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Recently, GPGPU is used for high performance computing. Although multi-GPU is expected as the plat-
form for higher performance, current standard programming environment CUDA requires explicit operation
on the individual GPUs. Furthermore, hand-tuning is necessary to use all GPUs efficiently. Because only
a few GPUs can be physically installed on a single host, a large-scale multi-GPU environment will be a
cluster of hosts connected by the network. On such a environment, the user must specify inter/intra-host
communication considering the difference of the overhead. Thus the programming and tuning will be more
difficult. We are developing a new programming framework named MESI-CUDA which enables easier GPU
programming than CUDA. In this paper, we propose an extension of MESI-CUDA to support multi-GPU
environments. Current MESI-CUDA provides a simple programming model that every CPU/GPU cores
accesses a single virtual shared memory. The compiler translates a MESI-CUDA program to CUDA program
automatically generating memory management and data transfer code. We extend this model to support
multi-GPU environments, hiding the individual GPUs from the user and eliminating low-level specifications.
We introduce a new logical thread creation scheme; the user creates GPU threads without specifying the
target GPU and the runtime thread scheduler automatically invokes physical threads on the available GPUs.
The MESI-CUDA compiler makes static analysis to obtain the data access range of each thread. Using the
analysis result, the runtime scheduler performs automatic optimization such as minimizing data transfer.
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