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Abstract: In this paper, we introduce a new extension for bounded-SVD, i.e., a matrix factorization (MF) method
with bound constraints for recommender system. In bounded-SVD, the bound constraints are included in the objective
function so that not only the estimation errors are minimized but the constraints are also taken into account during the
optimization process. Our previous results on major real-world recommender system datasets showed that bounded-
SVD outperformed an existing MF method with bound constraints, BMF, and it is also faster and simpler to implement
than BMF. However, an issue of bounded-SVD is that it does not take into account the bias effects in given data.
In order to overcome this issue, we propose an extension of bounded-SVD: bounded-SVD bias. Bounded-SVD bias
takes into account the rating biases of users and items – known to reside in recommender system data. The experiment
results show that the bias extension can improve the performance of bounded-SVD in most cases.
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1. Introduction

Matrix factorization (MF) [1] is one of the state-of-the-art col-
laborative filtering approaches to recommender systems. In MF,
the collected data are formed as a sparse evaluation matrix whose
rows and columns correspond to the users and the items, respec-
tively, with each element representing the evaluation (e.g., rating
value) of an item of interest made by the corresponding user. In
order to recommend unseen items that the users prefer, we need
a way to estimate the unknown evaluations of the items. To solve
that problem, in MF, the evaluation matrix is estimated as the
product of two smaller size matrices, i.e., the user feature matrix
and the item feature matrix where the number of latent features is
decided in advance. Once these feature matrices are learned, their
product can give us the estimations of the unknown evaluations
in the original evaluation matrix. MF has been proven to have
high prediction performance in many domains of recommender
systems while not requiring much additional information about
users and items [1].

Many MF based methods have been proposed for recom-
mender system problems over the last decade. In those methods,
the main task is to train the user feature matrix and the item fea-
ture matrix in order to minimize the estimation errors on the set
of known evaluation values. Different methods use different con-
straints and optimization techniques for training the feature ma-
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trices. For example, the SGD method proposed by Funk [2] uses
stochastic gradient descent technique for optimization and a con-
straint which biases the search to the feature matrices with small
element values. Bias-SVD [3] and SVD++ [3] (SVD – Singular
Value Decomposition) proposed by Koren extend MF with base-
line estimation and implicit evaluations, and use gradient descent
to learn the feature matrices. Another well-known MF approach
is non-negative matrix factorization (NMF) [4] that tries to learn
the feature matrices with non-negative elements.

In many recommender system problems, the evaluation values
are typically bounded within a range of possible values (e.g., one
to five in a five stars rating system). For the estimated evaluations
that are out of the range, the methods proposed so far often just
simply truncate them to a value within the range. Recently, a new
MF method, called Bounded Matrix Factorization (BMF), which
takes into account the bound constraints on the evaluation values,
was proposed by R. Kannan et al. [5]. In the BMF method, the
bounds of the evaluation values are used as a constraint for opti-
mizing the latent feature matrices so that the estimated evaluation
values are guaranteed to not go out of the range. As reported by
R. Kannan et al., BMF outperforms many state-of-the-art algo-
rithms for recommender systems on major real-world datasets.

However, in the BMF method, in order to guarantee that the
estimated evaluation values are bounded within the range, the
method has to strictly control the value of each element of the fea-
ture matrices. More specifically, for optimizing each element, the
method has to compute the lower bound and the upper bound vec-
tors and only updates the element if the new value is bounded by
the two bound vectors. This process makes BMF take very long
time to finish an iteration, and in many cases, it wastes compu-
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tational time because the new value for the element does not sat-
isfy the bound constraints. In order to solve that problem, in our
previous work [6], we introduced a new MF method with bound
constraints called bounded-SVD. In this method, the bound con-
straints are included in the objective function of the problem, so
by minimizing the objective function, the method both minimizes
the estimation errors and biases the search to the parameter values
that satisfy the bound constraints. In addition to having less com-
putational complexity than BMF, bounded-SVD outperformed it
according to our previous results on the same datasets used in
Kannan et al. [5].

Although bounded-SVD showed promising results on the
benchmark datasets compared with BMF, there is still room for
improvement. Given an unknown evaluation value, bounded-
SVD estimates it only by calculating the product of the corre-
sponding user and item feature vectors. However, it has been
shown that in many recommender systems, there are some users
who tend to give higher (or lower) evaluation than the average
users, and there are also some items that tend to receive higher
(or lower) than the average items. Those effects are called user
and items biases [1]. The effects of user and item biases were
first introduced by Paterek in Ref. [7] and were successfully ap-
plied in later works by Koren to improve the performance of MF
based models (Refs. [3], [8]). Therefore, in this paper, we intro-
duce an extension of bounded-SVD, namely, bounded-SVD bias
that takes into account the user and item biases. The experiment
results on major benchmark datasets show that adding biases can
improve the performance of bounded-SVD in most cases.

