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Abstract: Risk-aware data replication (RDR), which replicates data at primary sites to safe backup sites, has been
proposed to mitigate a service disruption in a disaster area even after a widespread disaster that damages a network
and a primary site. RDR assigns a safe backup site to a primary site while considering a damage risk for both the
primary site and the backup candidate site. When the backup candidate sites are widely distributed in an urban and
suburban area, RDR sometimes assigns a backup site too far from the primary site. However the backup site is desired
to be reachable from the primary site by physical transfer such as walking, bicycle, car, or drone in case that a severe
disaster damages network among the sites. Therefore, limiting the distance between the primary site and the backup
site is required. To approach this challenge, we propose two possible methods: the average distance limiting (ADL)
method and the maximum distance limiting (MDL) method. In this paper, we compare the distance distributions, the
data availability, and the computation time of two methods. Then, we conclude that the MDL method is the most
practicable from a comprehensive perspective.
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1. Introduction

Remote replication [1], [2], [3] is widely used to provide high
availability information services after geographically widespread
disasters. This feature replicates data on a primary site to a distant
backup site. The backup site takes over information services from
the primary site once a disaster occurs in the primary site area.
This is extremely common yet sophisticated technology. Never-
theless, severe and widespread disasters have shown that remote
replication is not sufficient because severe disasters can damage
information networks as well as information servers in the disas-
ter area. Therefore, people in the disaster area become isolated
from the backup site area via the wide area network including the
internet. Under such severe circumstances, it is difficult for exist-
ing technologies to sustain the information services in the disaster
area.

In fact, in the case of the East Japan Great Earthquake of 2011,
disaster victims in severely affected disaster areas were unable to
access the internet for a month or longer [4]. They were there-
fore unable to benefit from information services such as resident
registries and medical histories. The resident registries were nec-
essary to identify whether residents were safe or not. Medical
history information was necessary to sustain their health immedi-
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ately after a disaster.
A feasible idea to tackle this social problem is to replicate data

at a primary site to a nearby site. However the nearby site might
be damaged by a widespread disaster which damages the pri-
mary site. Additionally, creating several replicas at nearby sites
increases the cost of the storage system. Therefore, risk-aware
data replication (RDR), which replicates data to nearby safe sites
while considering the damage risk at both primary sites and
backup sites, has been proposed. If the data survives in the nearby
area, it will become accessible via either a local area network or
by transferring to/from the network-isolated backup site having
the surviving storage apparatus. In previous studies [5], [6], for-
mulation of the Integer Programming Problem (IPP) for RDR was
shown. Improved results of data availability were confirmed by
disaster simulations on a virtual urban-sized field.

Extending the field to an urban and suburban area raises an
issue that RDR sometimes assigns a backup site too far from
the primary site. This distance becomes a physical barrier that
prevents accessing the surviving storage apparatus on a network-
isolated backup site.

To approach this issue, we propose two possible methods: the
average distance limiting (ADL) method and the maximum dis-
tance limiting (MDL) method. The ADL method limits the av-
erage distance of primary-backup site pairs. The MDL method
limits the maximum distance of primary-backup site pairs. The
ADL method is expected to give a higher data availability at the
expense of computation time. The MDL method is expected to
give a fast solution at the risk of lower data availability. In this pa-
per, we compare these two methods from the perspectives of the
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distance distributions, the data availability, and the computation
time.

The remainder of this paper is organized as follows. We ex-
plain RDR and the issue to apply RDR to an urban and suburban
area in Section 2. In Section 3, two distance limiting methods:
the ADL method and the MDL method are proposed. Then con-
straints and a revised objective function of IPP for each method
are shown. In Section 4, simulation conditions are described. In
Section 5, we compare the distance distributions, the data avail-
ability, and the computation time of two proposed methods. We
present related work and conclusions in Sections 6 and 7, respec-
tively.

2. Risk-aware Data Replication and Issues

2.1 Overview of Risk-aware Data Replication
Risk-aware data replication (RDR) replicates data at a primary

site to a nearby safe site while considering the damage risks for
both the primary site and the backup site. Figure 1 shows a con-
ceptual diagram of RDR. Four sites exist in the urban and subur-
ban area, each with an information server. The information server
at site S1 in the urban area operates an information service. The
three candidate backup sites are sites S2 in the urban area, S3,
and S4 in the suburban area. We assume that these areas will be
damaged by an earthquake in the near future. Because the low-
est risk site for the earthquake damaging site S1 is site S3, the
data at site S1 should be replicated to site S3. It is easy to decide
the backup site in this case because the number of sites is few.
Moreover, only one primary site exists.

