IBRIMEFRHYHE 7075325 Vol9 No.d 12 (Feb. 2016)
RERBIE

GPGPU 7 L — 247 — % MESI-CUDA @
v L F GPUBRBE N D XI5

A Pt KB HIZ!

2015F8A5ARRK

GPGPU D42 B WT, HHED GPU 2##i L2~V GPU B2 HW T X) Bl Eiie 2 58
FTHRADN R SN TS, BHELROMEEETH A CUDA I~V F GPU ICHIBLTWAA, i1 D
GPU #WIRIICEIEST A LEXRH Y, 707 T AOFRAEMIC R A, S512, 1 BDFRA b LICHERT
&% GPU DEEBIROENTWEzD, L)% LD GPU # MM 5 KB 2855I~ V5 GPU 8
Breh, ZOE, H—HRANLED GPUDPBENPTEES — Ny F2EETLRE, 7077407
RRF 2= TS IR ENEL b, FAIZCUDA L) 707 S L8RP ESR7 L — LT —
27 MESI-CUDA % B8 L C\w5%. MESI-CUDA & CPU - GPU 2 7 25— F X) 127 72 R
TL707 IV SETNVERHLTCYS, MERAIGERA N AT - 78 2 X T OFEE - e 75—
FlEk G EOa— FEHBAERT A ET, TOEFLVTHREN2T T2 5 A% CUDA I — FIZEHT
5. KIRETIE, TOETVEZDOTFEIVF GPU BRBEIIRT 52 LT, KL N4 GPU ~O#:
VEDFLRAAET B, T/, @l ALy FEEFREZEAL, T—HPEREFRLIZAL v N
WXEATHEA 7 22— 12X D) e GPU NHEICEI D M TS, a4 FEKEAL Y FOTF—=5 77
b AP E 2 RN L, EAFREA S V2 - TR T YRR ORMER S o BER#ELE EBT 5.

A GPGPU Framework MESI-CUDA for Multi-GPU Environment

REI YAMAMOTOY® KAZUHIKO OHNO!

Presented: August 5, 2015

Recently, GPGPU is used for high performance computing. Although multi-GPU is expected as the plat-
form for higher performance, current standard programming environment CUDA requires explicit operation
on the individual GPUs. Furthermore, hand-tuning is necessary to use all GPUs efficiently. Because only
a few GPUs can be physically installed on a single host, a large-scale multi-GPU environment will be a
cluster of hosts connected by the network. On such a environment, the user must specify inter/intra-host
communication considering the difference of the overhead. Thus the programming and tuning will be more
difficult. We are developing a new programming framework named MESI-CUDA which enables easier GPU
programming than CUDA. In this paper, we propose an extension of MESI-CUDA to support multi-GPU
environments. Current MESI-CUDA provides a simple programming model that every CPU/GPU cores
accesses a single virtual shared memory. The compiler translates a MESI-CUDA program to CUDA program
automatically generating memory management and data transfer code. We extend this model to support
multi-GPU environments, hiding the individual GPUs from the user and eliminating low-level specifications.
We introduce a new logical thread creation scheme; the user creates GPU threads without specifying the
target GPU and the runtime thread scheduler automatically invokes physical threads on the available GPUs.
The MESI-CUDA compiler makes static analysis to obtain the data access range of each thread. Using the
analysis result, the runtime scheduler performs automatic optimization such as minimizing data transfer.

b BRI LR
Graduate School of Engineering, Mie University
) yamamoto@cs.info.mie-u.ac.jp

© 2016 Information Processing Society of Japan