2. Notations

In the following sections, we use the notations shown in Ta-
ble 1 for describing the proposed methods.

3. Methodology

In this section, we give an explanation about our previ-
ously proposed method, bounded-SVD, and its new extension,
bounded-SVD bias.

3.1 Bounded-SVD
For self-containment, we briefly describe bounded-SVD here.

In this method, the task is to minimize the estimation errors on
the known evaluation values subject to the constraint that the es-
timated evaluation values are bounded between the minimal and
the maximal evaluation values. Therefore, the problem can be
written as

min
P,Q

∑
rui∈Sr

(rui − pT
u qi)

2

subject to rmin ≤ pT
u qi ≤ rmax

In typical MF methods, in order to avoid overfitting in the
training process, a regularization term is often added to the ob-
jective function. The most widely used regularization term so
far is Frobenius norm [1], whose effect is to penalize the feature
matrices with large element values (a sign of overfitting). How-
ever, to fulfill the bound constraints, we used a new regularization
term that penalizes the feature matrices which produce out-of-

Table 1 Notations.

Fig. 1 The value of the regularization term R when rmin = 1, rmax = 5.

bounds estimations. Equation (1) shows the objective function of
bounded-SVD with the new regularization term.

E =
∑

rui∈Sr

(
rui − pT

u qi

)2
+
(
e(pT

u qi−rmax) + e(rmin−pT
u qi)
)

(1)

In Eq. (1), the value of the regularization term

R = e(pT
u qi−rmax) + e(rmin−pT

u qi)

will be very small if the estimation value of rui, i.e., r̂ui = pT
u qi, is

inside the range [rmin, rmax]. However, when pT
u qi goes out of the

range, the value of R increases very quickly. Figure 1 visualizes
those effects when rmin and rmax are set to 1 and 5, respectively.

In order to minimize the objective function in Eq. (1), we used
a stochastic gradient descent algorithm to optimize the elements
of the feature matrices. More specifically, for each known eval-
uation rui ∈ Sr, the corresponding feature vectors pT

u , qi were
updated by
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pu = pu + ηqi[eui − H] (2)

qi = qi + ηpu[eui − H] (3)

where
• η is the learning rate
• eui = rui − r̂ui = rui − pT

u qi

• H = e(pT
u qi−rmax) − e(rmin−pT

u qi)

The above process is iterated until the stop criterion (discussed
later in the experiments section) is met. Compared with BMF,
the time complexity of bounded-SVD in each iteration is much
lower, i.e., O(K × |Sr |) for bounded-SVD vs O(K × N × M) for
BMF.

3.2 Bounded-SVD bias
In bounded-SVD bias, the evaluation values are estimated not

only by the product of the feature matrices but also by taking into
account the user and item biases. Equation (4) shows the objec-
tive function of bounded-SVD bias.

E =
∑

rui∈Sr

(
rui − r̄ − bu − bi − pT

u qi

)2
+
(
e(r̄+bu+bi+pT

u qi−rmax) + e(rmin−r̄−bu−bi−pT
u qi)
)

(4)

In Eq. (4), r̄ is the average of the known evaluation values while
bu and bi are the biases of user u and item i, respectively, that will
be learned during the training process. As shown in the objective
function, each estimated evaluation value is calculated not only
by the combination of the corresponding user and item feature
vectors but also by taking into account the user and item biases:

r̂ui = r̄ + bu + bi + pT
u qi (5)

To minimize the objective function, we also use the stochastic
gradient descent algorithm as in the bounded-SVD method. That
is, for each known evaluation rui ∈ Sr, the corresponding feature
vectors pT

u , qi and the bias terms bu, bi were updated by:

pu = pu + ηqi[eui − H] (6)

qi = qi + ηpu[eui − H] (7)

bu = bu + η[eui − H] (8)

bi = bi + η[eui − H] (9)

where
• η is the learning rate
• eui = rui − r̂ui = rui − r̄ − bu − bi − pT

u qi

• H = e(r̂ui−rmax) − e(rmin−r̂ui)

Similar to bounded-SVD, the training process is iterated until
the stop criterion is met.

4. Implementation

We implemented bounded-SVD and its extension in C++
based on a C++ implementation of GraphChi [11] – an open
source disk-based framework for graph computation. GraphChi
can run very fast on large-scale recommender system datasets
with millions of ratings while not requiring much computational
resources.

Table 2 Datasets information.