2.2 Use Cases of Risk-aware Data Replication
RDR can be applied to not only an earthquake but also a wide

variety of natural disasters and artificial disasters if the damage
risks can be estimated with a reasonable accuracy. The natural
disasters include a tsunami, a flood, a typhoon, a cyclone, a hurri-
cane, a landslide by a heavy rain, an explosion of a volcano, and
so on. The artificial disasters include a meltdown of a nuclear re-
actor, a massive blackout, a synchronized terrorist attack, a war,
and so on.

Target data to be protected by RDR is urgently required data
after the disasters including resident registries and medical histo-

Fig. 1 Conceptual diagram of risk-aware data replication feature.

ries. Therefore, target facilities as sites of RDR are city offices,
pharmacies, hospitals, emergency evacuation centers, and so on.
As for pharmacies, the number of sites is more than 500 in Sendai
city and more than 1,100 in Miyagi prefecture.

2.3 Mathematical Model of Risk-aware Data Replication
When the number of primary and backup sites extends beyond

the hundreds it becomes difficult to decide the pairs of primary-
backup sites manually. We can use the Integer Programing Prob-
lem (IPP), which is a mathematical optimization problem for site-
pairing of RDR to massively multiple sites. The IPP consists of
an objective function and constraints, including integer variables.

A formulation of the IPP is presented below. Figure 2 shows
an example of the relation between the variables describing each
site when the number of sites is 4. The relevant variables are the
risk indicator P, the unused capacity F, and the used capacity D

with an index to distinguish each site. Their detailed definitions
are presented in the following subsections.
1) Objective Function

An objective function is described as

f (x12, · · · , xn(n−1)) =
n∑

i=1,i� j

n∑

j=1

DiPi jxi j, (1)

where xi j ∈ {0, 1} shows whether site j has a replica of site i or
not. Di denotes the used capacity, i.e., the amount of primary
data at site i, which does not include the amount of replication
data from other sites. Pi j denotes the risk indicator representing
the probability of damage to both site i and site j, and n is the
total number of sites. This definition of the objective function
Eq. (1) denotes the total amount of data expected to be damaged
for a combination of variables xi j when the number of replicas of
each site is one. Therefore, by minimizing the objective function
Eq. (1), we can obtain the highest availability solution against tar-
get disasters.
2) Constraints

RDR uses two constraints: a redundancy constraint and a stor-
age capacity constraint.

The redundancy constraint is used to regulate the number of
replicas to be created by a primary site in a replication process.
This constraint is necessary because without it every site tries to

Fig. 2 Relation among sites in the case of 4 sites.
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create as many replicas as possible. Consequently, the redun-
dancy constraint is set to bound the maximum value of data re-
dundancy. It is described as

n∑

j=1

xi j = Ri,∀i, (2)

where Ri, which denotes the number of replicas of site i, is given
by the administrator of each site. We use Ri = 1 for the following
discussion.

The storage capacity constraint is used to regulate the number
of replicas that a backup site receives in a replication process.
This constraint is necessary because every site has a finite stor-
age capacity. Consequently, the storage capacity constraint is set
to bound the maximum value of storage capacity consumed by
replicas. It is described as

n∑

i=1

Dixi j ≤ Fj,∀ j, (3)

where Fj denotes the unused capacity, i.e., the storage capacity of
site j. It is given by the administrator of each site.

2.4 Issues in Applying Risk-aware Data Replication to an
Urban and Suburban Area

If the backup site decided by IPP is located in the outer subur-
ban area like Fig. 1, it becomes difficult for citizens living in the
urban area to access the information desired by them because se-
vere disasters can damage information networks as described in
Section 1. Under such circumstances, they have to go to the far
backup site physically to access the information.

Therefore, when the field to apply RDR is extended to the sub-
urban area in addition to the urban area, it becomes difficult for
them to access the information.

3. Distance Limiting Methods

In this section, we present overview of distance limiting meth-
ods and its usage cases. Then, we propose the average dis-
tance limiting (ADL) method and the maximum distance limiting
(MDL) method to approach the issues described in the previous
section.

