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Abstract: Task parallelism on large-scale distributed memory environments is still a challenging problem. The fo-
cuses of our work are flexibility of task model and scalability of inter-node load balancing. General task models
provide functionalities for suspending and resuming tasks at any program point, and such a model enables us flexi-
ble task scheduling to achieve higher processor utilization, locality-aware task placement, etc. To realize such a task
model, we have to employ a thread—an execution context containing register values and stack frames—as a represen-
tation of a task, and implement thread migration for inter-node load balancing. However, an existing thread migration
scheme, iso-address, has a scalability limitation: it requires virtual memory proportional to the number of processors
in each node. In large-scale distributed memory environments, this results in a huge virtual memory usage beyond
the virtual address space limit of current 64 bit CPUs. Furthermore, this huge virtual memory consumption makes it
impossible to implement one-sided work stealing with Remote Direct Memory Access (RDMA) operations. One-sided
work stealing is a popular approach to achieving high efficiency of load balancing; therefore this also limits scalability
of distributed memory task parallelism. In prior work, we propose uni-address, a new thread migration scheme which
significantly reduces virtual memory usage for thread stacks and enables RDMA-based work stealing, and implements
a lightweight multithread library supporting RDMA-based work stealing on top of Fujitsu FX10 system. In this paper,
we port the library to an x86-64 Infiniband cluster with GASNet communication library. We develop one-sided and
non one-sided implementations of inter-node work stealing, and evaluate the performance and efficiency of the work
stealing implementations.

Keywords: task parallelism, lightweight multithreading, thread migration, inter-node work stealing, remote direct
memory access, Infiniband

1. Introduction

Dynamic, hierarchical, and fine-grain parallelism are increas-
ingly believed to play a key role in programming extreme scale
systems, to achieve load balancing, to hide latency, to combat
against performance variability, and to enhance programmability.
Systems supporting such parallelism, which we collectively call
task-parallel systems, have been widely adopted in shared mem-
ory machines [1], [2], [3], [4], [5], [6]. On large-scale distributed
memory environments, research efforts are under way but we are
yet to see a widely used implementation, as there are many in-
tricate issues associated with the lack of shared memory and the
scale of such machines. They include how to implement dynamic
task migration without shared memory, what happens on point-
ers upon migration, how to scale dynamic load balancing to ex-
tremely large systems, etc.

Previous research efforts take a variety of forms; some sys-
tems support task parallelism on distributed machines, but do
not support global load balancing [7], [8]; many implement a re-
strictive “bag of tasks” or “atomic tasks” model as a target (see
Section 2). There are a few systems general enough to express
fork-join parallelism, but to the best of our knowledge, all assume
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tasks are tied to a specific processor, which may lower processor
utilization. In addition, most systems supporting fork-join par-
allelism are built with a significant source or bytecode process-
ing [9], [10], which renders them difficult to reuse across multi-
ple languages. The situation contrasts with shared memory ma-
chines, where we have task-parallel libraries [3], [4], [5], which
can be used from most C/C++ programs compiled with ordinary
C/C++ compilers.

The main goal of the present work is to narrow this gap, by
implementing a library satisfying the following.
• It supports general lightweight threading primitives (creat-

ing a thread and joining a thread) on large-scale distributed
memory environments.

• In particular, it supports general migration of native threads
across nodes, written in ordinary C/C++ programs.

• It does not require a special source code processing or a new
code generator; the user program can be compiled with ordi-
nary C/C++ compilers.

The main issue is how to migrate native threads, whose stack
may contain ambiguous pointers. In our prior work [11], we
proposed a new implementation scheme, uni-address, which
overcomes a scalability limitation of a previously proposed iso-

address [12] scheme. We implemented a multithread library, uni-

address threads, providing inter-node work stealing on Fujitsu
FX10 system [13] and tested its scalability up to 3,840 cores. The
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prior work presented the following contributions:
• We proposed a new native thread migration scheme, called

uni-address, which significantly reduces the usage of virtual
address space.

• Based on this technique, we designed and implemented
a work stealing scheduler with one-sided task stealing,
which can take advantage of Remote Direct Memory Access
(RDMA).

The goal of this work is to evaluate the efficiency of the uni-
address scheme on an x86-64 Infiniband cluster and investigate
the performance impact of one-sided work stealing by RDMA
features. In particular, existing works [1], [14], [15], [16] men-
tioned that one-sided work stealing achieves better scalability of
load balancing; however, it has not been demonstrated especially
with a focus on the “one-sided” feature on large-scale distributed
memory environments.

Novel contributions of this paper are as follows:
• We port uni-address threads to an x86-64 Infiniband clus-

ter. The implementation is done on top of a state-of-the-
art communication library, GASNet [17]. In order to im-
plement RDMA-based work stealing, we have to manip-
ulate a task queue on a remote processor with RDMA
READ/WRITE/fetch-and-add operations. Infiniband net-
work provides all of the operations, but GASNet does not
provide RDMA fetch-and-add, and only provides RDMA
READ/WRITE and Active Messages [18] (AM). There-
fore, we have to emulate RDMA fetch-and-add in software.
We develop two remote fetch-and-add implementation—
RDMA-emulated implementation and AM-based imple-
mentation. The implementation details are described in Sec-
tion 6.

• We evaluate the virtual memory usage and the performance
of uni-address threads on 1,800 processing cores of an x86-
64 Infiniband cluster in three benchmark programs: Binary
Task Creation, Unbalanced Tree Search, and NQueens. We
confirmed all the benchmarks works with less than 136 KB
virtual memory for work stealing of native threads in each
processor, and achieved more than 98% parallel efficiency
of load balancing on 1,800 processing cores, relative to the
results on 225 processing cores.

• We compare the performance of the RDMA-emulated and
the AM-based implementation in order to evaluate the per-
formance impact of RDMA-based work stealing. In the
comparison, we confirmed that message handling arising
from the use of active messaging degrades the scalability of
work stealing.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. In Section 3, we describe the task model
assumed in this paper. Section 4 presents the iso-address thread
migration scheme and its scalability limitations. In Section 5, we
describe the uni-address scheme and present the implementation
of RDMA-based work stealing and inter-task synchronization on
top of it. In Section 6, we describe the communication layer
for implementing uni-address threads on an Infiniband cluster.
Section 7 shows an experimental evaluation of the uni-address
scheme, and Section 8 concludes this paper.

