
IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 1

An Evaluation Method for Panoramic Understanding of
Programming by Comparison of Programmed Visual Samples

DICK MARTINEZ CALDERON †1 YUKINOBU MIYAMOTO †2

MASAMI HIRABAYASHI†3 HIDENARI KIYOMITSU †1
KAZUHIRO OHTSUKI†1

Abstract: This paper proposes enhancements to the Programmed Visual Contents Comparison (PVCC) method to assess
Panoramic Understanding of Programming introduced in previous studies. With this method, students must compare 2 or more
pictures produced by programming samples, and decide which one is more difficult to build with programming than the others,
or, if the difficulty is similar for all of them. We performed previously a test with three groups of students: Game Software, IT
and Graphic Design and examined the validity of the PVCC method by comparing the initial programming ability reported by
professors of these groups with the test results. According to these results, the PVCC method worked well to assess programming
abilities related with Panoramic Understanding of Programming. This paper proposes PVCC method enhancements on three
topics: preparation of new samples composed by input data and output pictures, more specific ways to ask, and changes on
previous samples and system..

Keywords: Computer science education, Programming Training, Student Assessment, Graphic Design, Software Engineering

1. Introduction

 During the last two decades, software development has

changed drastically, more and more people not involved in

professional software development have become able to do

programming by using new resources [1], for example: code

samples and tutorials used through copy-pasting; simplified

libraries, and several visual software development tools and

languages, where the programming code is hidden and it can be

applied with just a click.

 As a concrete example of these changes we must refer to the

inclusion of new disciplines previously considered non-related

with computing, into the curriculum guidelines for

undergraduate degree programs, concretely, the ones proposed

by worldwide associations managing computing education

standards such as: The Institute of Electrical and Electronics

Engineers (IEEE) and the Association for Computing Machinery

(ACM) [2].

 Even when there is a significant number of external

disciplines now integrated into computing education, and

several studies have been proposing new systems oriented to

reduce the gap between those disciplines when acquiring and

applying the necessary skills on programming [3][4], an

exhaustive search of the literature revealed few studies

concerning the assessment of programming ability in this

different range of fields, and particularly, of the multiple ways a

student could understand and apply programming skills

according to his knowledge level or field; in other words, how a

student has (and applies) a Panoramic Understanding of

Programming.

 In a prior study we introduced the Programmed Visual

Contents Comparison Method (PVCC) for assessment of

†1 Graduate School of Intercultural Studies, Kobe University, Kobe, Hyogo,
 657-8501, Japan.
†2 Graduate School of Information Technology, Kobe Institute of Computing,
 Kobe, Hyogo, 650-0001, Japan.
†3 Institute of Advanced Media Arts and Sciences, Ogaki, Gifu, 503-0006, Japan.

programming abilities related with Panoramic Understanding of

Programming. With this method, by comparing two or more

displayed pictures produced by programming samples (a

Question), a student must decide which one of the programs

producing those pictures is more difficult to build with

programming, or, if the difficulty is similar for all of them.

 The aforementioned study reported also the application of a

test to evaluate the validity of the method to groups of students

of: Graphic Design, Game Design, and IT. We examined the

validity by comparing the initial programming ability reported

by programming teachers of these groups with the results of the

test, and we found out that the proposed method worked well to

find programming abilities related with a Panoramic

Understanding of Programming.

 This paper proposes enhancements to the PVCC Method,

having as an objective to improve its effectiveness for

evaluating programming abilities related with Panoramic

Understanding of Programming.

 These enhancements are based on feedback data obtained

from programming professors of the student groups previously

tested as well as professors from other universities. These

professors pointed out issues and suggested changes to the

method and testing system.

 The proposed enhancements fall under three main topics: first,

the preparation of new comparisons (new Questions) where 2 or

more samples displaying both: input data (raw text) and output

pictures are displayed, emphasizing on the difficulty of the

programming processes needed to achieve the output. Second,

the modification of the way to ask by including specific

references to the evaluated difficulty and terms or keywords

related to the assessed programming processes. Third, the

improvement of previous test samples and system.

