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Fast and Simple Local Algorithms for 2-Edge Dominating
Sets and 3-Total Vertex Covers

Toshihiro Fujito1,a) Daichi Suzuki1,b)

Abstract: A local algorithm is a deterministic (i.e., non-randomized) distributed algorithm in an anonymous port-
numbered network running in a constant number of synchronous rounds, and this work studies the approximation
performance of such algorithms. The problems treated are b-edge dominating set (b-EDS) that is a multiple domina-
tion version of the edge dominating set (EDS) problem, and t-total vertex cover (t-TVC) that is a variant of the vertex
cover problem with a clustering property. After observing that EDS and 2-TVC are approximable within 4 and 3, re-
spectively, using a single run of the local algorithm for finding a maximal matching in a bicolored graph, it will be seen
that running the maximal matching local algorithm for bicolored graph twice, 2-EDS and 3-TVC can be approximated
within factors 2 and 3, respectively.

1. Introduction
In the era of big data, it is almost mandatory to compute solu-

tions an order of magnitude faster than ever before, and sublinear
or constant time algorithms are urgently wanted in various areas
of computation. It is fortunate meanwhile that the high compu-
tation power has become relatively easily accessible nowadays,
and it is typically provided by computer networks of large scale.
Distributed algorithms of high efficiency can be regarded as ly-
ing at the crossing of these demands and supplies, and this paper
focuses on such algorithms running in constant time.

A local algorithm is a distributed algorithm, under the
message-passing model of computation, that runs in a constant
number of synchronous communication rounds (An excellent sur-
vey on local algorithms can be found in [26]). Here, the same
computer network, called communication graph G = (V, E), is
both the input and the system for solving the problem. Each
node of the communication graph is a computational entity hav-
ing an unlimited computing power. The computation proceeds in
rounds, in each of which each node can send and receive mes-
sages of unbounded length to and from all of its neighboring
nodes (although the algorithms to be presented use only mes-
sages of O(1) length). There are some variants in the commu-
nication graph models, and we assume a very weak one among
them throughout the paper. It is assumed that a port numbering
is assigned in G, which means that the edges incident to a node
u ∈ V are uniquely labeled and u can use those labels to choose
which neighbors of u it sends messages to and receives from, for
all the nodes u in G. While no other information such as unique
identifiers are available to any nodes, it is also assumed in this
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paper that G is a graph of bounded degree, and there is a constant
∆ such that any node in G has at most ∆ neighbors. In this case,
every node in G is initially given ∆ as the only local input, and
must produce the local output of its own, by running some algo-
rithm common to all the other nodes in G. The computing power
of distributed algorithms of this sort can be said to be severely
limited, and independent sets or matchings, for instance, that can
be computed in cycles are empty (vertex or edge) sets only [19].
Nevertheless, some nontrivial results, both positive and negative,
are getting accumulated in recent years and the lists of those re-
sults can be found in [26].