3.1 Overview of Distance Limiting Methods
To address the issues, it is a feasible idea to limit the distance

between primary site and backup site. There are two approaches:
One is to limit the average distance, the other is to limit the max-
imum distance. The detail of each approach is described in the
following subsections.

Figure 3 shows the usage cases of the distance limiting meth-
ods. Once a disaster damaging a primary site occurs, citizens
living near the primary site can go to the backup site by walk-
ing, bicycle, or car. Moreover, staff who are responsible for an
information service can deliver storage devices such as HDDs,
flash media, or magnetic tapes at the backup site to the primary
substitution site by walking, bicycle, car, or drone.

The appropriate value of distance limitation depends on the
means of mobility or delivery.

Fig. 3 Usage cases of distance limiting methods.

3.2 Average Distance Limiting Method
The ADL method limits the average distance of primary-

backup site pairs. This can be expressed in an additional con-
straint of IPP. It is described as

n∑

i=1,i� j

n∑

j=1

di jxi j ≤ n · da, (4)

where di j denotes the moving distance between site i and site j, da

denotes the upper limit of the average distance of primary-backup
site pairs.

The ADL method is expected to give a solution with the av-
erage distance close to da. Therefore, this method will give a
higher data availability. However this method may consume a
lot of computation time because the constraint is related to all
of the variables. The number of variables for this method (na)
does not change from the original objective function Eq. (1) and
na = n(n − 1). Then, the number of all combinations is 2na .
Therefore, the order of computation time is basically exponential.
However, as the Branch-and-Bound method [7] described later in
detail can cut a branch of a cluster of combinations without com-
putation for each evaluation, the dominant of computation time
often becomes Linear Programming Problem (LPP). Moreover,
the computation order of double simplex algorithms for LPP is
known as O(na

4). Although the class of this problem is nonde-
terministic polynomial (NP), the order of computation time is
O(na

4) when some algorithms work well. As these discussions
are also influenced by the symmetry and the distribution of the
coefficient of the objective function, a generalized discussion is
by no means easy.

From the perspective of a practice, it may be difficult to apply
this method to the carrier having the hard limit of the cruising
distance such as the drone.

3.3 Maximum Distance Limiting Method
The MDL method limits the maximum distance of primary-

backup site pairs. There are two forms to express this method.
The first form is expressed in additional constraints of IPP. It

is described as

di jxi j ≤ dm,∀i, j, (5)
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where dm denotes the maximum distance of primary-backup site
pairs.

The second form is expressed in the revised objective function.
It is described as

f ′(x12, · · · , xn(n−1)) =
∑

(i, j)∈S
DiPi jxi j, (6)

where S denotes the set of (i, j) elements which satisfy the equa-
tion di j ≤ dm.

The MDL method, especially expressed by the second form, is
expected to give a solution in short computation time. Because
the revised objective function Eq. (6) reduces the number of vari-
ables from the original objective function Eq. (1). In the same
way in the previous subsection, the order of computation time of
this method is O((na−ne)4) where ne denotes the number of elim-
inable variables. The value of ne increases with a decrease in dm.
On the other hand, this method may give lower data availability
than the ADL method when the same value is given to da and dm.

4. Simulation Setup

We present details of simulation to be used for the evaluation
in the next section.

4.1 Simulation Procedure
To evaluate data availability, we use an RDR simulator com-

prising four program modules as depicted in Fig. 4: a field cre-
ator, a risk calculator, a pair creator, and a disaster injector.

The field creator simulates sites in an area such as flat ground,
a slope, a mountain, or the sea, and outputs field information and
site information. Field information includes the geological for-
mations of the ground at specified coordinates of the computa-
tional mesh. The site information includes the site locations, their
usage, and the free storage capacity.

The risk calculator calculates the risk indicator Pi j for all pairs
of sites with risk hints. The method of calculating the risk indica-
tors is described in the next subsection.