 Section 2 of this text gives an overview of the PVCC Method

and examines issues and recommended changes provided by

professors, Section 3 presents the objective of the Enhancements

to the PVCC Method, Section 4 explains the characteristics and

Vol.2016-CE-134 No.6
2016/3/5

IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 2

purpose of new Questions, Section 5 introduces modifications to

the way to ask about sample comparisons and other changes on

previous samples and test system.

2. PVCC Method Basic Definition and
Suggested Changes

 This section provides initially, a brief overview of the basic

definition of the Programmed Visual Contents Comparison

Method as it was defined in previous studies [5][6], it then

moves on to present the feedback obtained from professors of

the four tested groups and other universities (from now on the

professors) who, after looking at the results and experiencing

themselves the testing system, recommended to adjust and

change certain aspects of the evaluation method and the web

testing system, looking towards improvement for the next test

version.

2.1 PVCC Method Basic Definition
 The PVCC method is based on the comparison of 2 displayed

pictures produced by programming samples that, for our

purposes we call a Question; if a Question is showed to the

student taking the test, he is requested to decide which one of

the samples is more difficult to build with programming than the

other, or, if the difficulty is similar for both of them.

 The correct answer to a Question for the first test was defined

by a main programming structure we called programming

concept; basically, the tested student needs to identify this

concept in order to provide an answer, and the most difficult

sample of each Question is based on this programming concept.

 We suggested the student to answer each Question looking at

it from a programming point of view, in other words, to think

about each Question using any experience and knowledge he

could have on programming, regardless of the tools or

programming languages he could know. The following

Questions are a good illustration of our method:

Figure 1 Question based on the Nested Iteration concept

 The concept for the Question displayed on Figure 1 is Nested

Iteration, and the correct answer for this Question would be the

difficulty is similar since both samples were built by using a

nested loop changing only the number of squares to be drawn.

 We would expect programming experts and programmers

with ability in simplified programming languages based on

libraries and graphic objects only to answer that the difficulty is

similar, since Nested Iteration is applied both samples.

 Students with an ability limited to software tools will surely

select one of both samples since they don’t necessarily know

about Nested Iteration therefore are most likely unable to

identify the concept.

Figure 2 Question based on the Hidden Line Removal concept

 The concept for the Question shown on Figure. 2 is Hidden

Line Removal and its correct answer is the sample on the left

marked with (1); those students answering correctly would

surely know what Hidden Line Removal is and how it is applied

on the programming sample.

 Programmers whose ability is based on simplified

programming languages only would answer the difficulty is

similar since the same image can be obtained easily with

languages like Processing by using a single function changing

some of its parameters, but, they would probably misunderstand

the difficulty of each sample because they certainly wouldn’t

know what is the content of the function applied, or what kind

of algorithm is used to perform the Hidden Line Removal.

 In the same way, people having an ability limited to graphic

software tools, would probably answer based on what is shown

on the pictures and could assume that both samples can be

performed with the same tool on a specific software.

 We built a web testing system where a set of 16 Questions

was prepared for the student groups test. Figure 3 shows an

example of how a Question was displayed on screen.

Figure 3 Example of a Question on the Web Testing System

Vol.2016-CE-134 No.6
2016/3/5

IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 3

2.2 Issues and Recommended Changes to the PVCC

Method

2.2.1 Questions’ Difficulty Identification

 The main aspect that affected the results for all groups in the

previous experiment is the identification of difficulty. Students

weren’t able to identify the difficulty for most of the Questions

or erroneously considered the wrong degree of difficulty; this

lead us to think that it is not clear enough what kind of difficulty

is the one we give importance in each Question.