The main problem treated in the paper is a graph covering
problem called edge dominating set. In an undirected graph
an edge is said to dominate itself and all the edges adjacent to
it, and a set of edges is an edge dominating set (henceforth an
eds) if the edges in it collectively dominate all the edges in a
graph. The edge dominating set problem (henceforth EDS) asks
to find an eds of minimum cardinality. The EDS problem is
one of classic NP-complete graph problems, and it was proven
to be so even if graphs are planar or bipartite of maximum de-
gree 3 by Yannakakis and Gavril [28]. While the problem was
later shown to remain NP-hard under various classes of restricted
graphs [17], some polynomially solvable special cases have been
also discovered [17], [21], [24]. Computing the minimum size
edge dominating set is equivalent to that of the minimum maxi-
mal matching, and simply computing any maximal matching is
a 2-approximation algorithm for them. Whereas EDS is known
to admit a PTAS (polynomial time approximation scheme) for
some special cases [4], [18], no better approximation algorithm
has been found in the general case, and some nontrivial approxi-
mation lower bounds have been obtained (under some likely com-
plexity hypothesis) [8], [9], [23]. The parameterized complexity
of EDS has also been extensively studied [7], [9], [10], [13], [27].
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The b-edge dominating set problem (henceforth b-EDS) is a
multi-domination version of EDS, and it is a natural extension
of EDS such as the (multi)set multicover and multi-dominating
set problems. Here, each edge e of an input graph is associ-
ated with an integer b(e), and a solution is required to dominate
each e b(e) times (and hence, the ordinary EDS corresponds to
the case when b(e) ≡ 1,∀e ∈ E). Typically two versions of b-
EDS can be considered, depending on the types of feasible solu-
tions, where a solution can be an edge multiset (called an mb-eds
henceforth) in one case, and it has to be an ordinary edge set
(called an sb-eds henceforth) in the other. The former is named
multiple b-edge dominating set (henceforth mb-EDS) and the lat-
ter simple b-edge dominating set (henceforth sb-EDS). Whereas
8/3-approximation is known possible for the most general type of
b-EDS [5], mb-EDS was shown approximable within 2 in linear
time [6], and sb-EDS within 2 when b(e) ≤ 3,∀e ∈ E [14]. The
b-EDS problem treated in this paper is 2-EDS, that is the case
when b(e) ≡ 2,∀e ∈ E.

The EDS problem itself has some interesting applications,
especially in view of its close relation to minimum maximal
matchings, such as telephone switching networking as described
in [28], and b-EDS plays an important role in any application of
EDS when the fault tolerance and/or robustness need to be taken
into account. Another aspect of an eds is that it induces a vertex
cover where a vertex cover C ⊆ V is a set of nodes such that ev-
ery edge in G is incident to some node in C; namely, an edge set
D ⊆ E is an eds for a graph G = (V, E) if and only if the set of
endnodes of the edges in D, denoted V(D), is a vertex cover for
G. It is perhaps worth pointing out here that the vertex set V(D)
thus induced from an eds D is not a mere vertex cover but with
a clustering property. A vertex set C ⊆ V is said to be a t-total
vertex cover (t ≥ 1), henceforth a t-tvc, for a connected graph G
if it is a vertex cover for G such that each connected component
of the subgraph of G induced by C has at least t nodes. Hence,
if C is a t-tvc, C is a vertex cover and each member of C belongs
to a “cluster” containing at least t members of C. The problem of
computing a minimum t-tvc is named t-TVC (thus, 1-TVC is the
ordinary vertex cover problem). It was introduced in [12], [20],
and was further studied in [11]. Having such clustering properties
could be desirable or required in some applications, and variants
with such properties enforced are considered in other combina-
torial optimization problems as well, such as r-gatherings [1]. It
is known that the t-TVC problem is NP-hard, not approximable
within 10

√
5−21− ϵ (unless P=NP), and approximable within 2,

for each t ≥ 1 [12].

1.1 Previous Work and Ours
Not so many works are known for EDS in the area of dis-

tributed algorithms, and it could be partially due to the fact that,
at least under the model of local algorithms considered (i.e., de-
terministic distributed algorithms in anonymous port-numbered
networks running in a constant number of rounds), the case is in
a sense settled. It was shown by Suomela that EDS can be ap-
proximated within 4 − 2/∆ in O(∆2) rounds, and the matching
lower bound for approximation ratios was obtained at the same
time [25]. Moreover, the same lower bound was shown to hold

even if each node is provided with a unique identifier [15]. The
vertex cover problem is known to be approximable within 2 by
a local algorithm [2], [3], but nothing is known about the t-TVC
problem for t ≥ 2.

