =
1
N

N∑
t=1

s j
t, (6)

δ j =

√√√
1
N

N∑
t=1

(s j
t − γ j)2, (7)

where j denotes a joint ID in Fig. 2, t denotes a discrete time in-
dex and N denotes the length of time series.

Physically α j is a distance in which a j-th joint is the closest
to the reference point during walking. For example, the values of
knees (KNEE RIGHT and KNEE LEFT) reflect the way of knee
lift during walking. β j is the distance in which the j-th joint is
the most distant to the reference point. For example, the values
of hands (HAND RIGHT and HAND LEFT) tend to be large for
the human who swings arms with large amplitude during walking.
γ j is the mean distance between the j-th joint and the reference
point. The values of trunk (HEAD, SHOULDER CENTER and
HIP CENTER) or ankles (ANKLE RIGHT and ANKLE LEFT)
are correlated to the length of body and leg respectively. δ j is
the variability of movement in the j-th joint so it will be large in
limbs. This value reflects the difference of swing frequency in
body parts. For example, the values of hands or elbows tend to be
large for the human who walks with frequent arm swing. Also the
values of knees reflect the step length and the step width during
walking.

In order to reveal the discriminant potential of these soft bio-
metric features, we analyze distinctiveness of individuality by us-
ing the Fisher criterion of linear discriminant analysis. The Fisher
criterion J is computed as follows;

J =
B
W
, (8)

W =
1
N

Nc∑
i=1

Ni∑
j=1

( fi j − fi)
2, (9)

B =
1
N

Nc∑
i=1

Ni( fi − f )2, (10)

where W is the variability within the classes (intra-class valiabil-
ity), B is the variability between the classes (inter-class valiabil-
ity), Nc denotes the number of classes to be identified, Ni denotes
the number of data samples in the i-th class, N the total number
of data samples based on N =

∑Nc

i=1 Ni, fi j denotes the j-th data
sample (feature value) in the i-th class, fi denotes the mean of the
data samples in the i-th class and f is the overall mean of the data
samples.

On the basis of the criterion J, we analyze the discriminant
tendency of each feature in all of the joints. This analysis is per-
formed for each gait angle.We select the top M features based on
J as optimal features for each gait angle. Thus the selected fea-
ture set is a M-dimensional vector, and it is composed of α, β, γ
and δ.

4. Experiment I: Gait Angle Estimation

This section represents the simulation experiment for gait an-
gle estimation.

4.1 Data Collection
Figure 4 shows a sketch of the measurement environment. A

human subject walks a distance of two and a half meter, which
is the diameter of the measurement scope of the RGB-D camera
shown in Fig. 3. The scope is smaller than the possible measure-
ment of the sensor so as to reliably track the skeletal data.

We collected data from 10 human subjects of ages ranging
from 21 to 23 years. One subject is female and the others are
male. Table 1 shows the distribution of the human subject’s
height with shoes. We taught each human subject to walk nat-
urally and to take the first step with the right foot. Moreover, we
taught them to walk a distance of 250 cm along a straight line.

The data collection was performed in accordance with the fol-
lowing procedure;
( 1 ) A subject stands at the start point and walks along a straight

line.
( 2 ) Gait process is recorded by Kinect Studio *1

( 3 ) After finishing all of the recording, the recorded data is
played and segmented manually into the walking interval.

( 4 ) Three-dimensional time series of each joint is obtained from
the segmented interval data by the measurement program de-
veloped with Kinect SDK.

The number of trials is 10 times for each angle. Finally, 500 gait
samples (= 5 angles × 10 subjects × 10 trials) are collected in
total.
4.1.1 The Threshold Setting

To estimate the gait angles by the proposed algorithm, it is im-
portant to decide the lower bound and the upper bound thresholds
for each gait angle (φg,Φg, g = 90, 135, 180, 225, 270). In this
experiment the two types of thresholds are employed, the min-
max thresholds based on the following equations:

φg = min{ Ψgi, i = 1, 2, · · · ,Ng s }, (11)

Φg = max{ Ψgi, i = 1, 2, · · · ,Ng s }, (12)

where g denotes a discrete gait angle index (g = 90, 135, 180,

Fig. 4 Sketch of data measurement environment.

Table 1 Subject’s height distribution.

Height Range (cm) Frequency
161 to 165 4
166 to 170 3
171 to 175 2
176 to 180 1

*1 Kinect Studio is a tool that helps you record and play back depth and
color streams from a Kinect.
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Table 2 Gait angle estimation result by min-max threshold (%).