 Samples were selected and paired considering two

difficulties: the difficulty of associating images with the

compared programs and the difficulty of associating the

compared programs with the programming concept we wanted

to evaluate for each Question, but seemingly, there were

additional difficulties initially not considered, for example: the

difficulty of separate the algorithms handling the interactivity,

from the algorithms related with the concept to be evaluated,

which could lead to students considering the degree of difficulty

of interactivity algorithms more important than the difficulty of

the code defining the concept we wanted to evaluate.

 However, for representative Questions in the first experiment,

some students were able to perceive the desired difficulty and

answered correctly.

2.2.2 Revision of Programming Topics and Samples

 A second aspect that needed to be thoroughly revised

according to the professors’ suggestions is the set of

programming topics underpinning the samples used on the

Questions; the initial thought was to have as a reference a

somewhat wide range of programming topics found in

programming books for languages such as Processing and

Python [7] [8] [9] [10] [11], since these books provided an order

(from beginner level to expert level) and a categorization (each

chapter covered a number of subjects) similar to a curriculum,

therefore we considered each of these topics as similar to a

programming concept.

 However, the professors noted that the referenced

programming books were too focused on visual programming

topics, obviating several other important subjects that are

contained into curriculums for IT and Software Programming

courses. As a consequence of this the majority of the test

Questions are predominantly related to visual programming.

 The correct answers were selected having into account the

difficulty of the aforementioned programming topics according

to the referenced books, in that sense we considered only one

possible answer for each Question (a correct answer), thus

omitting the possibility of each one of these Questions to be

variously answered by people with different knowledge levels

and fields, having different ideas of programs that can be harder

or easier for each one of the samples.

 In this sense, our criteria for choosing the set of subjects on

which programming samples are based needed to be revised,

having into account actual curriculum guidelines for

computer-related fields, and defining what kind of answers per

level and per knowledge type can emerge.

 On the other hand, those Questions whose results matched the

assumption for the test performed to the students are a reference

of the necessary level to answer a specific Question on a

specific programming subject for a specific type of people;

having this in mind, we can consider to follow the same pattern

these Questions have, to build and test samples not related with

visual programing.

2.2.3 Adjustments on the way to perform the Question

 Along with the revision to the identification of difficulty and

the inclusion of programming subjects less related with visual

programming, the professors pointed out that, in order to inquiry

more precisely, the way to ask about each one of the

comparisons needed to be improved. They argued that, probably,

the Question: which sample is more difficult to build with

programming? Is too general, and this aspect together with the

already mentioned weaknesses on difficulty identification may

increase the confusion the student could have, resulting in lack

of certainty at answering the Question. The group of professors

suggested to ask considering the relevant difficulty on each set

of samples to be compared.

 The suggestions presented here are addressed in the proposal

for enhancements of the Programmed Visual Contents

Comparison Method, to be detailed in the following section.

3. Enhancements of the PVCC Method

 This section describes enhancements performed to the

Programmed Visual Contents Comparison (PVCC) Method

considering the suggestions provided by the professors. These

enhancements includes the preparation of new Questions with

additional criteria for making samples and pairing, improvement

of the way to ask and changes on previous samples, Questions

and testing system.

3.1 Objectives of the PVCC Method Enhancements

 The main objective for this stage of the research is to improve

the capability of the PVCC Method to assess effectively

programming abilities related with a Panoramic Understanding

of Programming.

 The main issues addressed are those suggested previously by

the professors, namely, a better identification of the

programming samples difficulty, a more accurate classification

of programming subjects based on standard curricula guidelines

for computer-related courses and a better way to ask. In that

sense the specific objectives for this stage are:

 To prepare new Questions with a clear difficulty and

including programming topics less related with visual

programming.

 To change the way to inquiry on each Question, having

into account the difficulty to be evaluated.

 To propose changes to the previous samples and the test

system.

 The following subsections will describe, in the order already

mentioned, characteristics of the new Questions and our

assumption when preparing them, changes on the way to ask,

and changes for the previous samples and the system.

