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Abstract: In this paper, an implementation of exception handling for task-parallel languages is proposed such that
all running parallel tasks in a try block with an exception are automatically aborted as soon as possible. In parallel
tree search, exception handling that allows such a collateral task abortion is useful when the objective is to complete
the search as soon as one solution is found or to allow a worker to abort the traversal of a subtree that is found to be
redundant by another worker, even when it has been initiated. However, few existing task-parallel languages, such as
Cilk Plus and X10, have this capability. In this study, we enhanced a task-parallel language, Tascell, with this capa-
bility. Since the Tascell compiler is implemented as a translator to C code, techniques are required for implementing
the non-local exit mechanism with cleanup code execution in the “finally” clauses. We achieved this implementation
by exploiting nested functions, which are already used in the temporary backtracking mechanism of Tascell. We also
modified the task scheduler provided by Tascell such that a worker can abort a task after it is started. When aborting
a task, the scheduler also aborts all its descendant tasks. We evaluated our implementation in terms of overheads and
time taken to abort tasks.
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1. Introduction

Backtrack search algorithms are applied in many applications,
such as graph mining, the satisfiability problem (SAT), and board
games. In order to solve large-scale problems quickly, parallel
algorithms that exploit the powerful computation power provided
by the rapid increase in the number of processor cores in both
cloud-type general purpose servers and high-performance com-
puting (HPC) systems need to be designed and implemented.

Since actual search trees in backtrack search algorithms usu-
ally grow dynamically and thus unpredictably, dynamic load bal-
ancing should be applied to parallelized implementations. Ap-
plications having this property are often implemented using task-
parallel languages, such as X10 [1], Cilk [2], Intel Cilk Plus [3],
and Tascell [4], that allow tasks to be dynamically spawned such
that they are automatically assigned to workers, that is, parallel
threads and/or processes, so that a worker has an exclusive set of
subtrees as its task set.

In this paper, an implementation of exception handling is pro-
posed in which all the running parallel tasks in a try block with an
exception are automatically aborted as soon as possible, as a lan-
guage extension for the task-parallel languages mentioned above.

For example, suppose a task-parallel execution with four work-
ers, named worker 0–3, in which the function f0 in Fig. 1 is called
by worker 0. In this program, spawn S is used to spawn a task to
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Fig. 1 Example of task-parallel program with exceptions.

execute S asynchronously that can be assigned to another worker,
and join S is used to synchronize all the tasks spawned during
the execution of S . The execution context in such a task-parallel
execution forms a data structure called a cactus stack. One pos-
sible context in the execution of the program shown in Fig. 1 is
illustrated in Fig. 2 (a) *1, where the tasks spawned by worker 0 in

*1 In multithreaded languages based on Lazy Task Creation [5] such as Cilk,
a spawned task is immediately executed by the worker that spawned the
task and another idle worker steals the continuation at this point as a
task. Thus, part of the following discussion in this section, including the
execution contexts shown in Fig. 2, is not strictly applicable for such a
language.
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Fig. 2 Execution states in an execution of the program in Fig. 1.

Fig. 3 Parallel binary tree search for one solution.

lines 4 and 13 have been assigned to worker 1 and worker 2, re-
spectively, and the task spawned by worker 2 in line 19 has been
assigned to worker 3. Then, each worker executing emay or may
not throw the exception E that would be caught by the catcher
established in f0. One desired behavior when at least one of the
workers has thrown the exception is that the execution stack be-
comes as shown in Fig. 2 (b) as soon as possible. For example,
when only worker 1 has thrown the exception, not only the task
assigned to worker 1 is completed with the return of the excep-
tion, but also the tasks assigned to workers 2 and 3 are aborted
“collaterally,” and the control of worker 0 returns to the catch
block in lines 7–9. Our proposed implementation realizes such a
behavior.

As explained in Ref. [6], such an exception handling mecha-
nism with collateral task abortion is useful when the objective is
to complete the search as soon as one solution has been found.
For example, in parallel binary tree search, the search can be ter-
minated as soon as a solution is found simply by throwing an
exception caught at the root of the search tree, as shown in Fig. 3.