The pair creator seeks combinations of safe pairs of primary-
backup sites. It formulates and solves the IPP using constraint
information and a specified algorithm. The constraint informa-
tion includes data redundancy. The algorithm to solve IPP can
be selected from the Branch-and-Bound (BB) method [7] or the
Greedy method [8]. The BB method is a well-known general-
purpose algorithm that is guaranteed to seek the optimal combi-
nation. The Greedy method is also a well-known general-purpose
algorithm that does not guarantee an optimal combination. How-
ever, the computation time of the Greedy method is much shorter
than that of the BB method. The pair creator invokes lp solve 5.5,
a well-known IPP solver command line interface, with no options,

Fig. 4 RDR simulator.

for the BB method. For the Greedy method the pair creator uses
our own subroutines. The output is a list of the primary-backup
site-pairs.

The disaster injector generates a disaster and damages some
sites according to the input disaster properties. Each site is deter-
mined to be either safe or damaged based on the damage proba-
bility described in the next subsection.

Finally, the amount of surviving unique data after the simu-
lated disaster is calculated to compare data availability. It is cal-
culated by subtracting the amount of lost unique data from the
total amount of unique data. The amount of lost unique data is
calculated by a summation of the amount of unique data at each
primary site when both the primary site and its backup site are
damaged by the simulated disaster.

4.2 Risk Indicator and Disaster Model
We use earthquakes in the simulation. Because earthquakes are

one of general disasters and it is relatively easy to create a model
with previous studies. This should be a good first step to apply
to other types of disasters. In this subsection, we present a risk
indicator and a disaster model for an earthquake.
4.2.1 Risk Indicator for an Earthquake

According to a physical model of earthauakes [9], the earth-
quake strength is calculated from the earthquake magnitude, the
depth of its hypocenter, and the distance between its hypocen-
ter and the site. However, nobody can predict the hypocenter or
magnitude of a coming earthquke accurately. For this reason, it
is difficult to use this information as a risk indicator for now. To
overcome this difficulty, we consider the following two perspec-
tives.

The first perspective is the applied physical model. Regardless
of above, we know that the area damaged by an earthquake has
geographical locality, which means that the risk indicator of a site
i and another site j far from site i might be low. Therefore, we
apply the site distance between the two sites instead of the dis-
tance between its hypocenter and the site to the original equation
of the earthquake strength. According to the original equation,
the earthquake strength decreases with an increasing distance in
proportion to the negative value of logarithm of the distance.

The second perspective is the ease of use. It must be easy to
use in the simulation if the risk indicator has characteristics of a
probability. The probability of data loss should be positive and
converge to 1 with an increasing earthquake strength. Therefore,
it is a possible idea to use sigmoid function for the risk indicator.

Consequently, with consideration for above two perspectives,
we describe risk indicator for an earthquake as

Pi j(d
′
i j) = ζ(a(− log10 d′i j − b)), (7)

where d′i j denotes the direct distance between site i and site j.
Actually, a, b are design parameters that are used to tune the
curve Pi j. These design parameters are calculated using linear
interpolation with two pairs of (d′i j, Pi j) as a risk hint in the input
variable space of the sigmoid function ζ.

As this model is very basic, the differences of the ground
strength and the building strength for each site are not consid-
ered. Therefore, this model is insufficient for covering the region
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of abnormal seismic intencity. Further improvement of the accu-
racy of the risk indicator is a subject for future work. One idea is
to apply the predicted probability value in the hazard map to the
risk indicator.
4.2.2 Disaster Model for an Earthquake

The disaster model for an earthquake calculates the probability
of damage at each site. It is used to decide whether each site will
survive or be damaged based on stochastic simulations described
in the following section. The damage probability Q for each site
is

Q = ζ(α(T − β)), (8)

where T denotes the earthquake strength at each site and is calcu-
lated from the earthquake magnitude, the depth of its hypocenter,
and the distance between its hypocenter and the site. α is the
“slope,” a parameter to tune the increasing rate of Q, and β is des-
ignated as a “central value,” a parameter to tune the strength T .
Additional information is presented in Refs. [5], [6]. The physical
model of the earthquake strength is also based on Ref. [9].