Vol.2016-CE-134 No.6
2016/3/5

IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 4

3.2 New Questions’ Characteristics

 The main component for improving the PVCC Method is a

new type of Questions where 2 or more samples are compared,

but, instead of displaying only a graphical output, both input

data (raw text, as it is inserted into the sample) and output

(either picture or graph) are shown to the student.

 For these New Questions, a Sample consists of input data and

output picture(s), and a Question consists of a set of samples to

be compared.

3.2.1 Samples Difficulty

 The difficulty of each programming sample lies on the

identification of the complexity and amount of needed processes

to achieve an output from a given input data; each sample will

have different programming rules and steps to transform the

input data, and the output will show a representation of the input

data processed according to each sample’s programming rules

and steps; consequently, in a sample, a single set of input data

could be displayed in different outputs, and there could be many

ways to input data to produce a single output.

 In order to identify the difficulty of each sample and compare

them, the student needs to figure out (think about) the processes

through which the program transforms the input data in the

displayed output(s), the student is expected to identify two

aspects for each sample:

 The rules and/or steps, or the procedure (algorithm)

necessary to transform the input data into the output.

 The programming structures necessary for this algorithm

to do the transformation.

 In this sense, the answer to a Question could vary depending

on the student’s knowledge; if a student, by identifying the

aforementioned two aspects on each sample of a Question is

able to distinguish the difficulty of one sample from another in

the comparison, he most likely has different programming

abilities related with Panoramic Understanding of

Programming to those of a student who could use a different

programming knowledge (e.g. based on simplified programming

languages) and think of other kind procedures to transform an

input data into the given output, but probably can’t identify the

specific programming structures contained into the algorithm,

thus having another way to understand the samples’ difficulty;

or other student whose programming knowledge is limited to

graphic software tools, who almost certainly will find it difficult

to think of a programming algorithm, or programming

structures.

 Following the aforementioned assumption, the proposed New

Questions fall under three categories:

 Questions with the same input data for multiple output

 Questions with multiple input data for a single output

 Questions with multiple input data for multiple output.

3.2.2 Questions with the Same Input data for Multiple Outputs

 Figure 4 shows an example of a new Question with the same

input data for multiple outputs. In this case there is a single set

of input data: percentage of some countries population from

15-64 years; this set of data contains three categories or

columns: the country name, the country region and the

population percentage ordered by percentage from largest to

smallest.

Figure 4 Example of a Question with the same input data for multiple
outputs

 For this Question there are two outputs: the first sample’s

output shows a pie graph with the population percentages

ordered from smallest to largest starting with China, and the

second sample’s output shows a pie graph with the population

percentages grouped and ordered alphabetically by region being

the first Africa, and the first country inside this region Algeria.

 The student is expected to understand that both samples

contain a set of rules to do the pie graph and to parse the data for

setting up the width of each circle division inside the pie

according to the population percentage, but he is also expected

to realize that the second sample includes additional steps to:

group the countries according to the Region column of the data,

organize each group alphabetically and set up the width of each

division arc in the pie according to the percentage of the already

grouped countries.

 Students with an advanced knowledge on programming will

probably be able of identifying the programming structures used

by the algorithm to produce both outputs: mainly objects or

arrays for country, region, and percentage, a sorting algorithm

including diverse programming topics such as nested iteration

and conditional statements to organize the list alphabetically

according to the Region, and the countries inside each Region

alphabetically, other set of mathematical processes to calculate

the proportion of each percentage and transform it into an angle,

and finally the use of iteration and vector drawing to graph the

group of angles as a pie.

 Students with knowledge limited to simplified programming

languages based only on libraries and graphic objects will have

criteria to say that the input data is read by a parsing function of

Vol.2016-CE-134 No.6
2016/3/5

IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 5

this library that will be used by both samples in the same way,

and the outputs could be also produced by the same simplified

graphing function who automatically adjusts the data to the

adequate proportion in the circle and surely has an option to sort

the data accordingly, so almost certainly will tend to answer that

both samples have a similar difficulty.