Predicted
90 135 180 225 270 Others

90 87.1 0.0 0.0 0.0 0.0 12.9
135 0.0 84.9 0.0 0.0 0.0 15.1

True 180 0.0 0.0 82.1 0.0 0.0 17.9
225 0.0 0.0 0.0 89.2 0.0 10.8
270 0.0 0.0 0.0 0.0 88.3 11.7

Table 3 Gait angle estimation result by σ threshold (%).

Predicted
90 135 180 225 270 Others

90 70.1 0.0 0.0 0.0 0.0 29.9
135 0.0 63.9 0.0 0.0 0.0 36.1

True 180 0.0 0.0 68.3 0.0 0.0 31.7
225 0.0 0.0 0.0 72.7 0.0 27.3
270 0.0 0.0 0.0 0.0 67.1 32.9

Table 4 Gait angle estimation result by 2σ threshold (%).

Predicted
90 135 180 225 270 Others

90 94.4 0.0 0.0 0.0 0.0 5.6
135 0.0 95.3 0.0 0.0 0.0 4.7

True 180 0.0 0.0 92.8 0.0 0.0 7.2
225 0.0 0.0 0.0 90.1 0.0 9.9
270 0.0 0.0 0.0 0.2 92.8 7.0

225, 270), i denotes the data sample index, Ψgi denotes the i-th
cosine value computed from the training data samples of the gait
angle g and Ng s is the number of the training samples of the gait
angle g. Secondly the sigma thresholds based on the following
equations are used.

φg = Ψg − ωσg, (13)

Φg = Ψg + ωσg, (14)

where Ψg denotes the mean of Cg based on Ψg =
1

Ng s

∑Ng s

i=1 Ψ
g

i, σg denotes the standard deviation based on

σg =
√

1
Ng s

∑Ng s

i=1 (Ψgi − Ψg)2 and ω is the weight of σg. In this
experiment we set ω = 1, 2, 3, 4.
4.1.2 Estimation Accuracy Evaluation

The gait angle estimation accuracy has been evaluated by 10-
fold cross validation. We divided the 500 gait samples into 50
samples for training data and the other 450 samples for test data.
The 50 training samples include 10 samples per a gait, thus they
are composed of 10 samples/angle × 5 gait angles. The 450 test
samples are composed of 90 samples/angle × 5 gait angles. Esti-
mation accuracy for an angle is calculated by the following equa-
tion:

Accuracy(%) =
# o f Gaits Estimated Correctly

90 samples × 10 trials
× 100

(15)

4.1.3 Result
We compared with five thresholds, the Min-Max threshold and

the sigma thresholds (ω = 1, 2, 3, 4). From Table 2, Table 3, Ta-
ble 4, Table 5, and Table 6, we show the confusion matrices of
the gait angle estimation result for each threshold.

In Table 3 the worst accuracy is obtained by σ thresholds. The
average estimation accuracy is 68.4%. From this Table, we can
find that many gait angles are classified into Others class. This
means that σ is too narrow range as the threshold to estimate the

Table 5 Gait angle estimation result by 3σ threshold (%).

Predicted
90 135 180 225 270 Others

90 97.9 0.7 0.0 0.0 0.0 1.4
135 0.8 99.1 0.0 0.0 0.0 0.1

True 180 0.0 0.0 96.1 0.0 0.0 3.9
225 0.0 0.0 0.0 99.2 0.0 0.8
270 0.0 0.0 0.0 4.8 94.9 0.3

Table 6 Gait angle estimation result by 4σ threshold (%).

Predicted
90 135 180 225 270 Others

90 99.6 0.4 0.0 0.0 0.0 0.0
135 11.8 88.2 0.0 0.0 0.0 0.0

True 180 0.0 0.0 97.8 0.0 0.0 2.2
225 0.0 0.0 0.0 100.0 0.0 0.0
270 0.0 0.0 0.0 12.6 87.4 0.0

gait angles.
The best result is obtained by 3σ thresholds in Table 5. The

accuracy ranges from 94.9% to 99.1%. For all gait angles, almost
95% and more accuracy were achieved. The average estimation
accuracy of gait angles is 97.4%.

In the rest of the thresholds, the average estimation accuracies
are 86.3% (min-max threshold) in Table 2, 93.1% (2σ threshold)
in Table 4 and 94.6% (4σ threshold) in Table 6. In the results with
threshold values 2σ and 4σ, accuracy is over 90% in each case
and it seems to be good performance. However in 4σ thresholds,
we can find that many gait angles are misclassified to incorrect
gait angles. Thus 4σ is too wide as the threshold.