2. Related Work

To position the present work in context, this section gives a
taxonomy of task-parallel systems on distributed memory envi-
ronments. By task-parallel systems, we broadly mean systems
that support creation of tasks at runtime and their dynamic load
balancing. The implementation strategies and complexities are
heavily affected by synchronization patterns supported by the sys-
tem.

2.1 Bag of Tasks
Some systems such as Scioto [15], [19] and X10/GLB [20]

only support independent “bag of tasks”; tasks neither synchro-
nize nor communicate with other tasks. Note that X10 sup-
ports async-finish primitives, but native X10 tasks do not migrate
across nodes (places); X10/GLB is a system built on top of X10
for global load-balancing. The bag of tasks is particularly simple
to implement; it suffices to represent a task with a data struc-
ture (e.g., a function pointer + arguments to the function) and
exchange the task structure among nodes to achieve load balanc-
ing. The bag of tasks is clearly very restrictive and cannot express
many important divide-and-conquer algorithms naturally.

2.2 Atomic Tasks
Some other systems support dependencies (synchronizations)

among tasks but assume a task is “atomic,” in the sense that a
task never blocks and always runs until completion once it gets
started [9], [21]. We say such systems support “atomic tasks”
model in the rest of the discussion.

Atomic tasks admit an implementation strategy similar to that
for the bag of tasks, with the only difference being that it has to
keep track of the status (ready to execute or not) of each task.
From the programmability standpoint, this model forces a cum-
bersome programming style in which a logically sequential flow
of computation needs to be “split” at each synchronization point
and data used by the continuation of a synchronization must be
manually packaged as a data structure. Arguably, atomic tasks are
not for human programmers and can only be useful as a compiler
target.

2.3 Fork-join and More General Models
Then there are systems that support a natural expression

of fork-join parallelism or more general synchronization pat-
terns. Examples are abundant on shared memory environ-
ments (Cilk [1], OpenMP tasks [2], TBB [3], MassiveThreads [4],
Qthreads [5], Java fork-join [6]), but scarce on distributed mem-
ory environments; notable exceptions are Satin [10], Tascell [22],
HotSLAW [23], and Grappa [24]. A task can create any number
of child tasks and then call a “wait” function that waits for its
outstanding children to finish. The calling task suspends until its
children finish and then continues; the programmer does not have
to package variables used after the synchronization. Figure 1
contrasts the Fibonacci function in atomic tasks and fork-join.

Implementation of fork-join is more involved than atomic
tasks, as it is now the system’s responsibility to package the vari-
ables used by the continuation of a synchronization. Load bal-
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Fig. 1 Fibonacci in atomic tasks model (left [9]); and in fork-join model (right [1]).

ancing entails passing the representation of the migrating task’s
continuation between workers. In procedural programming lan-
guages such as C, a task’s continuation is essentially its stack of
activation frames.

2.4 Implementing Fork-join with Tied Tasks
To avoid the complication that stems from such “continua-

tion passing” between workers, many of the systems mentioned
above, including Satin, HotSLAW, and Grappa, avoid migrating
tasks already started; when a task is created, a task is put in a task
pool; only before it gets started can it be stolen by other workers.
In other words, once a task gets started by a worker, it is “tied”
to the worker. This scheme allows an implementation strategy
similar to atomic tasks, as a yet-to-be-started task can be simply
represented by a function pointer + its arguments, similarly to the
atomic tasks. On the other hand, it can lose some opportunities
for load migration and thus potentially lower processor utiliza-
tion.

Despite its potential performance problem, this scheme seems
popular as it can be readily implemented by ordinary procedure
calls and returns [3], [6], [10], [23]; when a worker encounters a
synchronization point, it repeats executing a task in its local task
pool or stealing one from others, until all tasks it waits for finish.
Either way it is just an indirect procedure call. The technique,
which seems first described in Ref. [25], is particularly attractive
when implemented in high-level languages, e.g., Java, that do not
support non-local jumps.

2.5 “Genuine” Task Migration
This paper focuses on an efficient implementation scheme sup-

porting “genuine” task migration, in the sense that a task can
migrate even after it is started. Specifically, we implement a
work stealing scheduling algorithm (child-first execution order
upon task creation + FIFO stealing) first proposed by Mohr et
al. in Ref. [26] and adopted in Cilk [1] and other systems [4], [5],
which are possible only when a task’s continuation can migrate
at each task creation and each synchronization point. This partic-
ular scheduling policy is important both in theory and in practice.
In theory, an established time bound of the work stealing sched-
uler [27] applies only when any task, started or not, can be stolen
by any idle worker. A bound on extra cache misses [28] applies
only when each worker preserves the serial order of execution
except when a task steal happens. In practice, the work stealing
scheduler is important because it tends to migrate coarse-grain

tasks and its execution order tends to minimally deviate from the
sequential execution, making it easy to reason about tasking over-
head and data locality.

In shared memory environments, migrating a task in the mid-
dle of its execution can be done simply by passing the address of
the stack, as both workers share the same address space [1], [4].
In distributed memory environments, it entails copying the stack
frames of the task. Since address spaces are not shared by work-
ers, pointers from/to the stack further complicate the issue. A
scheme proposed in the literature, iso-address, as well as our
proposed scheme, uni-address, are further elaborated in Sec-
tion 4 and 5. There are two systems using iso-address thread
migration—Adaptive MPI [29] and Charm++ [30]. Adaptive
MPI uses iso-address to migrate MPI processes for dynamic load
balancing on distributed memory environments, and Charm++
uses iso-address to support migratable threads as threaded entry
methods for concurrent objects.

2.6 Distributed-memory Implementation of Work Stealing
When implementing work stealing in distributed memory en-

vironments, we have to manipulate a task queue on a remote node
and steal a task from an entry in the queue. In commodity clus-
ters, work stealing is implemented on top of a underlying message
passing mechanism such as TCP/IP sockets and MPI [10], [31].
On the other hand, in HPC clusters built with dedicated inter-
connects such as Infiniband, we can implement one-sided work
stealing with Remote Direct Memory Access (RDMA) features
provided by such a interconnect.