This work is mainly concerned with local algorithms for ap-
proximating the 2-EDS problem. It will be shown that, after ob-
serving in passing that EDS is approximable within 4 in only 2∆
rounds, m2-EDS is within 2 in the same running time. We then
present a local algorithm for s2-EDS, designed by extending that
for m2-EDS. Interestingly, approximation becomes easier in ei-
ther version of 2-EDS than in EDS, and s2-EDS will be shown
approximable within 2 in 4∆ + 2 rounds. Local algorithms for 2-
TVC and 3-TVC are considered as well. It follows from the way
vertex covers are constructed by the 3-approximation algorithm
of Polishchuk and Suomela [22] that 2-TVC can be approximated
within 3 in 2∆ + 1 rounds. It will be seen that 3-TVC can be ap-
proximated equally well, within the same factor of 3. A 3-tvc
is obtained from an s2-eds computed by the previous algorithm,
and it will be shown to become no larger than thrice the minimum
vertex cover size despite the fact that the s2-eds used is, as con-
structed by extending an eds, in general larger than the eds used
to 3-approximate 2-TVC.

2. Preliminaries
For an edge set F ⊆ E in a graph G = (V, E), V(F) denotes

the set of nodes induced by the edges in F (i.e., the set of all the
endnodes of the edges in F). For a node set S ⊆ V let δ(S ) denote
the set of edges incident to a node in S . When S is an edge set,
we let δ(S ) = δ(∪e∈S e) where edge e is a set of two nodes; then,
δ(S ) also denotes the set of edges dominated by S . When S is
a singleton set {s}, δ({s}) is abbreviated to δ(s). For a node set
U ⊆ V , N(U) denotes the set of neighboring nodes of those in
U (i.e., N(U) = {v ∈ V | {u, v} ∈ E for some u ∈ U}), and N(u)
means N({u}).

An edge set in G is a simple 2-matching if at most two edges
in it are incident to any node in G.

3. A Local Algorithm for EDS, m2-EDS, and
2-TVC

For a graph G = (V, E) let GD = (VL ∪ VR, ED) denote the bi-
partite double cover of G, where VL = {uL | u ∈ V},VR = {uR |
u ∈ V}, and ED = {{uL, vR}, {uR, vL} | {u, v} ∈ E}. Thus, there
exist exactly two edges, {uL, vR} and {uR, vL}, in GD correspond-
ing to any edge {u, v} in G. Let p : ED → E denote the function
mapping each of {uL, vR} and {uR, vL} to {u, v}.

For any maximal matching MD ⊆ ED computed in GD, let M̃
denote the mapping of MD into E; that is, M̃ = {p(e) | e ∈ MD}.
The multiplicity of an edge e ∈ M̃ is the number of edges in MD

corresponding to e, and it is defined by the function m : M̃ → N
such that m(e) def

= | p−1(e) ∩ MD |. Clearly, m(e) ∈ {1, 2} for all
e ∈ M̃.

It is rather straightforward to verify that 1) M̃ ⊆ E is a simple
2-matching in G, and 2) V(M̃) ⊆ V is a vertex cover for G [26].
While M̃ is not necessarily a maximal simple 2-matching in G,
this means that M̃ is an edge dominating set for G as well, and
we can say more:
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Lemma 1. For any maximal matching MD in the bipartite double
cover GD of G,
( 1 ) M̃ ⊆ E is an eds and (M̃,m) is an m2-eds for G, and
( 2 )

∑
e′∈δ(e)∩M̃

m(e′) ≤ 4 for any e ∈ E,

where M̃ = p(MD) and m(e) =| p−1(e) ∩ MD |.

Proof. ( 1 ) Clearly, each of {uL, vR} and {uR, vL} is dominated
by MD in GD for any edge {u, v} of G as MD is a maximal
matching in GD. Moreover, any edge dominating {uL, vR}
cannot simultaneously dominate {uR, vL} in GD, and vice
versa, from the way GD is constructed, for any {u, v} ∈ E.
Therefore, there exist two different edges in MD dominat-
ing {uL, vR} and {uR, vL} in GD, and both of them appear in
(M̃,m), either as two edges or as a single edge with multi-
plicity of 2, and hence, (M̃,m) is an m2-eds for G.

( 2 ) Observe that
∑

e′∈δ(e)∩M̃

m(e′) denote the number of edges in

MD dominating either {uL, vR} or {uR, vL} for e = {u, v} ∈ E.
Any edge in GD is dominated by at most two edges of
the matching MD, and hence, the number of edges in MD

dominating either {uL, vR} or {uR, vL} is at most 4 for any
{u, v} ∈ E.