Finally we can find that the best threshold to estimate gait an-
gles is in the range between 2σ and 3σ. Also in this experiment,
we can obtain 97.4% as the best average of estimation accuracy
when the threshold is 3σ.

5. Experiment II: Gait Recognition

Gait recognition accuracy has been examined by the simula-
tion experiment using the collected gait data. Generally, human
recognition task is classified into verification tasks and identifica-
tion tasks. In this study, we treat the human identification task.
According to Vielhauer [24], the identification tasks are defined
as follows: “the classification will assign the biometric features

to one out of all classes of persons, registered with a particular

system”. Before gait recognition, the optimal feature vectors for
each gait angle are evaluated and selected.

5.1 Optimal Feature Selection for Gait Angles
In order to recognize the individual gait successfully, we se-

lect the optimal soft biometric features. As is mentioned before,
Fisher criterion for feature evaluation have been used. Figure 5 to
9 represent the Fisher criteria of the four soft biometric features
for each joint for different angles respectively. The horizontal
axes denote the joint IDs and the vertical axes denote the Fisher
criteria based on the Eq. (8). The height of each bar represents
the distinctiveness of features for each joint.

In Fig. 5 (for 90 degrees angle), β and δ are large values in
HIP LEFT and HIP RIGHT. It seems that there are many large
values in all of the features, α, β, γ and δ. Besides, the right
arm joints (IDs are 12-15) are relatively small values. The right
side of body is opposite side of the sensor device for this angle.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.3

Fig. 5 Fisher criterion for each joint (90 degrees).

Fig. 6 Fisher criterion for each joint (135 degrees).

Fig. 7 Fisher criterion for each joint (180 degrees).

Fig. 8 Fisher criterion for each joint (225 degrees).

This implies that the features related to the right arm have less
information to identify due to the occlusion.

In Fig. 6 (for angle of 135 degrees), the legs’ joints have large
values, but the other joints have small values. Also, β and γ indi-
cate large values, but α and δ is much smaller than them.

In Fig. 7 (for angle of 180 degrees), the legs’ and the trunk’s
joints have large values but the arms’ joints are relatively small.
α and δ is extremely small compared with β and γ. It seems that
there is no contribution of α and δ to identify the gait data for this
angle.

In Fig. 8 (for angle of 225 degrees), the legs’ joints have large
values but the other joints have smaller values. This tendency is

Fig. 9 Fisher criterion for each joint (270 degrees).

Table 7 Selected features and joint ID for each gait angle.

Features
Gait Angles

90 135 180 225 270
α 10, 11 17 — — 10, 19

β
4, 5, 6, 1, 2, 3, 1, 2, 3, 4, 8, 1, 2, 3, 4, 1, 2, 10,

7, 16, 17 4, 5, 17, 9, 10, 11, 15, 17, 18, 19 14, 15, 18,
18, 19 17, 18, 19 19

γ
1, 2, 4, 1, 2, 3, 4, 3, 4, 8, 10 1, 2, 3, 4, 5, 1, 2, 3,
16, 17, 5, 6, 16, 11, 12, 17 9, 11, 15, 16, 10, 13, 17,
18, 19 17, 18, 19 17, 18, 19 18, 19

δ 4, 10, 11, 16 — — — 10, 16

same as the one in 135 degrees. Also, it is suggested that α and δ
have no informative joints to identify the gait. This graph shows
that β and γ values can only be used to identify gait data in 225
degrees angle.

In Fig. 9 (for angle of 270 degrees), it seems that the four fea-
tures (α, β, γ and δ) have some informative joints respectively.
Also, the left arm joints (IDs are 5-8) are relatively small val-
ues compared with the other joints. In this angle the left side of
body is opposite side of the sensor device, so this has the same
tendency as the result for 90 degrees.

From the range of the vertical axes in all of the graphs, it can
be found that the more accurately the RGB-D camera captures the
front view gait, the larger the value of J becomes. Besides, in the
angles of 135, 180 and 225 degrees, it is suggested that the better
results are obtained by β or γ. On the other hand, in case of the
lateral view gait (when the front view gait cannot be captured), it
is necessary to use α and δ as well as β and γ.

Finally Table 7 shows the selected features and joints for each
gait angle. The numbers mean the selected joint IDs for each fea-
ture. We selected the top 19 features (M = 19) based on J so as
to be same as the size of a single feature vector dimension. For
example, in the 90 degrees, we selected 10th and 11th joints for
α, 4th, 5th, 6th, 7th, 16th and 17th joints for β, 1st, 2nd, 4th, 16th,
17th, 18th and 19th joints for γ, 4th, 10th, 11th and 16th joints for
δ. Then the selected feature vector F90 is represented as follows;

F90 := (α10, α11, β4, β5, β6, β7, β16, β17, γ1, γ2, γ4,

γ16, γ17, γ18, γ19, δ4, δ10, δ11, δ16).
(16)

Here this feature vector, we can find that the joints of the right
arm were not selected in the 90 degrees. So we can discard the
unstable and the low discriminant features by using this selection
strategy. Thus it is expected that a good recognition performance
is obtained by this feature vector.