To the best of our knowledge, Olivier et al. [14] and Dinan et
al. [19] are the first implementations of work stealing on top of
RDMA features. In Olivier et al. [14], mutual exclusion of a task
queue is performed with the shared memory abstraction of Uni-
fied Parallel C (i.e., it implements a shared memory mutual ex-
clusion algorithm), but the work stealing implementation is not
one-sided; the work stealing implementation requires the victim’s
assistance to reduce the locking cost at local task queue opera-
tions. On the other hand, Dinan et al. [19] implements one-sided
work stealing with RDMA READ/WRITE and locks provided by
ARMCI [32]. Here, ARMCI locks implement a simplified ver-
sion of the bakery algorithm [33] with a communication server
approach; i.e., a lock operation sends a lock request to a commu-
nication thread corresponding to the ARMCI process which owns
the lock object, and then the communication thread locally per-
forms a lock operation. Therefore, the ARMCI lock operation is
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one-sided; it does not interrupt the remote processor.
In large-scale distributed memory environments, scalability of

work stealing heavily relies on the mutual exclusion of a task
queue. Dinan et al. [15] compared mutual exclusion implemen-
tations based on ARMCI locks and spinlocks for work stealing.
Here, the spinlock is implemented with the ARMCI atomic swap
operation. As a result, this work achieves good scalability with
spinlocks.

Prior work [11] implements mutual execution of work steal-
ing in a similar approach to Ref. [15]. The implementation uses
the THE protocol [1], a state-of-the-art mutual exclusion proto-
col for work stealing on shared memory environments, with one-
sided remote memory access operations such as RDMA READ-
/WRITE and remote fetch-and-add. Because the implementation
is built on a Fujitsu FX10 system and the system does not pro-
vide RDMA fetch-and-add, the implementation emulates RDMA
fetch-and-add in a communication server approach; the imple-
mentation assigns a processor within a node to handle remote
fetch-and-add requests.

Our work ports the work stealing implementation from FX10
system to an Infiniband cluster with both one-sided approach
(RDMA-emulated) and non one-sided approach (AM-based).
Furthermore, our work demonstrates the performance impact of
one-sided work stealing in large-scale distributed memory envi-
ronments by comparing the load balancing performance of our
two work stealing implementations.

3. Task-parallel Model

In this section, we describe a task-parallel model that we as-
sume in this paper. In our model, a task is a unit of parallelism.
A program starts with a main task, and there is no parallelism at
this program point. In order to utilize the parallelism of compu-
tational resources, a programmer has to spawn new tasks. Our
model provides fork-join primitives for creating a task and wait-
ing for the completion of a task, shown in Fig. 2.

Each task has its own call stack. This stack memory is man-
aged according to underlying C calling convention so that a task
can use C programming language features such as local variable
accesses and function calls.

In our task model, tasks are automatically load-balanced. The
runtime system automatically detects load imbalance, and then
migrates tasks among processors across shared memory nodes.
Therefore, programmers can write programs in a processor-
oblivious manner; they do not have to be concerned about pro-
cessor and node boundaries.

In order to support automatic load balancing among computa-
tional nodes, tasks should be isolated. A call stack is task-local
and unable to be shared among tasks, and a task must not access
the call stack of another task by passing C pointers. In order to
share data among tasks, programmers can use task arguments and
global memory features provided existing global address space
frameworks such as partitioned global address space systems and
distributed shared memory systems.

Our task model permits the runtime system to migrate a task
between processors at migration points. A migration point is de-
fined as a program point where a task may switch to another task.

Fig. 2 Fork-join task API.

They include points where a task creates a new task and points
where a task waits for the completion of another task.

4. Iso-Address

This section reviews iso-address, which inspires our work
most. As noted in Section 2, migrating a task already started
involves copying the currently active stack frames of the task—
representation of variables used in the rest of the task. Simply
copying the stack frames does not complete the job, however, as
there are pointers from/to stack, which might need to be “fixed”
when a stack moves across address spaces and changes its ad-
dress.

One way to solve this problem is to implement a compiler that
leaves enough information about stack frame and data layout, so
that the runtime system knows which slots of a stack frame or
which fields of a structure might contain pointers that need to be
fixed. This approach is good for type-safe languages but is very
difficult if not impossible to apply to languages with ambiguous
pointers such as C and C++.

Iso-address [12] is a scheme that makes fixing pointers unnec-
essary, by ensuring stacks are copied into exactly the same ad-
dress in the new address space. Intra-stack pointers (pointers
from within the migrating stack to inside it) just continue to be
valid after migration. Pointers to heap objects outside the migra-
tion stack (heap objects) are also copied to the same address in
the new address space; they are allocated by a special memory al-
location routine pm2 isomalloc so that the system knows where
they are. In Ref. [12], it is assumed that pointers to such heap ob-
jects are not passed between threads and there are no inter-stack
pointers.

The main advantage of the iso-address scheme is that it just
works with languages with ambiguous pointers and their ordi-
nary compilers unaware of migration. Also, as the simple bit-
wise copy suffices to copy a stack, migration is efficient.

Bringing this technique to a large-scale environment has sev-
eral problems, however.
( 1 ) Iso-address requires the address of each live stack to be glob-

ally unique in the entire system, and each node to reserve
these addresses. This results in consuming a huge virtual

address space.
In parallel divide-and-conquer algorithms, typical use cases
of task-parallel systems, the number of simultaneously live
tasks is roughly the maximum depth of the task tree × the
number of hardware concurrency (workers) [27]; thus, with
the concurrency of the largest machines already surpassing
three million [34], and expected to only increase, allocating
a few hundred kilobytes per stack has a risk of running out a
virtual address space.
As a point of reference, assume we have 4 million (222) hard-
ware concurrency, the depth of the task tree is ten thousand
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or 213, a number that happens in an unbalanced tree search
benchmark, and the size of a stack for each task is a mod-
est 16 KB (214) *1; the total virtual address space that needs
to be reserved for tasks is 222+13+14 = 249, which surpasses
the virtual address space size the current x86-64 processors
support (248).