5. Experiments

5.1 Experiment Settings
In order to compare the performance of bounded-SVD and its

extension with the existing method BMF, we followed the same
experiment framework used in Ref. [5]. The datasets we used
for the experiments are Jester [10], MovieLens 10M [11], Online
dating [12] and Book crossing [13]. Table 2 shows the character-
istics of each dataset. The density value measures the sparseness
of each dataset, i.e., the lower density value, the higher sparseness
of the dataset. The values for the number of latent features (K)
used in the experiments were 10, 20 and 50. Given a dataset, for
each setting of K, we prepared 5 experiment data groups. Each
experiment data group contains a training set, a validation set and
a test set whose data were mutually exclusive and randomly cho-
sen from the whole dataset. We followed the experiment setting
reported in Ref. [5] for choosing the proportion of the training,
validation and test set with 85%, 5% and 10%, respectively. All
methods were run on the same prepared experiment data groups.

The final result for each setting of K was the average root mean
square error (RMSE) on the test sets of the corresponding 5 runs.
The RMSEs were computed without truncating the estimated rat-
ings as shown in Eq. (10). In this formula, Tr is the set of known
ratings of a validation/test set and n(Tr) is the number of known
ratings in Tr.√∑

rui∈Tr

(
rui − r̂ui

)2
n(Tr)

(10)

In each experiment run, we decided to stop updating the feature
matrices once the RMSE on the validation set starts increasing or
decreases with too minor amount, i.e., lower than 1e-5.

5.2 Parameters Initialization
In MF methods, a reasonable initialization of the feature ma-

trices is very important for the algorithm to converge to a good
solution and there is no exception for our methods. Therefore,
in the experiments, we tried with a random and a baseline ini-
tialization method that were proposed in Ref. [5]. Below are the
descriptions of the two initialization methods.
5.2.1 Random Initialization

The random initialization method initializes the feature matri-
ces P, Q such that PQ ∈ [rmin, rmax]. The steps for random ini-
tialization are as follow:

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

– Step 1: Initialize P, Q as nonnegative random matrices.
– Step 2: Calculate maxElement that is the maximum value of

the elements of PQ without the first column of P and the
first row of Q.

– Step 3: Set α =
√

rmax−1
maxElement

– Step 4: Modify P and Q by

P = αP

Q = αQ

– Step 5: Set the first column of P and the first row of Q to 1’s.
In bounded-SVD bias, the estimation formula takes into ac-

count the average of known evaluations and the bias terms, so
the random initialization procedure for bounded-SVD bias was
a bit different. Actually, the variable α in Step 3 was set to√

rmax−r̄−1
maxElement , and the bias terms were initialized by zeroes.

5.2.2 Baseline Initialization
The idea of baseline initialization is based on the baseline esti-

mator that was presented in Ref. [3]. In the baseline estimator, a
missing evaluation rui is estimated by the following formula:

r̂ui = r̄ + bu + bi

In this formula, r̄ is the average of the known evaluations, and
bu, bi are the bias of user u and item i respectively. In order to
make similar estimations with the baseline estimator, in baseline
initialization, the feature matrices P and Q are initialized by

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
r̄

K − 2
· · · r̄

K − 2
g1 1

...
...

...
...

r̄
K − 2

· · · r̄
K − 2

gN 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 3 The performance of bounded-SVD and bounded-SVD bias compared with BMF.

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 · · · 1
...
...

...

1 1 · · · 1
h1 h2 · · · hM

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Namely, for matrix P, the first (K − 2) columns are set to r̄

K−2 ,
the (K − 1)th column contains the estimated biases of the users,
i.e., {gu|u ∈ [1,N]}, and the elements of the last column are set to
1’s. For matrix Q, the first (K − 1) rows are set to 1’s, and the last
row contains the estimated biases of the items, i.e., {hi|i ∈ [1,M]}.
By that way, given a missing evaluation rui, its initialized estima-
tion is r̂ui = r̄ + gu + hi.

For bounded-SVD bias, similar to random initialization, we
also needed to modify the procedure of baseline initialization.
More specifically, the first (K − 2) columns of matrix P were set
to zeroes, and the bias terms were initialized by zeroes.

5.3 Tuning the Learning Rate
In this section, we discuss how to choose the values for the

learning rate η. In our experiments, the four benchmark datasets
differed in the number of users, items and ratings as well as the
rating range. Therefore, for each dataset, an appropriate learning
rate was needed to allow the algorithm to converge. In order to
find an appropriate learning rate for each dataset, we used the grid
search method with the set of candidate values for the learning
rate being {0.0001, 0.0005, 0.001, 0.005, 0.01}. For each com-
bination of dataset, method, number of latent feature and experi-
ment run, the learning rate value that gave the best performance
on the validation sets (lowest RMSE) was chosen as the most
appropriate learning rate, and the corresponding trained feature
matrices were used to calculate the RMSE on the test sets. In
each experiment run, in order to make the algorithm converge,
the learning rate slightly decayed by 0.95 after each iteration.
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Table 4 The performance of bounded-SVD and bounded-SVD bias with statistical test results.