5.2 Gait Recognition and Its Accuracy Evaluation
In this experiment, we employed linear discriminant analysis
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Table 8 Gait recognition accuracy (%).

Features
Gait Angles

Mean
90 135 180 225 270

α 72±17 82±15 89±10 73±18 83±15 79.8±6.4
β 86±13 96±7 98±4 96±7 86±13 92.4±5.3
γ 91±12 97±5 98±4 97±5 92±7 95.0±2.9
δ 64±24 71±18 96±5 83±16 85±11 79.8±11.2

Selected 97±5 89±10 88±16 93±8 93±8 92.0±3.2
Best 97±5 97±5 98±4 97±5 93±8 96.4±1.7

(LDA) methods as gait recognizers. Specifically, we use lda
function in MASS library in the statistical computing tool R [25].

As the gait recognition task, 10-fold cross validation was per-
formed for each gait angle. Data set is same as one used in the
previous section. As the number of data samples for a gait an-
gle is 100 (10 samples/subject × 10 human subjects), a valida-
tion trial is composed of 90 training samples and 10 test samples.
Each training and test samples contains 10 subjects data. Thus
the recognition accuracy for a human subject is computed by the
following equation;

Accuracy(%) =
# o f Gaits Recognized Correctly

10 trials
× 100.

(17)

Moreover, for comparison of feature vectors, five kinds of feature
sets, that is α of all joints, β of all joints, γ of all joints, δ of all
joints and selected features based on Table 7, are used.

5.3 Result
Table 8 shows gait recognition accuracy for each angle and

feature. We can find that the recognition accuracies of β and γ
outperform the ones of α and δ. In α and δ, the average accura-
cies do not reach 80% but the ones of β and γ are over 90%. It is
considered that this tendency reflects the result of feature evalua-
tion.

The best average is obtained as 95.0% by γ, the second high-
est average is obtained as 92.5% by β. However, β and γ, can
not yield high recognition accuracy for lateral gaits (90 and 270
degrees) compared with the other gait angles (135, 180 and 225
degrees). This means that it is difficult to obtain the good perfor-
mance result when the front view gait cannot be captured.

On the other hand, the selected feature set produce high perfor-
mance for the lateral gaits (90 and 270 degrees), while produce
poor results in other gait angles (135, 180 and 225 degrees). The
selected features in the lateral view gaits include more α and δ
than ones in other gaits. It is suggested that the use of α and δ
complements the information shortage caused by the occlusion
of the joints.

Consequently, we found that β and γ are useful features when
the front view gait could be captured. On the other hand, when
the lateral view gait can be captured, we found that α and δ were
required to complement the information shortage caused by the
occlusion of the joints.

Finally, in case of feature selection optimally for each gait an-
gle, the average of the best recognition accuracy reached 96.4%.

5.4 Summarization of Two Experimental Results
Table 9 shows the summarization of the best results of the gait

angle estimation and the gait recognition. In addition we com-

Table 9 Estimated two stage process accuracy (%).

Gait Angles
Mean

90 135 180 225 270
Angle Estimation 97.9 99.1 96.1 99.2 94.9 97.4
Gait Recognition 97.0 97.0 98.0 97.0 93.0 96.4

Two Stage Process 95.0 96.1 94.2 96.2 88.3 93.9

Table 10 Gait recognition accuracy without angle estimation (%).

α β γ δ Mean
Baseline 50.2 70.0 77.8 44.0 60.5

puted the estimated accuracy of two stage process which is to es-
timate the gait angle at the first stage and subsequently recognize
human gait. The estimated value is computed by multiplying each
best angle estimation accuracy and each best gait recognition ac-
curacy together. The best gait recognition result with two stage
process was estimated as 93.9% in average.

Table 10 shows the result of the baseline recognition method,
which is computed by LDA without the gait angle estimation.
In this computation, 10-fold cross validation was performed for
each feature vector. As the number of data samples is 500 (10
samples/subject × 10 subjects × 5 gait angles), a validation trial
is composed of 450 training samples (45 samples/subject × 10
subjects) and 50 test samples (5 samples/subject × 10 subjects).
We calculated the following gait recognition accuracy for a per-
son;

Accuracy(%) =
# o f Gaits Recognized Correctly

5 samples × 10 trials
× 100.