( 2 ) While allocating a virtual address does not immediately
translate into consuming a physical memory, address usage
in iso-address may still result in significant growth in phys-
ical memory usage. Operating systems generally allocate a
physical page for a logical page when it is touched for the
first time. Microscopically, when a node steals a task and
hosts the incoming stack to its designated address, it may be
the first touch on this page by that node.
More quantitatively, the growth is determined by how many
nodes, on average, will ever touch each logical page in the
reserved area. When a particular page is reused by r dis-
tinct tasks in the lifetime of the application and each task
migrates m times on average, tasks allocated on that page
experience mr migrations in total; thus, roughly (1 + mr)
physical pages will be committed for that page in the entire
system. Note that we expect r to be small (� 1), yet for
long running applications, whose r is proportionally large,
the overall growth may be significant.
Also, note that it will also increase the number of page faults
due to on-demand paging. Note that the scheme relies on on-
demand paging in an essential way; it is obviously not pos-
sible to populate (pre-fault) the pages. In a SPARC64IXfx
processor, a page fault takes 21 K cycles on average, so this
may degrade work stealing performance considerably.

( 3 ) Iso-address has another issue that it practically prohibits
us taking advantage of the now common hardware support
of Remote Direct Memory Access (RDMA), or one-sided
communication, for copying a stack upon migration. With
RDMA, a node can trigger a data transfer without involving
the host CPU on the target node. One-sided task stealing
is a common practice in shared memory machines [1], and
has been proved important in distributed memory environ-
ments [15].
The problem is that, RDMA generally requires the region
accessed by a remote node to be pinned to the physical mem-
ory, but we obviously do not have the luxury of pinning the
entire region reserved for stacks. We might consider a more
sophisticated strategy that pins (only) the migrating stack on
demand, but it would hinder the original benefit of RDMA—
stealing a task without involving the victim.

( 4 ) Less imminent but potentially an important issue is that, the
luxury use of virtual address space may conflict with other

*1 This estimation (16 KB) practically assumes each task has its dedicated
linear stack, so as to be compatible with ordinary C compilers. Alterna-
tively, the ordinary procedure calls may obtain frames from a general free
list shared by many tasks (heap frames, split stack, cactus stack, etc.), in
which case the initial stack size per each task can be made minimum (just
a single frame, in an extreme case). One might expect task stacks not to
grow to their limits at the same time, in which case the maximum virtual
address range that must be reserved can be reduced accordingly. Yet, as
we want to impose a minimum allocation size (e.g., 4 KB) to keep the
overhead of frame allocation low, the overall conclusion is similar.

techniques relying on sparsely populating a huge linear ad-
dress range.

5. Uni-address Scheme

5.1 The Basic Idea
In order to address the problem of iso-address, which is reserv-

ing a huge virtual address space for stacks, we propose a uni-
address scheme and RDMA-based work stealing on top of it. In
order to simplify the exposition, we first describe its basic idea
without performance considerations.

Recall that the iso-address scheme maintains the validity of
intra-stack pointers by copying a stack into the same address upon
migration. The key idea behind the uni-address scheme is that, in
order to maintain the validity of intra-stack pointers, all we need
to guarantee is to map the stack on the designated address when

the task is actually running. Stacks of not running tasks can be
put at an arbitrary address; we put them into a reserved, RDMA-
accessible region to make them available for task stealing.

A crucial assumption is that there are no pointers pointing to a
stack from outside (i.e., there are neither inter-stack pointers nor
heap-to-stack pointers). Were there such pointers, it is unsafe to
relocate stacks even when the task is not running. Iso-address
also makes the assumption.

For stack-to-heap pointers, we are separately working on a
global address space library supporting explicit global references
and assume objects potentially referenced by multiple threads are
always referenced by a global pointer. To dereference a global
pointer, a function must be called, which can trigger data trans-
fer if necessary. We currently do not support thread-private heaps
that can be referenced by ordinary C pointers, but it is possible
to add a mechanism similar to pm2 isomalloc. Further details
about the memory model of our system are beyond the scope of
the paper and will be addressed in a separate paper.

To summarize, in its simplest and crudest form, the uni-address
scheme works as follows.
( 1 ) It creates a separate address space for each worker (a hard-

ware concurrency such as a CPU core and a hardware
thread).

( 2 ) It reserves a region of virtual addresses accommodating a
single stack. This region is the stack for running a task, al-
ways used to run a task. We call this region the uni-address

region.

( 3 ) It reserves a region of virtual addresses accommodating
stacks for not running tasks and pins them to the physical
memory. Their addresses do not matter, as long as they can
be reached from other nodes by RDMA. We call the region
RDMA region.

( 4 ) Whenever a task switches, the previously running task is
swapped out from the uni-address region to the RDMA re-
gion and the next task is brought into the uni-address region.

Unlike iso-address, which never changes the stack addresses
even if the task is not running, we do not have to reserve a sparsely
used huge virtual address range; we only have to reserve a region
large enough to accommodate the number of tasks simultaneously

live in a single address space.

Note that we have a separate address space for each worker so
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Fig. 3 Multiple threads on uni-address region.

that all workers can allocate the uni-address region at the same
virtual address. In practice, it means we need to create a pro-
cess per core. This is to guarantee that, at any moment of exe-
cution, any ready task can be run by any idle worker. In order
to reduce the number of processes, we might alternatively have
multiple workers and uni-address regions in each address space.
In this case, a task allocated to a particular uni-address region can
migrate to uni-address regions of the same address (of a differ-
ent address space); in unlucky cases, there may be many unfilled
regions and many ready yet not running tasks, due to their un-
matching addresses. This may lower processor utilization. Fur-
ther elaborating and quantifying the impact of this approach is our
future work. The present paper explores only the basic, process-
per-core approach.

5.2 An Optimized Scheme
This crude scheme just mentioned is simple but obviously in-

efficient, as it incurs two stack copies upon every context switch.
Especially in the child-first work stealing scheduler, which im-
mediately switches to the new child upon every task creation, it
will be very inefficient.

To address this issue, we developed a better stack management
technique.

The key observation is that, we do not have to allocate all stacks
on the same address. The real requirement is each task, when ex-
ecuted, always occupies the same address as the address allocated
to it upon creation. At least conceptually, a new stack can be al-
located at any address in the uni-address region, as long as we
ensure that the area the new stack may grow into is empty. More
specifically, our memory management works as follows (Fig. 3):
( 1 ) Assume the address range of the uni-address region is [S , E).
( 2 ) Each address space manages a pointer p in the uni-address

region (i.e., S ≤ p < E) pointing to the next free address,
much like the stack pointer of sequential languages. Assum-
ing a stack grows downwards, we have addresses ∈ [p, E)
are used, and addresses ∈ [S , p) are free.