5.4 Experiment results
Table 3 shows the average RMSEs of bounded-SVD and its

extension on the benchmark datasets compared with the original
BMF method, the lower RMSE the better. The bold numbers are
the best RMSE for the corresponding initialization method. We
followed the same experiment settings reported in Ref. [5] so the
results of BMF were re-used for comparison.

We also conducted statistical tests in order to see how signif-
icant the difference between bounded-SVD and bounded-SVD
bias is, given the same initialization method. We performed one-
sided Wilcoxon signed-rank tests with 20 experiment data groups
(5 groups used so far plus 15 additionally generated ones) for
each setting of dataset and K. Table 4 shows the average per-
formance of each method and the significance of each test (* for
p-value < 0.05 and ** for p-value < 0.01).

First, from Table 3, we can see that bounded-SVD and
bounded-SVD bias outperformed BMF given the same number
of latent features and the same initialization method in all bench-
mark datasets.

Second, the experiment results reported in Table 3 and the sta-
tistical test results reported in Table 4 show that given the same
initialization method, the performance of bounded-SVD bias was
better than bounded-SVD in most cases. More specifically, with
random initialization, bounded-SVD bias outperformed bounded-
SVD with statistical significance in all benchmark datasets with
the same number of latent features except for the Jester dataset
with K = 10 and 20. In the case of baseline initialization, the per-
formance of bounded-SVD bias was better than bounded-SVD
for the Jester, MovieLens 10M and Online dating datasets in all
but one case, including five cases with statistical significance, but
for the Book-Crossing dataset, bounded-SVD was better with sta-
tistical significance.

Third, for the original BMF method, it was clear that given the
same number of latent features, the baseline initialization method

always gave better performance than the random initialization
method. However, that was not the case for bounded-SVD and
bounded-SVD bias.

6. Discussions

As we have reported in Section 5.4, bounded-SVD and
bounded-SVD bias outperform BMF in all benchmark datasets.
One explanation for this is the difference in how the bound con-
strains are taken into account during the training process. In
BMF, the bound constrains are used as hard constraints and are
required to be satisfied at any time during the training process.
More specifically, BMF will not update a parameter if the bound
constraints are not satisfied, even if the update would make the er-
rors smaller. Therefore, BMF can be stuck and make no progress
when there is no new update that can satisfy the bound con-
straints. However, in bounded-SVD and its extension, the bound
constraints are used as soft constraints, so it is acceptable for an
update to be executed even if it slightly breaks the bound con-
straints but would make significant performance improvement.
Therefore, the training processes of bounded-SVD and its exten-
sion are more flexible than BMF and they can find the parameters
that contribute to better results.

The difference in the way the bound constraints are utilized can
also explain the second result reported in Section 5.4. That is, in
BMF, the hard bound constraints have narrowed the search space
and therefore, the performance of BMF depends more on the ini-
tialization method compared to bounded-SVD and bounded-SVD
bias.

Compared to bounded-SVD, bounded-SVD bias could deal
with the bias effects in the data and give better performance as
we expected, with statistical significance in all but two cases for
random initialization, However, for baseline initialization, there
were four cases in which bounded-SVD was better with statistical
significance. This might be due to some specific characteristics
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of the dataset, and we would like to find out more about them in
future.

7. Conclusions

In this paper, we extended our previous method, i.e., bounded-
SVD, by taking into account the user and item biases in recom-
mender system data. The experiment results on major bench-
mark datasets showed that the extended method, i.e., bounded-
SVD bias, gives better performance than bounded-SVD in most
cases, and that both bounded-SVD and bounded-SVD bias out-
perform the existing BMF method. In addition, we discussed why
bounded-SVD and its extension give better results than BMF,
and how the initialization method affects the performance of each
method.

The current version of bounded-SVD and its extension only
use the known evaluations for training and have not utilized the
context information like users’ age, item category, etc. Recently,
context-aware recommender systems have become increasingly
popular, and it has been shown that the use of context informa-
tion can significantly improve the performance of recommender
system. Therefore, in future work, we would like to improve our
methods by utilizing the context information. In addition, we
also would like to come up with an automatic way for tuning the
learning rate in order to further improve the performance.
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