□ □

An eds M̃ can be computed by the following technique which
has been often used in designing local algorithms for various
graph problems.
( 1 ) A key component of this technique is a simple local al-

gorithm of Hańćkowiak et al. for computing a maximal
matching in a bounded-degree bipartite graph G, with color
classes L and R, where each node of G is informed of which
color class of G it belongs to by the local input [16]. Port
numberings are assumed but unique node identifies are not.
The algorithm repeatedly performs the following steps for
i = 1, · · · ,∆:
( a ) Any unmatched left node (in L) sends a proposal to its

ith neighbor.
( b ) If any unmatched right node (in R) receives a proposal,

it accepts the proposal, becomes matched, and informs
the proposal sender of its acceptance. In case more than
one proposal arrives simultaneously, it accepts the one
received from a neighbor with the smallest port number.

( c ) If an unmatched left node (in L) receives a reply of ac-
ceptance from its ith neighbor, it becomes matched and
halts (Otherwise, it goes on by returning to Step (1a)).

As Steps (1a) and (1c) can be executed in a single round, a
maximal matching in a bipartite graph with the local inputs
of color classes can be computed in 2∆ rounds.

( 2 ) Observe now that, by simulating the algorithm above on G
for the problem of finding a maximal matching in a bipar-
tite graph, one can compute a maximal matching MD in the
bipartite double cover GD; each node u of G simulates the
behavior of both of its copies, the left node uL and the right
node uR, both inheriting the port numbering of the original
node u.
Once MD is computed, M̃ is available almost immediately

as {u, v} ∈ M̃ iff {uL, vR} or {uR, vL} ∈ MD. The multiplicity
of each e ∈ M̃ is easy to compute as well. For each u ∈ V
matched by M̃, check if both of uL and uR are matched by
MD, and if so, check if their mates are the same (m(e) = 2 in
this case) or not (m(e) = 1 in this case).

Mapping MD to M̃ and setting the multiplicity of each edge in M̃
require no additional communication round, and hence, both M̃
and the multiset (M̃,m) can be computed in 2∆ rounds.

To analyze the quality of an m2-eds (M̃,m) computed by the
algorithm above, let us consider an integer program formulation
of the mb-EDS problem:

min {x(E) | x(δ(e)) ≥ b(e) and xe ∈ Z+,∀e ∈ E} ,

where x(F) =
∑

e∈F xe for F ⊆ E, and δ(e) = {e} ∪ {e′ ∈ E |
e′ is adjacent to e} for e ∈ E. Replacing the integrality constraints
by linear constraints 0 ≤ xe, we obtain an LP and its dual LP in
the following forms:

LP: (Peds) min zP(x) = x(E)

subject to: x(δ(e)) ≥ b(e), ∀e ∈ E

xe ≥ 0, ∀e ∈ E

LP: (Deds) max zD(y) =
∑
e∈E

b(e)ye

subject to: y(δ(e)) ≤ 1, ∀e ∈ E

ye ≥ 0, ∀e ∈ E

Let ỹ ∈ RE denote a vector of dual variables for the multiset
(M̃,m) such that

ỹe =

m(e)/4 if e ∈ M̃

0 otherwise

We are ready to show the performance of the algorithm above
for approximating EDS and m2-EDS problems:
Theorem 2. The local algorithm given above computes a 4-
approximation to EDS and a 2-approximation to m2-EDS, in 2∆
rounds.