( 3 ) When a new task is created, its stack is allocated just below
p, much like allocating a new frame from a linear stack, and
the task immediately starts. We maintain an invariant that
the running task occupies the lowest addresses of the used
region.

Fig. 4 Optimized implementation of task creation function.

Fig. 5 A work stealing queue and the corresponding uni-address region.

( 4 ) When a task is suspended, its stack is copied out from the
uni-address region into any free address in the RDMA re-
gion, and the task just above it is resumed if there is one.
This way, we maintain the above invariant.

( 5 ) Only when the uni-address region becomes empty, does the
process steal work from another node. Thus, the uni-address
region of this process can accommodate any task.

In this scheme, a task creation is very efficient, as it is much
like an ordinary procedure call, except that we need to save reg-
isters before task creation so that the caller can be stolen.

Figure 4 shows the implementation of task creation based
on this idea, and Fig. 5 illustrates a work stealing queue
and the corresponding uni-address region. The task creation
function create_thread saves the context of the running
thread and call do_create_thread function (Line 19–20) by
save_context_and_call function shown in Appendix A.1.
Then, do_create_thread function first pushes an entry to the
work stealing queue (Line 3–7). The entry contains information
for resuming the parent thread when the thread is stolen. Next,
do_create_thread function executes a given thread start func-
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tion (Line 11). After the function call, it pops an entry from the
work stealing queue. If it succeeds, the parent thread has not
been stolen and resumes the thread after removing the saved con-
text on the stack. Otherwise, the parent thread has been stolen, so
the control goes to the scheduler code to execute waiting threads
or perform work stealing. Executing a child thread does not evict
the parent thread from the uni-address region. The overhead of
task creation consists of only save and restoration of the parent
thread and manipulations of the work stealing queue.

5.3 RDMA-based Work Stealing
Under random work stealing, a processor selects a victim pro-

cessor and steals a task from the victim’s task queue when the
processor becomes idle. To steal a task with RDMA operations,
the following memory regions are pinned to physical memory:
the uni-address region, RDMA region, and work stealing queues.
Under the requirement, we now explain the implementation of
RDMA-based work stealing.

The implementation of a task queue is one of the most impor-
tant parts in work stealing. A task queue is accessed from a local
worker upon a task creation and a local exit from a task, and ac-
cessed from remote workers upon a work stealing. Therefore, a
naive locking scheme for mutual exclusion does not scale well es-
pecially on large-scale distributed memory environments [15]. To
address this issue, we implement THE protocol [1] with RDMA
READ, WRITE, and fetch-and-add. THE protocol is used in sev-
eral task-parallel systems on shared memory machines, such as
Cilk [1] and MassiveThreads [4], and because it eliminates lock-
ing from local accesses to a task queue, it reduces the tasking
overhead and improves the scalability of work stealing.

Figure 6 shows the pseudo-code of our work stealing imple-
mentation. A thief first selects a victim process and calculates the
remote address of the task queue of the victim process. Next, the
thief tries to lock the task queue with RDMA fetch-and-add op-
eration, and if it fails, the steal process aborts. If the locking suc-
ceeds, the thief tries to steal an entry from the task queue. If the
task queue is empty, the steal process aborts. Otherwise, the thief
starts migrating the task in the stolen task queue entry. In task mi-
gration, we first calculate the remote address of the stack region
for RDMA operations, and then perform an RDMA READ oper-
ation from the remote address to the uni-address region without
changing the address of the thread stack. At this point, the con-
text of the thread becomes valid; the saved register values and the
contents of the stack become readable. Next, the thief releases
the lock of the task queue and resumes the thread loaded to the
uni-address stack.

5.4 Inter-task Synchronization
In this section, we describe an implementation of inter-task

synchronization in the optimized uni-address scheme, and we
take join operation, an operation to wait for the exit of a thread,
as an example. Figure 7 shows the implementation. The join
function checks whether the target thread has terminated or not
with try join function. If it has, the function returns with the
result of the thread. Otherwise, the function suspends the running
thread with suspend function, pushes the suspended thread to a

Fig. 6 Implementation for RDMA-based work stealing.

Fig. 7 Implementation of join function.

wait queue, and switches to another thread. We have three kinds
of threads as a target of a context switching: a ready thread in the
work stealing queue, a suspended thread in the wait queue, and a
thread stolen by work stealing. As mentioned in Section 5.2, the
uni-address region has to be empty when a worker steals work
from another worker. Hence, the join function first tries to resume
a ready thread on the work stealing queue (Line 20). Next, it tries
to steal a thread from another worker and resume it if the steal
succeeds (Line 25). Otherwise, it tries to resume a suspended
thread in the wait queue (Line 28–29).
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Fig. 8 Implementation of suspend function.

Figure 8 shows the suspend function; it saves the context of the
running thread (Line 32), swaps out the stack frames of the thread
from the uni-address region to the RDMA region (Line 12–23),
and calls a given function resuming a next thread (Line 27).

In such an implementation of join operation, a swap-out of
a thread in the uni-address region occurs only when the target
thread is executing on another worker due to work stealing. In
typical cases where the parent thread is not stolen, the join func-
tion only confirms termination of a target thread by try join
function.

6. Implementation on Infiniband Clusters

This section describes the implementation of the communica-
tion layer of uni-address threads for Infiniband clusters. Uni-
address threads requires RDMA READ/WRITE/fetch-and-add
operations to manipulate a task queue on a remote processor with
the THE protocol. In order to utilize RDMA operations, we use
the GASNet communication library for ease of implementation.
GASNet is a state-of-the-art communication library supporting
Infiniband platforms.

6.1 Communication Primitives in GASNet
GASNet provides two communication mechanisms—Active

Messages [18] and Remote Memory Access. Active Messages is
an asynchronous remote proceduce call mechanism; i.e., a node
(similar to MPI’s process) sends a message with a message han-
dler which is executed at the target node when the messages ar-
rives at the node. Unlike TCP/IP sockets and MPI, Active Mes-

Fig. 9 An example of Active Messages API in GASNet.

Fig. 10 An example of remote memory access API in GASNet.

sages does not need to call a recv function to receive a message;
instead, Active Messages requires a receiver to call a polling

function which receives incoming messages and executes their
message handlers. Figure 9 shows a part of Active Messages API
in GASNet. gasnet AMRequestShortM sends an active mes-
sage consisting of a message handler handler and its arguments
arg0, ..., argM-1 to the specified node node. Receivers need
to call the gasnet AMPoll function periodically to handle in-
coming messages, and the function internally executes a message
handler when an incomming message arrives.