(18)

The average of recognition accuracy is 60.5%. We can find that
the accuracies of each feature are quite under-performed results,
compared with our proposed method. We have been able to
achieve the high performance of multi-angle gait recognition by
the two stage process.

5.5 Comparison to the Related Works
In this section, we compare the recognition accuracy of our

proposed method with the related works, which employ the gait
data based on RGB-D camera.

Chattopadhyay et al. [21] proposed a frontal gait recognition
method by using two RGB-D cameras. They consider the sce-
nario of airport security check and the RGB-D cameras are in-
stalled above the security gate. The extracted features are some
soft biometric measurements of human body, skeleton kinematic
features and Gait Energy Image (GEI) of back view. The exper-
iment was the identification task using the data set of 60 human
subjects. As the result, it is reported that the recognition accu-
racy is less than some 70%. Their method employs a lot of fea-
tures, but the recognition accuracy is lower than our proposed
method. The reasons are (1) the setting of the RGB-D camera
and (2) the number of human subjects. In their study, the gait
data is measured above the head of human. According to Mat-
sumoto et al. [26], it is reported that the measurement from the
horizontal angle position of the RGB-D camera outperforms the
measurement of the upper angle position on the verification accu-
racy because the measurement error tends to become large in the
upper position. In addition, they computed the recognition accu-
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racy based on 60 human subjects, which is more than the size of
our experiment. Actually soft biometric features lack distinctive-
ness and permanence, so the larger number of human is, the more
difficult the recognition task becomes. This result suggests it may
be difficult to identify over 50 individuals by using soft biometric
measurements of human body extracted from gait data.

Wei et al. [22] proposed a soft biometric authentication method
based on neural network. They estimated some physical measure-
ments such as the height and arm span from the frontal view gait
data measured by RGB-D camera. In their study, two verification
tasks are carried out for 10 human subjects data set, the experi-
ment I is based on 1 genuine person and 9 forgery, the experiment
II is based on 3 genuine persons and 7 forgery. As the result, it
is reported that FRR is 3.15% and FAR is 2.45% in the experi-
ment I, FRR is 8.69% and FAR is 10.41% in the experiment II.
In this experiment, the number of human subjects is same size as
our task, and gait data are measured from the horizontal direction,
which is almost same as our proposed method. In the recognition
accuracy, our proposed method outperforms their method, but it
is to be noted that the experiment task is different from our task.

6. Conclusions

In order to realize that the computer system can naturally iden-
tify the person, it is necessary to develop a recognition technology
of individuals and ADL on the basis of soft biometric traits ob-
tained by the depth camera devices, which have been established
as the next generation camera devices.

In this study, human gait as a soft biometric trait has been fo-
cused and a multi-angle gait recognition method based on skele-
tal tracking data measured by RGB-D camera has been proposed.
Our method has two stage process that estimates an optimal gait
angle view from the five discrete angles at the first stage and sub-
sequently recognizes human gait based on the specific features
for the respective gait angle views.

The two simulation experiments have been performed to evalu-
ate the proposed method. The first experiment was gait angle es-
timation. By using the proposed algorithm, the best estimation of
97.4% accuracy was achieved on average of five gait angles. The
second experiment was gait recognition. In this experiment, we
evaluated four soft biometric features to select the optimal one.
As the result of feature selection, we found that β and γ are useful
features when the front view gait could be captured. On the other
hand, when the front view gait cannot be captured, we found that
α and δ were required. The gait recognition has been performed
as 10-fold cross validation task. From the results of the experi-
ments with data from 10 human subjects, the best gait recognition
of 96.4% accuracy was achieved by Linear Discriminant Analy-
sis. The best gait recognition result with two stage process was
estimated as 93.9%. Consequently we have been able to achieve
the high performance of multi-angle gait recognition.

Soft biometric features lack distinctiveness and permanence, so
the larger number of human is, the more difficult the recognition
task becomes. From the results of the related works, we estimated
that it may be difficult to identify over 50 individuals by using soft
biometric measurements of human body extracted from gait data.
However we consider that our method can be applied to the iden-

tification task of a family member. Actually in such application,
we estimate the number of target is some 10 persons. In addition,
our proposed method can be integrated the conventional recogni-
tion technologies. Thus, we consider that it is possible to identify
over 50 individuals by combining our method and them.

In the near future, we would like to carry out other experiments
with a large amount of data. Especially we would like to apply
our proposed method to the human verification task to evaluate
false acceptance rate as well as false rejection rate.
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