Proof. By Lemma 1.2 ỹ is dual feasible in LP:(Deds). In case of
EDS, b(e) ≡ 1,∀e ∈ E, and hence, its objective value is

zD(ỹ) =
∑
e∈M̃

ye =
∑
e∈M̃

(m(e)/4) ≥
∣∣∣M̃∣∣∣ /4,

whereas it is

zD(ỹ) =
∑
e∈M̃

2ye =
∑
e∈M̃

(m(e)/2) =

∑
e∈M̃

m(e)

 /2
in case of m2-EDS where b(e) ≡ 2,∀e ∈ E. Therefore, the opti-
mum of EDS is lower bounded by |M̃|/4 and that of m2-EDS by(∑

e∈M̃ m(e)
)
/2. □ □

Clearly, the vertex set V(M̃) is a 2-tvc for G, and it can be
computed by each node checking if it is matched by M̃ after M̃
is computed. It is then exactly the algorithm of Polishchuk and
Suomela [22], who showed that V(M̃) is no larger than thrice the
minimum vertex cover size, and hence,
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Corollary 3. The 2-TVC problem can be approximated within 3
in 2∆ rounds.

Remark: Better algorithms are known for the vertex cover
problem [2], [3] as stated in Sect. 1, but their outputs are not nec-
essarily 2-tvc’s.

4. A Local Algorithm for s2-EDS and 3-TVC
As was seen already, M̃ ⊆ E computed by the algorithm of

Sect. 3 is a simple 2-matching as well as an eds for G = (V, E). It
is not necessarily a maximal simple 2-matching, and even if it is
so, it doesn’t have to be a simple 2-eds.

As observed in the proof of Lemma 1.1, there exist two differ-
ent edges, say e1 and e2, in MD dominating {uL, vR} and {uR, vL} in
GD, for any {u, v} ∈ E. When MD is mapped to M̃, however, these
two might become one resulting in a single domination of {u, v}
in G. More precisely, when {uL, vR} (or {uR, vL}) is dominated
by these two edges e1 and e2 in GD, M̃ dominates {u, v} twice as
p(e1) , p(e2). Therefore, {u, v} is dominated only once by M̃ if
and only if e1 (e2, respectively) is the only edge of MD dominat-
ing {uL, vR} ({uR, vL}, respectively) in GD and p(e1) = p(e2). For-
mally, let M̃ be divided into M̃1 and M̃2 such that M̃2 = {e ∈ M̃ |
p−1(e) ⊆ MD} and M̃1 = M̃ \ M̃2 = {e ∈ M̃ | |p−1(e) ∩ MD| = 1}.
We can then restate the above argument as follows:
Lemma 4. An edge e is dominated only once by M̃ in G iff e is
dominated only by a single edge of M̃2 in G.

It thus suffices to dominate those edges specified in Lemma 4,
on top of M̃, to construct an s2-eds. For this purpose, let V2 =

V(M̃2) and then, the set of edges subject to additional domina-
tions is exactly M̃2 ∪ E2, where E2 = {{u, v} ∈ E | u ∈ V2, v <
V(M̃)}.

To describe the algorithm for dominating those edges in M̃2 ∪
E2, consider the bipartite graph GB = (V2 ∪ F, E2) that we can
find once M̃ is computed by the algorithm of Sect. 3, where
F = N(V2) \ V(M̃), the set of nodes in the neighborhood of V2

and unmatched by M̃.
( 1 ) Compute a simple 2-matching M̃ ⊆ E by running the algo-

rithm of Sect. 3 on G = (V, E).
( 2 ) Compute a maximal matching MB in GB with color classes

V2 and F. To do so, we once again use the local algorithm of
Hańćkowiak et al. [16]. Each node of G knows if it belongs
to V2 = V(M̃2) immediately after M̃ is computed in Step 1,
and any node unmatched by M̃ can know if it belongs to F
by checking if any of its neighbors belongs to V(M̃2) using
one additional round.