GASNet also provides a communication mechanism called Re-
mote Memory Access (RMA) which performs reads and writes to
memory at remote nodes. In Infiniband clusters, GASNet imple-
ments RMA with Remote Direct Memory Access (RDMA) op-
erations which is one-sided; i.e., an RDMA operation can access
remote memory without involving the remote processor. There-
fore, compared to Active Messages, the use of RMA can avoid a
message handling cost on the remote processor and reduce com-
munication latency. Figure 10 shows a part of Remote Memory
Access API in GASNet. GASNet RMA does not provide atomic
operations such as compare-and-swap and fetch-and-add. There-
fore, in order to manipulate data structures on remote nodes in a
one-sided manner, we have to implement such kinds of operations
with Active Messages.

6.2 Remote Fetch-and-Add Implementations
A goal of this paper is to investigate and demostrate the per-

formance impact of one-sided work stealing with RDMA op-
erations. To achive this goal, we chose two strategies im-
plementing software-based remote fetch-and-add operations—
RDMA-emulated implementation and AM-based implementation.
RDMA-emulated fetch-and-add is implemented to emulate truly
one-sided remote fetch-and-add operation for one-sided work
stealing, and AM-based fetch-and-add is implemented to emu-
late non one-sided work stealing to compare performance with
one-sided work stealing.

Both strategies implement remote fetch-and-add with Active
Messages as follows:
( 1 ) A processor sends a fetch-and-add AM request to a target

processor.
( 2 ) The target processor handles the request on the AM polling

function, and performs a local fetch-and-add operation.
( 3 ) The target processor sends an AM reply message (acknowl-
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edge) to the initiated processor.
The difference between the two implementation strategies is

when and where to handle fetch-and-add AM requests. In
RDMA-emulated fetch-and-add, a worker does not call the
AM polling function during computation; instead, we assign a
physical processor, called a communication-assisting processor,
for each worker to handle AM requests. A communication-
assisting processor continuously calls the AM polling function
which internally handles remote fetch-and-add requests. The
uni-address threads implementation on top of RDMA-emulated
fetch-and-add requires additional processors for communication,
but many supercomputer interconnects support hardware-based
remote atomic operations (e.g., Infiniband Verbs, Fujitsu Tofu in-
terconnect 2, Cray Aries); therefore, this problem is not so critical
on such environments.

In AM-based fetch-and-add, a worker handles remote fetch-
and-add requests when the AM polling function is explicitly
called by programmers or a thread is created (i.e., a thread cre-
ation internally calls the AM polling function). The uni-address
threads implementation on top of AM-based fetch-and-add in-
curs additional overhead to thread creation because the AM-based
fetch-and-add calls the AM polling function. This overhead in-
cludes message handling for fetch-and-add requests, and this may
increase the threading overhead.

To summarize, RDMA-emulated implementation focuses on
the emulation of hardware RDMA fetch-and-add; i.e., the fetch-
and-add operation does not interrupt the execution of a remote
procesor, but it requires additional processors. On the other hand,
AM-based implementation does not require additional processors
but the remote fetch-and-add interrupts the execution of a remote
processor; i.e, it is not one-sided. In the case of implementing
inter-node work stealing, AM-based remote fetch-and-add intro-
duces additional overhead to thread operations because they have
to call the AM polling function internally to handle remote fetch-
and-add requests. This overhead contains message handler exe-
cutions which occurs N times such that N is the number of work
stealing. In general, the number of work stealing increases in
superlinear manner to the number of processors (shown in Sec-
tion 7); therefore, AM-based remote fetch-and-add degrades scal-
ability of work stealing.

In order to mitigate the overhead of software-based implemen-
tation of remote fetch-and-add, we implemented empty check be-
fore locking a task queue on a remote processor with remote
fetch-and-add. Empty check confirms the size of a task queue
with an RDMA READ operation before locking the task queue.
Owing to this confirmation, we can avoid performance issues on
software-based remote fetch-and-add in the case that a task queue
is empty, and reduce the performance impact from the software-
based fetch-and-add implementation.

7. Experimental Evaluation

This section shows the experimental evaluation on the effi-
ciency and the performance of uni-address threads. We conducted
all experiments on the TSUBAME2.5 supercomputer, which is
an x86-64 Infiniband cluster, at Tokyo Institute of Technology.
Table 1 shows the system configuration of the TSUBAME2.5 su-

Table 1 Experimental setup.

TSUBAME2.5 supercomputer
CPU Intel Xeon X5670 2.93 GHz 6 cores × 2 sockets
Memory 54 GB/node
Interconnect Infiniband QDR
OS SUSE Linux Enterprise Server 11 SP3

(GNU/Linux 3.0.76-0.11)
Compiler GCC 4.7.2 (option -O3)
Library GASNet 1.24.2 (ibv-conduit), MPICH2 3.1

percomputer. The TSUBAME2.5 supercomputer has GPGPUs
but we do not use them in the following experiments. We used up
to 300 nodes for the experiments, and we used up to 1,800 cores
for computation and 1,800 cores for communication assistance in
RDMA-emulated implementation of work stealing. Confidence
intervals in the following figures are calculated with a 95% con-
fidence level.

For comparison, we used an existing lightweight multithread
library, MassiveThreads [4], which is one of the most lightweight
multithread libraries to the best of our knowledge. Differently
from uni-address threads, MassiveThreads only provides intra-
node load balancing, and it implements a child-first work stealing
scheduler just like uni-address threads. In our experiments, we
used MassiveThreads 0.95.

Figure 11 shows the communication latencies of GASNet re-
mote memory access operations on TSUBAME2.5. Figure 11 (a)
and Fig. 11 (b) presents the execution time of gasnet put and
gasnet get which corresponds to RDMA WRITE and READ.
“Poll thread” in Fig. 11 means remote memory access latencies
when there is an AM polling thread which is an OS thread contin-
uously calling GASNet AM polling function. The polling thread
is placed on a different physical CPU core from a compute core.
These experiments with a polling thread are for investigating the
performance difference derived from the communication perfor-
mance with or without the presence of a polling thread when com-
paring the performance of RDMA-emulated and AM-based work
stealing. In Fig. 11, gasnet put and gasnet get takes 5.9 K
and 8.2 K cycles, respectively, in 8 bytes data transfer.