 Students with programming knowledge limited to graphic

software will surely consider that the difficulty of both samples

is similar since both outputs can be made without difficulty by

using a combination of commands or buttons in a statistical

software, or by ordering the objects manually and assigning the

data directly through commands, paying little attention to the

processes being carried on inside the program.

3.2.3 Questions with Multiple Input Data for a Single Output

Figure 5 Example of a Question with multiple input data for a single
output

 Figure 5 shows an example of a new Question with multiple

input data for a single output. In this case there are two sets of

data: the first sample’s input is raw text properly written in

English, the second sample’s input contains a list of the most

appearing words in the text of the first sample, and the

frequency of occurrence of each word. For this Question there is

a single output: a word cloud composed of the most appearing

words in the input text, the largest word will be the most

appearing word on the list.

 The student is expected to understand that, for the first sample,

the raw text needs to be analyzed by the program, or

specifically: the program defines a word (in English) through

building a pattern to compare it to the large string of given

characters that is the raw text, according to that definition the

program extracts words, stores them in a list, then compares the

elements of the list between each other to see if there are

similarities and proceed to count how many of them are, finally

it sorts the list according to the number of similarities.

 This set of procedures will produce, in the end, the list on the

second sample. If a student is able to realize this aspect, he will

surely select the first sample as the most difficult of the set, if

not, his knowledge on programming will probably be limited to

simplified programming languages, so he will most likely

assume that by calling the raw text file from a parsing function

the text analysis is automatically done, and almost certainly will

say that the difficulty of both samples is similar.

 Students with programming knowledge limited to graphic

software will surely consider both samples as having a similar

difficulty as well, since there are several software tools to make

instant word clouds by inserting raw text into a text field, and

these tools have options to produce a list somewhat similar to

that of the second sample.

3.2.4 Questions with Multiple Input Data for Multiple Outputs

Figure 6 Example of a Question with multiple input data for multiple
outputs

 Figure 6 shows an example of a new Question with multiple

input data for multiple outputs. In this case there are two sets of

input data: the first is a list with the name and the area in Square

Kilometers of each prefecture of Japan’s Kansai Area. The

second input contains a set of location coordinates for limit

points of each prefecture of the Kansai Area. For this Question

there are two outputs: the first sample’s output is a group of

circles where the area of each item in the input list is

represented as the size of the circle, the second sample’s output

is a simplified map of Kansai Area with the names and areas of

each prefecture correspondingly positioned.

 The first impression of this Question could be that the second

sample is the most difficult since it’s representing both input

data sources: draws a map using the coordinates of the first

sample’s input data and positions the information of each

prefecture on the center of each prefecture’s map, but, the first

sample groups the circles according to a particular algorithm

called Circle Packing [12]; this algorithm is of high complexity

and its use to perform hierarchical data visualization is relatively

new but it is being included on visualization specialized

programming libraries therefore its difficulty of use has been

simplified.

Vol.2016-CE-134 No.6
2016/3/5

IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 6

 If a student is able to recognize that the algorithm to group

the circles of the first sample’s output is more difficult that the

mapping of the second sample’s output, even when the latter is

using both data input sources, this student almost certainly has a

high knowledge programming level, and the difference of

Panoramic Programming Understanding ability between this

student and those with programming knowledge limited to

simplified languages might be significant, since the latter ones

will probably tend to answer that the second sample is the most

difficult, as well as those students with programming knowledge

limited to graphic software.

3.3 Changes to the Way to Perform the Question

 According to the suggestions provided by the professors,

there is the necessity of asking about the samples in a more

specific way; since there are many programming issues involved

on each sample, the Question which is more difficult could be

too general and may lead to confusion on the student who will

probably be doubtful about which aspect of each sample must he

select as the main factor to evaluate the difficulty and perform

the comparison. In this sense, new Questions should make clear

what difficulty aspect is being asked for and use specific

keywords related with that difficulty.