Furthermore, a more attractive use of this exception handling
mechanism in parallel tree search was recently reported [7]. Ex-
ceptions are used to allow a worker to abort the traversal of a
subtree that is found to be redundant by another worker even af-
ter it has initiated the traversal. Figure 4 shows pseudo code for a
parallel binary search for all solutions using this technique. When
a worker notices that no solutions exist in the subtree having the
root xnode, it prunes the subtree (lines 4–8). Then, when another
worker notices that the worker is traversing the pruned subtree,

Fig. 4 Parallel binary tree search for all solutions where exceptions are used
for reducing redundant search.

it can abort the traversal simply by throwing an exception tagged
with xnode, which is caught by the catcher (line 20) established
when xnode is visited as node. Note that, because of the col-
lateral task abortion, the traversal of the subtree is completely
aborted, even if a part of the pruned subtree is assigned to other
workers. The implementation of these operations without excep-
tions is complicated: programmers need to implement not only
the transferal of the control back to the root of the pruned subtree,
but also the abortion of the involved tasks, following their parent-
child relationship upward and downward. Thus, it is expected
that this exception handling mechanism will be useful for many
backtrack search algorithms in practical applications, which often
prune redundant subtrees to achieve search space reduction.

A semantics for such language features was proposed in
Ref. [8]. However, no major language supports them. For exam-
ple, Intel Cilk Plus supports throwing an exception beyond syn-
chronization points, but the child tasks spawned in the try block
are not aborted automatically. Therefore, we implemented excep-
tion handling features with collateral task abortion as an enhance-
ment of the existing task-parallel language Tascell [4]. That is, we
designed an enhanced Tascell language by adding the try-catch
and throw constructs to the baseline Tascell, and implemented
this enhanced Tascell by modifying the Tascell compiler and the
task scheduler. In addition, we evaluated our implementation in
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terms of overheads and time taken to abort tasks.
The remainder of this paper is organized as follows. We sum-

marize related work in Section 2. We introduce the baseline Tas-
cell framework to which we added the exception handling fea-
tures in Section 3. In Section 4, we provide the language exten-
sion to Tascell for the exception handling features. In Section 5,
we present our implementation of the enhanced Tascell. We show
the performance evaluations in Section 6. Finally, we conclude
this paper in Section 7.

2. Related Work

In this section, we discuss exception handling and task abor-
tion as supported in other task-parallel languages. As mentioned
in Section 1, a semantics of a task-parallel language with collat-
eral task abortion was proposed in Ref. [8] and our design of the
enhanced Tascell is based on this semantics. However, no ma-
jor task-parallel language exists that supports such features, as
described below.

2.1 Intel Cilk Plus
Exception handling in Intel Cilk Plus [3] has the same seman-

tics as that in C++, i.e., the try-catch-finally mechanism. If a
thrown exception is not caught inside a spawned function, the
exception propagates from the point of the corresponding syn-
chronization point. When several exceptions are asynchronously
thrown and reach the synchronization point, the exception that
would have occurred first in the serial execution is chosen and
later exceptions are destroyed. When an exception is not caught
inside a task, no other tasks spawned at the corresponding syn-
chronization point are terminated early.

2.2 X10
In X10 [1], when an exception is thrown, try-catch blocks in-

side the same activity attempt to catch it. If the exception is not
caught, the activity is aborted. However, the uncaught exception
raised in an activity can be forwarded to its parent if the activity
is spawned in a finish statement by which normal and abnormal
completions of all activities spawned in it are confirmed. There-
fore, by surrounding a finish statement by a try-catch block,
we can catch an exception thrown by a child activity spawned in
the statement. If two or more child activities in a finish raise
exceptions asynchronously, these exceptions are wrapped into a
single object of x10.lang.MultipleExceptions to conform to
the rooted exception model [9].

The finish statement is not capable of aborting activities
other than those raising exceptions, but simply waits for their
normal completion, as in Cilk Plus. Therefore, a user-level im-
plementation is required for aborting them.

2.3 Cilk
Cilk [2] provides the abort statement, which aborts all the

already-spawned children of the procedure that has called the
abort [6]. It can be used only inside an inlet, which is a han-
dler invoked at the termination of the spawned procedure with
the returned value. Cilk does not support non-local exit opera-
tions, such as throwing exceptions. In order to transfer control

straight back to an ancestor procedure, such operations must be
implemented explicitly.

2.4 Java
Java Fork/Join Framework [10] was added to Concurrency

Utilities in Java SE 7 for natural descriptions of fine-grained par-
allel processing. If a thrown exception is not caught in a task, it is
rethrown to the task attempting to join it. A rethrown exception
is handled in the same way as a regular exception. When a par-
allel loop is exited abnormally, all running tasks spawned at the
loop are not aborted automatically. In order to abort such tasks,
programmers need to explicitly call the cancel method that can
cancel another task.

2.5 OpenMP
The cancel and the cancellation point constructs are in-

troduced in OpenMP 4.0 [11]. The former activates a cancellation
and the latter adds an explicit cancellation point to the user code.