Clearly, any edge in E2 is dominated by MB. On the other hand,
there are three cases for e = {u, v} ∈ M̃2 to consider: 1) {u, v} ⊆
V(MB) (i.e., both u and vmatched by MB), 2) |{u, v} ∩V(MB)| = 1
(i.e., only one of them matched), and 3) {u, v} ∩ V(MB) = ∅ (i.e.,
neither matched). For each {u, v} ∈ M̃2, u and v can check which
is the case, by exchanging messages between them in one round.
In cases 1) or 2) {u, v} is successfully dominated twice by M̃∪MB,
whereas it is still dominated only once (by {u, v} itself) otherwise.
So, we need to pick one additional edge to dominate {u, v} in case
3), but picking exactly one edge among those incident to either
u or v requires the symmetry breaking in general, and it is hard
to do in an anonymous network. Therefore, instead of trying to

do so, we let each of u and v to add one edge incident to it, other
than {u, v}, to MB while dropping {u, v} from M̃2.
( 3 ) For any {u, v} ∈ M̃2, if {u, v} ∩ V(MB) = ∅, each of u and v

picks an edge incident to it other than {u, v}, and adds it to
M̃2 while dropping {u, v} from M̃2. In case when u or v can-
not pick any edge other than {u, v}, then keep it in M̃2.

Let M̃′2 ⊆ E denote the edge set resulting from modifying M̃2 in
Step 3 above, and M̃2 the original subset of M̃. It is then clear
at this point that every edge in M̃2 ∪ E2 is dominated twice by
M̃′2∪MB, and hence, the output M̃1∪ M̃′2∪MB of the algorithm is
a valid s2-eds for G, which is computed in 4∆+ 2 rounds in total.

It remains to analyze the performance of this algorithm, and it
will be based again on the the dual LP:(Deds) of the LP relaxation
for m2-EDS. Recall the vector ỹ ∈ RE of dual variables defined
for the multiset (M̃,m) in Sect. 3, and we also use it here as de-
fined in terms of M̃1 and M̃2 such that

ỹe =


1/4 if e ∈ M̃1

1/2 if e ∈ M̃2

0 otherwise

By the same reasoning as the one used for an m2-eds (M̃,m), it
can be seen that ỹ is dual feasible in LP:(Deds), and moreover, the
solution size |M̃1 ∪ M̃′2 ∪ MB| would be bounded above by twice
the objective value of ỹ, which is zD(ỹ) =

∑
e∈M̃ 2ye, if it is the

case that |M̃′2 ∪ MB| ≤ 2|M̃2|. Among the three cases considered
earlier for e = {u, v} ∈ M̃2, two edges of M̃′2 ∪ MB can be distinc-
tively associated with e in cases 2) and 3). In case of 1), however,
where both u and v are matched by MB, three edges (two from MB

and e ∈ M̃′2) must be balanced with e. To deal with such a case,
ỹ is modified as follows. Suppose that both u and v are matched
by MB for {u, v} ∈ M̃2, and let e1 and e2 denote those two edges
in MB matching u and v, respectively. Replace e = {u, v} in M̃2 by
these two edges e1 and e2, and do this operation for every e ∈ M̃2

corresponding to case 1). Each of these operations can be seen
to be an augmentation of the matching M̃2 along an alternating
path of length 3, and hence, the resulting edge set M̃′′2 remains as
a matching in GB. Moreover, no edge in MB touches a node in
V(M̃1), and therefore, when ỹ is altered to ỹ′ such that

ỹ′e =


1/4 if e ∈ M̃1

1/2 if e ∈ M̃′′2
0 otherwise

it remains dual feasible in LP:(Deds). Since each edge e ∈ M̃2 cor-
responding to case 1) is replaced by e1 and e2 in M̃′′2 distinctively,
each with the dual value of 1/2, those three edges associated with
e, namely e1 and e2 in MB and e itself, can be accounted for by
the values of ye1 and ye2 , in bounding the solution size within a
factor 2 of the optimum; or in other words,

|M̃1 ∪ M̃′2 ∪ MB| ≤ 2zD(ỹ′).

We may thus conclude:
Theorem 5. The local algorithm given above computes a 2-
approximation to s2-EDS in 4∆ + 2 rounds.
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Let us turn our attention to the 3-TVC problem. Each compo-
nent of the subgraph of G induced by any s2-eds S for G con-
tains at least two edges, and hence, V(S ) is always a 3-tvc for G.
Therefore, attaching the following step, which requires no addi-
tional round of communication, to the above algorithm at the end
enables it to compute a 3-tvc for G:
( 4 ) For each u ∈ V check if any edge incident to it belongs to

the previous output of M̃1 ∪ M̃′2 ∪ MB. Set the local output
of u as “yes, I’m in a solution” if it does, and “no, I’m not in
a solution” otherwise.