 On the previous subsection 3.2.1 Samples Difficulty, we

mentioned that the difficulty of each programming sample lies

in the identification of the complexity and amount of needed

processes to achieve an output from a given input data; in this

sense, a new way to ask about these samples should refer

specifically to this difficulty aspect.

 For example, considering Figure 5: the Question with

multiple input data for a single output; a better way to ask

related with its specific difficulty could be: which set of input

data makes more difficult to get the displayed output?, since the

objective of this Question is to identify which set of data makes

more complex the program producing the output.

 As explained earlier on the same referenced subsection, there

are two aspects of each sample that the student must identify in

order to perform the comparison, namely: the rules and steps

(algorithm) necessary to transform the input data into the output,

and the programming structures (programming topics) necessary

for this algorithm to do the transformation. In this sense, a new

way to ask about the samples could contain the specific terms or

keywords we are looking for, namely: rules, steps, procedures,

algorithm, programming structures etc.

 For example, and taking Figure 4: the Question with the same

input data for multiple outputs as a reference, a better way to ask

about the samples could be which sample needs more

programming procedures (or steps) to get the displayed output?

Since the objective of this Question is to identify which of the

graphs displayed needs more programming steps to be achieved.

3.4 Changes to Previous Questions and Samples

 Together with the setting up of new samples and Questions,

feedback obtained from the professors prompt us to fix several

inconsistencies with previous Questions; in this sense, we

consider necessary to perform the following three main changes:

1. Reclassify the set of samples into two groups: samples

based on programming subjects related with visual

programming, and samples based on general programming

topics. To do this reclassification it is necessary to cross

the information provided by curriculum guidelines

regarding basic subjects in programming for all

computer-related fields with the basic subjects in the

referenced visual programming books. By making sure

that the samples belong to a specific type of programming,

we can pair them again into different Questions.

2. Remove samples containing interactivity (i.e. mouse or

keyboard operation) or remove the code handling the

interactivity and adjust these samples to function

automatically, this to eliminate any chance of identifying

the wrong programming subject and assign the wrong

difficulty per sample.

3. Refactor samples where the programming subject to be

evaluated is not clearly defined or where confusing

elements could make a student think about different

algorithms than the ones related to the programming topic

we want to evaluate.

3.5 Modifications to the Web Testing System
In addition to the modifications to the method previously

described, testing system usability issues were also highlighted

by some of the professors, namely:

 The inconvenience of each test page’s vertical layout for

some screens, having into account that in some displays

the user needs to scroll to reach the form and the submit

button.
 Samples’ long loading times that could result on system

crashes and answers not being registered.
 Lack of a comprehensible instruction guide.

These issues will be addressed for the next version of the testing

system in the following way:

 Changing the web testing system to a horizontal layout, to

favor a visualization of the set of samples plus answering

form as a whole in various displays.

 When possible, samples will be coded using web native

technologies, not ports of external languages (like

Processing.js, used for the first experiment samples), new

Questions will be programmed using Javascript and, by

removing interactivity (and in some cases, animation),

loading times will be drastically reduced and errors at

execution will be avoided.

 Text on the instruction guide provided at the beginning of

the test will be shortened, and, having into account that

interactivity will be removed, there is no need for the user

to operate the mouse for anything except for clicking on

the submit button.

4. Future Topics

 A natural progression of this work is to perform a test using

Vol.2016-CE-134 No.6
2016/3/5

IPSJ SIG Technical Report

ⓒ2016 Information Processing Society of Japan 7

the new Questions and compare its results to the previous test

and the programming ability reported by the professors to verify

the effectiveness of the proposed enhancements. Future trials of

the test based on the Programmed Visual Contents Comparison

Method should assess effectively the desired programming

abilities.

 Further studies need to be carried out in order to establish if

the Programmed Visual Contents Comparison Method can

effectively measure programming ability. A greater focus on

establishing how to measure students specific programming

abilities could produce interesting findings that account more

for validate this method.