An exception thrown inside a parallel region, such as
parallel, for, sections, or task, must be caught within the
same region. In addition, an exception must be caught by the
same thread that threw it. That is, the propagation of an excep-
tion among threads must be implemented manually because of
restrictions.

3. Tascell Framework

3.1 Overview
The Tascell framework [4], [12] consists of a compiler for an

extended C language, called the Tascell language, and a runtime
system for parallel computations.

In Tascell, computations are accomplished by the Tascell work-
ers that execute tasks. A task is a data object that is necessary for
accomplishing a certain computation. Its structure is defined in a
Tascell program by the user. A task is associated with a specific
function. When a worker receives a task, it invokes the associ-
ated function and completes its work on the given task object.
Tascell employs a randomized work-stealing strategy to achieve
dynamic load balancing among the workers. In Tascell, an idle
worker (thief) can request a task from a loaded worker (victim).
When receiving a task request, the victim worker creates a new
task by dividing its own task and returns it to the thief worker.
Then, the thief worker performs the received task and returns its
result to the victim worker.

A Tascell worker spawns a task by temporarily backtracking
and restoring its oldest task-spawnable state. That is, when a
worker receives a task request, it:
( 1 ) Temporarily backtracks (goes back to the past),
( 2 ) Spawns a task (and changes the execution path to receive the

result of the task),
( 3 ) Returns from the backtracking, and
( 4 ) Resumes its own task.
A Tascell worker always chooses not to spawn a task at first and
performs sequential computations. However, when a worker re-
ceives a task request, it spawns a task as if it changed the past

choice. Figure 6 shows the manner in which backtracking-based
task spawning occurs when a Tascell worker performs backtrack
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Fig. 5 Program (pseudo-code written in C) that performs backtrack search
for finding all possible solutions to the Pentomino puzzle.

Fig. 6 Illustration of task spawning employing temporary backtracking.
(1) The backtracking step includes undo operations (i.e., remov-
ing pieces). (2) The spawning-half-iterations step includes making
a copy of the temporarily restored board. (3) The returning-from-
backtracking step includes redo operations (i.e., setting pieces).

search based on the C code in Fig. 5.
In general, a larger task can be spawned by backtracking to the

oldest task-spawnable state. Because no logical threads are cre-
ated as potential stealable tasks, the cost of managing a queue for
them, as required in multithreaded languages based on Lazy Task
Creation [5] such as Cilk, can be eliminated in Tascell.

3.2 Backtrack Search in Tascell
Figure 7 illustrates a parallelized Tascell program that per-

forms a backtrack search for finding all the possible solutions to
the Pentomino puzzle based on the C code in Fig. 5.

We defined a task object named pentomino. Several fields are
declared as the search input. The field s is declared for storing the
result. A Tascell worker that receives a pentomino task executes
pentomino’s task_exec body. In the task_exec body, the Tas-
cell worker can refer to the received task object by the keyword

Fig. 7 A Tascell program that performs backtrack search for Pentomino.

this.
A function that uses Tascell’s parallel constructs must be at-

tributed by the keyword worker. The parallelized part of the
search function employs Tascell’s task division constructs. A
parallel for loop construct can be used for dividing an iterative
computation. It is syntactically denoted by
for(int identifier : exprfrom, exprto) statementbody

handles task-name(int identifierfrom,int identifierto)

{ statementput statementget}.
This iterates statementbody over integers from exprfrom (inclusive)
to exprto (exclusive). A worker performs iterations for a parallel
for loop sequentially, unless it detects any task requests. When
the implicit task-request handler (available during the iterative ex-
ecution of statementbody) is invoked, the upper half of the remain-
ing iterations are spawned as a new task-name task, the object of
which is initialized by statementput. In statementput, the actual
assigned range can be referred to by identifierfrom and identifierto.
When all the remaining iterations are assigned to other workers as
tasks, the worker waits for the results of the tasks, and then, han-
dles (merges) the results of the tasks by executing statementget. In
order not to be idle, the worker requests and executes other tasks
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Fig. 8 Program with nested functions.

while waiting for the results. At this time, in order to reduce the
execution stack size of the worker, it “steals back” a task from
one of the workers to which tasks for parts of this parallel for
loop are assigned. This technique is called Leapfrogging [13].

Parallel for statements may be nested dynamically in their
statementbody. Therefore, multiple task-request handlers may be
available at the same time. Each worker attempts to detect a task
request by polling at every parallel for statement without heavy
memory barrier (fence) instructions. When the worker detects
a task request, it performs temporary backtracking in order to
spawn a larger task by invoking as old a handler as possible.