4.3 Simulation Conditions
The RDR simulator conditions are described in this subsection.
First, we set the input information for the field creator as shown

next. The field size is 60 km × 60 km and the field height is 10 m.
The sites are located randomly in the field. We set the number
of sites in the field to several values from 20 to 2,000 shown in
Table 1. This is because we assume the use of massively mul-
tiple and small-sized facilities such as pharmacies described in
Section 2.2. We prepare 10 random patterns of sites location with
respect to each of the number of sites. Each site has one datum
to back up, and is capable of receiving one datum for backing up
other sites. This setting is equivalent to each site having one stor-
age volume to back up, and having one storage volume to store
the backup data of other sites. Note that the replication sites are
allocated not in this phase but in the pair creator phase. There-
fore, the replication sites themselves are not randomly allocated.
To apply the proposed methods to large-sized facilities such as
data centers, we should set more complex conditions such that
each site does not have equal but varying amounts of used and
unused capacity. Then, the relations of replication sites of such
facilities may be like scale-free network. This remains as a sub-
ject for future work.

Secondly, we set the input information for the risk calculator
as shown next. We set the risk hints (d′i j, Pi j) = (5, 0.2), (20, 0.1)
to determine the design parameters a, b for an earthquake. This
represents a situation in which a strong earthquake damages 20%
of the sites at a distance of 5 km and 10% of the sites at a distance
of 20 km. The combination of these values is selected from four
combination candidates of risk hints because it fitted well to the

Table 1 Simulation parameters.

result of an injected virtual disaster.
Thirdly, we set the input information for the pair creator as

shown next. We use the two algorithms described in Section 4.1:
the BB method and the Greedy method. We set the number of
replicas for each site to one. We set the limiting distance as the
value shown in Table 1. We use the same value of the limiting
distance to da and dm in this paper.

Fourth, we set the input information for the disaster injector as
shown next. We set a magnitude eight earthquake with a different
hypocenter. The X-Y location of hypocenter is randomly decided
in the field and the depth (Z) of hypocenter is fixed to 50 km. The
simulation is executed 500 times while changing the X-Y loca-
tion of hypocenter. We adjust and set parameters such as α, β for
the earthquake to damage about 40% of the total number of sites
on average.

We use a server with a processor (Intel Xeon E5502, 1.87 GHz,
2 cores, 1 chip) and 6 GB RAM for RDR simulation.

5. Evaluation

In this section, we evaluate the proposed method from the per-
spectives of the distance distribution of sites, the data availability,
and the computation time for site pairing.

In the evaluation, we compare four combinations of methods:
(1) the ADL method and the BB method, (2) the MDL method
and the BB method, (3) the ADL method and the Greedy method,
(4) the MDL method and the Greedy method. We call the four
combinations in the following as the ADL-BB method, the MDL-
BB method, the ADL-G method, the MDL-G method, respec-
tively.

5.1 Distance Distribution of Sites
As described in Section 4, primary-backup site pairs are gen-

erated by the pair creator when the number of sites, the sites lo-
cation, and the limiting distance are fixed. Then, the site pairs
are commonly used in 500 times simulation of the disaster injec-
tor. Figure 5 shows the distance distribution of sites based on the
site pairs with the conditions that the number of site is 200 and
the limiting distance is 20 km. The vertical axis is log scale and
presents the percentage of sites in the range. We discuss the result
with the above conditions as the other results have similar charac-
teristics. The ADL-BB method has a narrow distribution around
20 km. The MDL-BB method also has a narrow distribution less
than 20 km. These two methods are expected to achieve the high
data availability because almost all distance of primary-backup
site pairs are close to 20 km which is the limiting distance.

The MDL-G method has a similar shape with the MDL-BB
method except that it has a long tail to small distance. As re-
ported in the previous papers [5], [6], the Greedy method some-
times gives inappropriate site pairs. In the same manner as the
Greedy method, the MDL-G method tries to select site pairs with
a long distance as much as possible. However, as the maximum
distance is limited, it does not consume good backup site candi-
dates for the next primary site unlike the Greedy method. For
this reason, the MDL method may suppress the weak point of the
Greedy method especially when the maximum distance is short.
Therefore, the MDL-G method is also expected to achieve high
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Fig. 5 Distance distribution of sites (200 sites, distance limitation: 20 km).

data availability in some cases.
On the other hand, the ADL-G method has a very wide dis-

tribution. Moreover, the ADL-G method could not match the
backup sites for most of the primary sites because the Greedy
method selects primary-backup site pairs with a very long dis-
tance in the early phase and the selection makes the average of
the distance quite large. Therefore the ADL-G method is not ex-
pected to achieve high data availability.