5. Conclusions

 This paper set out to propose enhancements to the

Programmed Visual Contents Comparison Method.

 Issues with Questions’ difficulty identification, criteria for

selecting and applying programming subjects at making and

paring programming samples and weakness on the way to ask

about sample comparisons were addressed through the proposal

of new Questions oriented to accurately discern students capable

of recognizing core steps and procedures in programming

samples from those who apply a Panoramic Understanding of

Programming in other ways, as well as several modifications to

the way to ask having in mind the specific difficulty of each

type of new Questions and improvements to previous test

Questions and the web testing system.

 Acknowledgments We would like to thank all the

Professors and Students from the College of Computing of Kobe

Institute of Computing who through their participation and

collaboration are making possible this research.

 This work is partly supported by JSPS KAKENHI number

15K010168

References
[1] Burnett, Margaret and Myers, Brad. Future of End-user Software

Engineering: Beyond the Silos. In Proceedings of the Future of
Software Engineering Conference (FOSE 2014), ACM (New York,
NY 2014), pp. 201-211.

[2] ASSOCIATION FOR COMPUTING MACHINERY (ACM);
ASSOCIATION FOR INFORMATION SYSTEMS (AIS).
Curriculum Guidelines for Undergraduate Degree Programs in
Information Systems (IS 2010). 2010.

[3] Kursat Ozenc, Fatih, Miso, Kim, Zimmerman, John, Oney,
Stephen, and Myers, Brad. How to Support Designers in Getting
Hold of the Immaterial Material of Software. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(CHI '10), ACM (New York, NY 2010), pp. 2513-2522.

[4] Myers, Brad, Park, Sun Young, Nakano, Yoko, Mueller, Greg, and
Ko, Andrew. How Designers Design and Program Interactive
Behaviors. In Proceedings of the 2008 IEEE Symposium on Visual
Languages and Human-Centric Computing (VLHCC '08), IEEE
Computer Society (Washington, DC 2008), pp. 177-184.

[5] Martinez Calderon, Dick, Miyamoto, Yukinobu, Kiyomitsu,
Hidenari, and Ohtsuki, Kazuhiro. Difference on Visual Related
Programming Understanding between Designers and Programmers

by Using a Programmed Contents Comparison Method. IPSJ SIG
Notes, 11 (2015), pp. 1-8.

[6] Martinez Calderon, Dick, Kin, Man, Kiyomitsu, Hidenari,
Ohtsuki, Kazuhiro, and Miyamoto, Yukinobu. An Evaluation
Method for Panoramic Understanding of Programming by
Comparison with Visual Examples. In Frontiers in Education
Conference (FIE) (El Paso, TX 2015), pp. 1-8.

[7] Bohnacker, Hartmut, Gross, Benedikt, and Laub, Julia. Generative
Design: Visualize, Program and Create with Processing. Princeton
Architectural Press, New York, NY, 2012.

[8] Shiffman, Daniel. Learning Processing: A Beginner's Guide to
Programming Images, Animation, and Interaction. Morgan
Kaufmann, Burlington, MA, 2008.

[9] Shiffman, Daniel. The Nature Of Code. Self-published, New York,
NY, 2012.

[10] Terzidis, Kostas. Algorithms for Visual Design Using the
Processing Language. Wiley Publishing Inc., Indianapolis, IN,
2009.

[11] Lutz, Mark. Learning Python. O'Reilly Media Inc., Sebastopol,
CA, 2009.

[12] Wang, Weixin, Wang, Hui, Dai, Guozhong, and Wang, Hongan.
Visualization of Large Hierarchical Data by Circle Packing. In
Proceedings of the SIGCHI conference on Human Factors in
computing systems (CHI'06), ACM (Montréal, Québec 2006), pp.
517-520.

Vol.2016-CE-134 No.6
2016/3/5