On the other hand, in the presence of the polling thread,
gasnet put and gasnet get takes 8.4 K and 11.6 K cycles, re-
spectively, in 8 bytes data transfer. We can see the remote mem-
ory access latencies in the polling thread configuration is larger
than the usual cases; we speculate this stems from the overhead of
mutual exclusion on shared resources among gasnet put/get
and the polling function.

7.1 Benchmark Programs
To evaluate the scalability of work stealing in our library, we

chose three benchmarks—Binary Task Creation (BTC) bench-
mark, Unbalanced Tree Search (UTS) benchmark, and NQueens
solver:
BTC Binary Task Creation benchmark generates tasks recur-

sively. Each task spawns two child tasks and waits for their
completions. This benchmark has a parameter depth, which
means the depth of a generated task tree. Load balancing
of this benchmark is relatively easy for work stealing sched-
ulers because generated task trees are balanced. The exper-
iments performed with depth = 18 unless the parameter is
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Fig. 11 GASNet remote memory access latency w/ and w/o polling thread on TSUBAME2.5 supercom-
puter.

Table 2 Thread creation overhead.

Time (cycles)
Uni-address threads (RDMA-emulated) 184 cycles
Uni-address threads (AM-based) 353 cycles
MassiveThreads 122 cycles

explicitly described.
UTS Unbalanced Tree Search benchmark [35] is a benchmark

to evaluate performance of dynamic load balancing algo-
rithms and implementations. The UTS benchmark traverses
an unpredictable, tree-based state space generated by a prob-
ability distribution. The detailed description of parameters
of the UTS benchmark are in Ref. [35]. In our experiments,
we chose a tree whose nodes have 0–4 child nodes based
on a geometric distribution and performed experiments with
tree cutoff depth = 18. The command-line arguments is “-t
1 -r 0 -b 4 -a 3 -d 18”.

NQueens NQueens benchmark is a benchmark to calculate the
number of possible ways to place N queens on a N×N chess
board. The program used in our experiments is based on the
one in BOTS Benchmark [36]. The experiments performed
with N = 18 unless the parameter is explicitly described.

Because ordinary work stealing schedulers do not work well
with parallel loops that appear in UTS and NQueens, we modi-
fied them to an efficient divide-and-conquer traversal over loops
in which each task generates zero or two subtasks. Such an op-
timization is common in work stealing schedulers; in fact, Intel
Cilk Plus [37] performs such an optimization for its cilk for
statement.

7.2 Thread Creation Overhead
We measured the overhead of a task creation in uni-address

threads on Intel Xeon X5670 processor. For comparison, we also
measured the overhead of task creation in MassiveThreads.

Table 2 shows the results. The task creation overhead of uni-
address threads is 184 cycles and 353 cycles on average with
RDMA-emulated implementation and AM-based implementa-
tion, respectively. Here, we can see that uni-address threads
achieved a comparable performance to MassiveThreads, which
is one of the most lightweight multithread libraries to the best

Fig. 12 Threading overhead with benchmarks.

of our knowledge. The performance difference between RDMA-
emulated and AM-based implementation is derived from an AM
polling function call at thread creation.

Figure 12 shows the relative execution time to sequential ex-
ecution of the three benchmarks. This experiment is performed
with the parameter depth = 28 in the BTC benchmark, depth =

11 in UTS benchmark, and N = 13 in NQueens benchmark. As
a result, the RDMA-emulated implementation is comparable to
MassiveThreads; it takes at most 1.16x more execution time than
MassiveThreads in the three benchmarks. In BTC benchmark,
we can see the threading overhead is larger than the other bench-
marks. It is because its task granularity is very small, i.e., a task
only performs two child task creations or nothing.

7.3 Work Stealing Time Analysis
We measured the execution time of work stealing in uni-

address threads on TSUBAME2.5 supercomputer. In this experi-
ment, two workers steal a single thread from each other and mea-
sure the execution time and its breakdown of a steal operation.
The size of the stolen stack frame is 664 bytes.

Figure 13 shows the execution time of inter-node work steal-
ing in RDMA-emulated and AM-based implementation of uni-
address threads, and Table 3 shows the operations constituting
RDMA-based work stealing. A RDMA-emulated and AM-based
work stealing takes 86 K and 61 K cycles in total, respectively,
and suspend and resume operations, which are the main sources
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Fig. 13 Breakdown of work stealing time.

Table 3 Operations consisting of RDMA-based work stealing.

Operation Description
empty check A operation to check whether a remote task queue is empty or not. It consists of an RDMA READ operation.
lock A lock operation for a remote task queue. It consists of a remote fetch-and-add operation.
steal An operation to steal an entry from a remote task queue. It consists of two RDMA READ and an RDMA WRITE

operations.
suspend An operation to suspend a running thread.
stack transfer An operation to transfer stack frames. It consists of an RDMA READ operation.
unlock A unlock operation for a remote task queue. It consists of an RDMA WRITE operation.
resume An operation to resume a stolen thread.

Table 4 The number of generated tasks or nodes in three benchmarks. Time is average execution time on
1,800 cores. Stack usage means maximum usage of the uni-address region.

Benchmark Parameters Total tasks or nodes Stack usage Fetch-and-add Empty check Time
Binary Task Creation depth = 41 4,398 billion tasks 36,144 bytes RDMA-emulated Enabled 113.0 sec

RDMA-emulated Disabled 113.4 sec
AM-based Enabled 325.1 sec
AM-based Disabled 416.3 sec

Unbalanced Tree Search depth = 18 439 billion nodes 132,224 bytes RDMA-emulated Enabled 108.2 sec
RDMA-emulated Disabled 108.6 sec

AM-based Enabled 141.0 sec
AM-based Disabled 150.0 sec

NQueens N = 18 59 billion nodes 79,360 bytes RDMA-emulated Enabled 194.0 sec
RDMA-emulated Disabled 195.3 sec

AM-based Eanbled 272.7 sec
AM-based Disabled -

of the overhead of uni-address scheme, take 1.1 K and 0.8 K cy-
cles, respectively. This overhead does not exceed 1.2% of the
total work stealing time, and the other execution time is mostly
spent by RDMA operations for task queue manipulations. The
difference of the execution time between RDMA-emulated and
AM-based work stealing stems from the difference of remote
memory access latencies between the cases that a polling thread
exists or not.