5.2 Data Availability
Figure 6 shows the average data availability of best cases as a

function of the number of sites. Each marker presents the average
available data ratio of the method achieving the best in four meth-
ods. From 20 sites to 200 sites, the ADL-BB method achieves the
best average data availability. From 400 sites to 2,000 sites, the
MDL-BB method achieves the best of the average data availabil-
ity. The average data availability becomes lower as a decreasing
distance limitation.

From the perspective of the data availability, the ADL-BB
method must be the most preferable method. Unfortunately, we
have no result of the ADL-BB method from 400 sites to 2,000
sites because of long computation time for site pairing. However
it is expected that there is no great difference of the data avail-
ability between the ADL-BB method from 20 sites to 200 sites
and the ADL-BB method from 400 sites to 2,000 sites as the data
availability stays almost unchanged against the number of sites.

Figure 7 shows the relative data availability from the data
availability of the best method shown in Fig. 6 with the limiting
distance of 5 km and 30 km. The relative results from 10 km to
25 km are not shown in this paper to save pages as those have
similar characteristics. The MDL-BB method and the MDL-G
method approach the ADL-BB method as the number of sites in-
creases. When the number of sites is 200, the difference of the
data availability between the ADL-BB method and the MDL-BB
method is smaller than 0.5 point. Additionally, the difference of
the data availability between the ADL-BB method and the MDL-
G method is around 1 point. Therefore, the MDL-BB method and
the MDL-G method are acceptable methods when the number of
sites is greater than 100 in this condition. By contrast, there is no
good point in the ADL-G method from the perspective of the data
availability.

Fig. 6 Average data availability of the method achieving the best in four
methods.

Fig. 7 Relative data availability from the best method.

As to MDL-G method, the difference of the data availability
between the MDL-G method and the MDL-BB method which
gives an optimal solution is smaller than 0.5 point under 5 km dis-
tance limitation. Under 30 km distance limitation, the difference
is around 1 point. As described in the previous subsection, these
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Fig. 8 Average number of variables of objective function.

Fig. 9 Computation time of 200 sites pairing for each method as a function
of distance limitation.

results show the MDL method suppresses well the weak point
of the Greedy method especially when the maximum distance is
short.

5.3 Computation Time for Site Pairing
Figure 8 shows the average number of variables of objective

function as a function of the distance limitation. The vertical axis
is log scale. Each line has [method, num] symbol. The “method”
shows the type of distance limiting methods and the “num” shows
the number of sites. For example, [MDL, 20] means the MDL
method and 20 sites.

The number of variables of the MDL method is smaller than the
ADL method and becomes smaller as a decreasing distance lim-
itation. In contrast, the number of variables of the ADL method
does not change against the value of distance limitation. There-
fore, it is expected that computation time of the MDL method is
smaller than the ADL method especially for the short distance
limitation.

Figure 9 shows the computation time of 200 sites pairing for
each method as a function of distance limitation. The vertical
axis is log scale. The computation time of the MDL-BB method,
the ADL-G method, and the MDL-G method are smaller than the
ADL-BB method by over 3 orders of magnitude. The computa-
tion time of the MDL-BB method and the MDL-G method slowly
grows with the increasing distance limitation. This is because the
number of variables increases with a greater distance limitation
as shown in Fig. 8. The computation time of the ADL-G method
slowly increases with the decreasing distance limitation. This is
because the ADL-G method becomes hard to find backup sites to
stay within the constraints with the decreasing distance limitation.

Fig. 10 Computation time of sites pairing for each method as a function of
the number of sites.

Figure 10 shows the computation time of site paring for each
method as a function of the number of sites when the limiting
distance is 5 km and 30 km. The results from 10 km to 25 km are
not shown in this paper due to the same reasons. Both axes are
log scale. The computation time of the ADL-BB method rapidly
grows with the increasing number of sites. As the computation
time is beyond a few hour or a week in some cases, it is hard to
apply the ADL-BB method to more than a few hundreds sites.
The computation time of the other methods also grows with the
increasing number of sites although those are not so rapid. It is
possible to apply those methods to less than a few thousand sites.

From the comprehensive perspectives, the MDL-BB method
is the most practicable especially for more than a few hundreds
sites. The MDL-G method is also practicable if a small degrada-
tion of the data availability is acceptable. The ADL-BB method
is practicable only for less than a few hundreds sites.