So the output of this algorithm is V(M̃1 ∪ M̃′2 ∪ MB), and it
remains to estimate its size. To do so, consider the following LP
relaxation of the vertex cover problem and its dual LP:

LP: (Pvc) min
∑
v∈V

xv

subject to: xu + xv ≥ 1, ∀{u, v} ∈ E

xv ≥ 0, ∀v ∈ V

LP: (Dvc) max
∑
e∈E
ye

subject to: y(δ(v)) ≤ 1, ∀v ∈ V

ye ≥ 0, ∀e ∈ E

where y(F) =
∑

e∈F ye for F ⊆ E.
Recall now the feasible solution ỹ′ ∈ RE of LP:(Deds) used in

lower bounding the size of a minimum s2-eds, and observe that
ỹ′(δ(v)) ≤ 1/2 for all v ∈ V . It then means that 2ỹ′ is feasible in
LP:(Dvc).

Let us now consider V(M̃1) and V(M̃′2 ∪ MB) separately:
• M̃1 is a simple 2-matching consisting of paths of length at

least 2 and cycles. For every component C of the subgraph
induced by V(M̃1), let V(C) and M̃1(C) denote the sets of
nodes and edges in M̃1 contained in C, respectively. Then,
1) |M̃1(C)| ≥ 2, and 2) |V(C)| ≤ |M̃1(C)|+1. Therefore, when
|V(C)| is compared with the duals assigned on the edges of
M̃1(C), we have

|V(C)|∑
e∈M̃1(C) 2ỹ′e

=
|V(C)|
|M̃1(C)|/2

≤ 2k + 2
k
≤ 3.

• The edge set M̃′2 is obtained from the matching M̃2 by adding
more edges than deleted. It should be noted, however, that
V(M̃′2 ∪ MB) remains the same as V(M̃2 ∪ MB) because MB

is a maximal matching in GB. Also recall that nonzero duals
are assigned, within GB, only on the edges in M̃′′2 . We here
do the case analysis as was done earlier depending on the
number of edges in MB incident to u or v for {u, v} ∈ M̃2.
Case {u, v} ⊆ V(MB) (i.e., both u and v matched by MB).
In this case both of u and v are matched by two edges of
MB, say e1 and e2. It is also the case that both e1 and e2

are in M̃′′2 (but {u, v} is not). Therefore, the dual value of
2(1/2 + 1/2) = 2 can be associated with those 4 nodes
matched by e1 and e2.

Case |{u, v} ∩V(MB)| = 1 (i.e., only one of them matched).
There exists just one edge, say e, in MB incident to either
u or v. For those 3 nodes, u, v, and another one matched by
e, the dual of 2 × (1/2) = 1 on {u, v} can be associated.

Case {u, v} ∩ V(MB) = ∅ (i.e., neither matched). There are
only two nodes to account for in this case, namely, u and v,
and the dual of 1 on the edge {u, v} can be associated.

In either case the number of nodes is thus bounded by thrice
the corresponding dual values.

It follows that the number of nodes in a computed solution is
no larger than three times the objective value of dual feasible 2ỹ′;
i.e.,

V(M̃1 ∪ M̃′2 ∪ MB) ≤ 3
∑
e∈E

2ỹ′e.

Therefore, although the 3-tvc V(M̃1 ∪ M̃′2 ∪ MB) is in general
larger than the 2-tvc V(M̃) as the former is constructed by aug-
menting the latter into a 3-tvc, it is still within the range of 3-
approximation of the minimum vertex cover, and hence,
Theorem 6. The local algorithm given above computes a 3-
approximation to 3-TVC in 4∆ + 2 rounds.
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