7.4 Load Balancing Scalability
In this section, we evaluate stack memory usage in the

uni-address region and the parallel performance of uni-address
threads with the three benchmark programs. Table 4 shows the
basic information of the benchmarks—total number of generated
nodes, stack memory usage in the uni-address region, and exe-
cution time on 1,800 compute cores. Note that all benchmarks
worked with less than 136 KB virtual memory for thread stacks.

We performed strong scaling experiments of inter-node work
stealing with the three benchmark programs—Binary Task Cre-

ation, Unbalanced Tree Search, and NQueens. In all the bench-
marks, the parallel performance is reported as the total through-
put of processed tasks or nodes per second. The number of
processors used is from 225 to 1,800 cores. We evaluated the
load balancing performance of our work stealing implementation
with four configurations—RDMA-emulated work stealing with-
/without empty check and AM-based work stealing with/without
empty check.

Figure 14 shows the load balancing performance of our
work stealing implementation. RDMA-emulated work stealing
achieved a good load balancing performance on 1,800 cores,
99%, 98%, and 99% efficiency relative to 225 cores results in
BTC, UTS, and NQueens, respectively, regardless of whether
empty check is performed or not. As the number of process-
ing cores increases, the load balancing performance of AM-based
work stealing begins to degrade, and the experiment on 1,800
cores reports 47% and 77% efficiency relative to 225 cores with-
out empty check in BTC and UTS benchmark, respectively. In
RDMA-emulated work stealing, empty check improves load bal-
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Fig. 14 Parallel performance of three benchmarks.

Fig. 15 The number of successful steals in three benchmarks.

Fig. 16 The ratio of message handling time at task creation to total execution time.

ancing performance a little.
In order to dig into the performance results, we measured the

number of successful steals and the ratio of message handling
time to total execution time. Figure 15 shows the number of suc-
cessful steals in the experiment shown in Fig. 14. The number of
successful steals is an index of how fast we can find tasks from
remote processors. The results indicate that the number of suc-
cessful steals have different trends from the load balancing perfor-
mance, and that the speed of task discovery in RDMA-emulated
and AM-based work stealing is not so different. Therefore, idle-
ness of processors is not a crucial factor to the load balancing
performance of our work stealing implementation in this experi-
mental setup.

In AM-based work stealing, there is another important factor
to degrade load balancing performance. Because a remote fetch-
and-add in the remote task queue manipulation is handled by a
victim worker, AM-based work stealing prevents task execution
in victim workers and introduces an additional overhead to thread
creation which internally calls an AM polling function. Figure 16
shows the ratio of message handling time at task creation to total
execution time. The results show that the message handling time

of BTC, UTS, and NQueens occupies 63.3%, 25.7%, and 41.4%
of the total execution time, respectively, in AM-based work steal-
ing with empty check. In AM-based work stealing without empty
check, the message handling time of BTC and UTS occupies 70%
and 29.8% of the total execution time. This ratio confirms the
performance degradation in BTC and UTS benchmarks with er-
ror rates of approximately 8%. For the results of NQueens, the
error rate when using 225 cores is approximately 6%; the rate
when using 900 and 1,800 cores varies 22% to 78% for unknown
reasons.

8. Conclusion

In this paper, we presented uni-address, a scalable thread man-
agement technique for RDMA-based work stealing. The uni-
address scheme solves scalability problems in applying an ex-
isting thread migration scheme, iso-address, to large-scale dis-
tributed memory environments. Iso-address consumes a huge
amount of virtual address space proportional to the number of
processing cores in each node, and therefore thread migration
cannot be implemented with RDMA operations, which are impor-
tant for scalable work stealing. Uni-address significantly reduces
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virtual memory usage for thread migration and enables RDMA-
based work stealing.

We implemented uni-address threads, a lightweight multi-
thread library supporting inter-node work stealing with uni-
address scheme. The library is implemented in C++ and a few as-
sembly codes, and therefore it can easily be integrated with exist-
ing application codes, libraries, and programming languages. We
implemented the library on top of the GASNet communication li-
brary with two implementation strategies—RDMA-emulated and
Active Messages (AM) based implementation to investigate the
efficiency of one-sided work stealing with RDMA features.

We performed experiments to evaluate the performance and the
efficiency of uni-address threads with microbenchmarks and three
benchmarks: Binary Task Creation, Unbalanced Tree Search, and
NQueens solver. Microbenchmark results indicate that the task
creation takes 184 cycles on a x86-64 processor and the context
switching takes about 1 K cycles. On the three benchmarks, uni-
address threads worked with less than 136 KB virtual memory for
thread migration in each processor and achieved more than 98%
parallel efficiency with the RDMA-emulated implementation on
1,800 processing cores of the TSUBAME2.5 supercomputer. We
also investigated the performance differences between RDMA-
emulated and AM-based work stealing, and showed performance
impacts from active message handling on inter-node work steal-
ing.
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Appendix

A.1 x86-64 Assembly to Save Context

1 /*

2 typedef struct {

3 void *rip, *rsp, *rbp, *rbx, *r12, *r13, *r14, *r15;

4 context *parent;

5 } context_t;

6

7 typedef void (*context_func_t)(context_t *ctx,void *arg);

8 void save_context_and_call(context_t *parent,

9 context_func_t f, void *arg);

10 */

11 save_context_and_call:

12 push %rdi /* save parent context */

13 push %r15,%r14 /* save callee-saved regs */

14 push %r13,%r12,%rbx,%rbp

15 lea -16(%rsp), %rax /* save current SP */

16 push %rax

17 lea 1f(%rip), %rax /* save IP for resume */

18 push %rax

19 /* call a thread start function */

20 mov %rsi, %rax /* function f */

21 mov %rsp, %rdi /* argument ctx */

22 mov %rdx, %rsi /* argument arg */

23 call *%rax

24 add $8, %rsp /* pop IP */

25 1: /* here, jumped from resume_context */

26 add $8, %rsp /* pop SP */

27 pop %rbp,%rbx /* restore callee-saved regs */

28 pop %r12,%r13,%r14,%r15

29 add $8, %rsp /* pop parent context */

30 ret

31

32 /* void resume_context(context_t *ctx); */

33 resume_context:

34 mov %rdi, %rsp /* restore SP (== ctx) */

35 ret /* pop IP and restore it */
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