6. Related Work

This section presents related work in terms of highly available
information systems and fast algorithms to solve IPP. First, re-
lated work on highly available information systems is described.

Dynamo [10] distributes data over a set of nodes (i.e., storage
hosts) based on a consistent hashing technique [11]. The Dynamo
system determines replication targets using a “ring” created by
the output range of a circular hash function. Each node is as-
signed a random value within the ring space, and replicates data
to its successors. Dynamo distributes data fundamentally in a ran-
dom manner because it partitions the hash range randomly when
adding a new node to the system. It ignores the node’s safety

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

against widespread disasters. Therefore, Dynamo requires high
data redundancy if we hope for high availability in times of such
disasters.

Cassandra [12] also distributes data over a set of nodes based
on a consistent hashing technique. Additionally, it provides var-
ious replication policies such as “Rack Aware” and “Datacenter
Aware”. By activating these policies, the Cassandra system repli-
cates data to different racks or different datacenters from the node
storing the primary data. These policies enable the system to
avoid failures related to a power outage, cooling failures, network
failures, or natural disasters. Cassandra considers only whether
the replication target is installed in the same rack or the same dat-
acenter as the primary node, and never considers the node’s safety
against a widespread disaster. Therefore, Cassandra also requires
high data redundancy if one hopes for high availability in times
of such disasters.

Additionally, some distributed file systems such as Gluster
FS [13], Ceph [14], and XtreemFS [15] have geo-replication fea-
tures. These features are mainly designed for a small number of
data centers and backup sites that are distant from primary sites.
XtreemFS can select several replication policies including data
center grouping. The data center grouping policy chooses multi-
ple data centers that are closest to the client for storing replicas
without consideration of the disaster risk.

Some research works have produced a disaster-resilient infor-
mation system [16], [17]. Such works specifically examine the
content placement of primary data, rather than backup data. Nu-
merical evaluation specifically examines attacks by weapons of
mass destruction (WMD). In their evaluation, the number of sites
is small. Therefore, no proposal of original fast algorithms exists
to solve IPP in the papers.

Secondly, related work of fast algorithms to solve IPP is de-
scribed. No heuristic algorithm has been proposed for the IPP
form in this paper, although the form is similar to the exist-
ing Multiple Knapsack Problem [18]. Therefore, three general-
purpose algorithms for IPP are presented: the Branch-and-Bound
method (BB method) [7], the Dynamic Programming method (DP
method) [19], and the Divide and Conquer (D&C) algorithm [20].

The BB method is fundamentally an enumeration method, but
it avoids searching useless branches without solution optimality
by limiting the search range using an upper bound and lower
bound of the solution of the relaxation problem.

The DP method creates partial problems from an original prob-
lem, then solves and temporarily stores the solutions of the par-
tial problems, and finally solves the original problem using the
stored solutions. As a conceptual method, it must be specialized
to each target problem. A specialized algorithm is the Bellman–
Ford method [21], which solves the shortest path problem, an-
other form of IPP.

The D&C algorithm also breaks a problem into sub-problems.
It is recognized as a key component of the DP method. The dif-
ference from the DP method is that all sub-problems are inde-
pendent. Therefore D&C algorithm doesn’t reuse the result of
sub-problems. It is possible to apply the D&C algorithm to the
problem in this paper, although it loses optimality. Moreover,
dividing the area into the sub-area in response to each distance

limitation is a complex task.

7. Conclusions

We propose distance limiting methods to be able to access ur-
gently required data in the backup site from the damaged area
around the primary site by physically transfer for risk-aware data
replication (RDR). We present two possible methods: the aver-
age distance limiting (ADL) method and the maximum distance
limiting (MDL) method. The ADL method limits the average dis-
tance of primary-backup site pairs. The MDL method limits the
maximum distance of primary-backup site pairs. We evaluated its
distance distribution, data availability and computation time by
using RDR simulator. The results show that the combination of
the MDL method and the Branch-and-Bound (MDL-BB) method
is the most practicable from the perspectives of the data avail-
ability and the computation time especially for more than a few
hundreds sites. In addition, the combination of the ADL method
and the BB (ADL-BB) method is also practicable only for less
than a few hundreds sites. We conclude that both methods can
be used as the requirements such as the number of sites and the
desired data availability.
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