Tascell has a dynamic_wind construct, as in the Scheme lan-
guage [14] for specifying application-dependent undo/redo oper-
ations, e.g., removing/putting pieces in Pentomino, syntactically
denoted by
dynamic_wind statementbefore statementbody statementafter.

The worker basically executes statementbefore (“set a piece” in
Fig. 7 as “do”), statementbody, and statementafter (“remove the
piece” in Fig. 7 as “undo”) in this order. However, during the
execution of statementbody, statementafter is also executed as an
“undo” clause before an attempt to invoke an older task request
handler. Statementbefore is also executed as a “redo” clause after

the attempt.

3.3 Implementation
The Tascell compiler is implemented as a translator to the C

language in order to render the implementation portable. It is dif-
ficult to realize the temporary backtracking mechanism in “stan-
dard” C, because it needs stack walk, accessing variables the val-
ues of which are located below the current frame in the execution
stack. This implementation exploits nested functions [15] to real-
ize stack walk.
3.3.1 Nested Functions

A nested function is a function defined inside another function,
in locations where variable definitions are allowed, except at the
top level. Its evaluation creates a lexical closure accompanying
the creation-time environment, and indirect calls to it provide le-
gitimate stack access. Figure 8 shows an example of a program

with nested functions.
When the function bk_exit1 nested in fib is (indirectly)

called, a parameter bk_exit0 and n, and a local variable s lo-
cated in the (older) frame can be accessed. In addition, a nested
function can jump to a label inherited from a containing func-
tion, provided the label is explicitly declared in the containing
function. Such a jump returns instantly to the containing func-
tion, exiting the nested function that performed the goto and any
intermediate functions as well. In the program in Fig. 8, when
bk_exit1 is called with the argument n0=n, s is set to v and
the control goes back to fib, exiting bk_exit1 and all the inter-
mediate functions between bk_exit1 and fib. This capability
is not used in the baseline Tascell implementation, but is used to
implement the non-local exit mechanism in the enhanced Tascell.

The most well-known implementation of nested functions for
C is the trampoline-based implementation in GCC [16], [17]. In
addition, L-closure-based implementations of nested functions
are proposed for achieving low maintenance/creation costs by de-
laying the initialization of the closure until it is invoked and en-
abling register allocation. Two versions of L-closure implemen-
tations exist: a translator to standard C, called LW-SC [18], [19],
and an enhancement of GCC, called XC-cube [20]. However, XC-
cube does not support goto that exits a nested function.
3.3.2 Translation to C with Nested Functions

The program in Fig. 7 is translated to the program in Fig. 9
with nested functions. Each worker function is translated to
have an additional parameter _bk0 holding a nested function
pointer corresponding to the newest handler for a parallel for or
dynamic_wind statement. Each parallel for statement is trans-
lated into a piece of code that includes a definition of a nested
function (_bk1_par_for in Fig. 9) as the newest handler, which
is called when a task request is detected by polling. The nested
function first tries to spawn a larger task by calling a nested func-
tion (_bk0) that corresponds to the second newest handler (which
calls another nested function for the third newest handler and so
on). Only if a task request still remains, the worker calculates a
range for a new task, updates a range for itself, and creates a new
task and sent to the requester. After sending a task, the worker re-
turns from the nested function and resumes its own computation.

Translation for a dynamic_wind statement is also included in
Fig. 9. As you can see, statementbody employs a nested func-
tion (_bk2_dwind in Fig. 9), which is composed of (a copy of)
statementafter (as undo operations), a call to the second newest
nested function, and (a copy of) statementbefore (as redo opera-
tions), in order to perform undo/redo operations as is described in
Section 3.2.

4. Language Extension to Tascell

We added the try-catch and throw constructs to Tascell as state-
ments. The syntax for these constructs is as follows:
• try compound-statement1

catch (expression) compound-statement2

• throw expression;

The try construct above does not have the “finally” clause, be-
cause Tascell already has the dynamic wind construct, as de-
scribed in Section 3.2.
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Fig. 9 Translation result from the worker function search for Pentomino
in Fig. 7, including translation of a parallel for statement and a
dynamic wind statement.

A try-catch statement indicates that an exception could be
thrown during the execution of compound-statement1. The eval-
uation steps of a try-catch statement are as follows. First, ex-

pression is evaluated and an exception catcher tagged with the
resulting value (cast to size_t) is established. Then, compound-

statement1 is executed. The catcher is disestablished when a
worker exits this statement normally or abnormally.

A throw statement creates an exception tagged with the value
of expression (cast to size_t) and throws it. When an excep-
tion tagged with tag is thrown, the most recent try block having
a catcher tagged with tag is forced to exit, and then, compound-

statement2 is executed. If no catcher tagged with tag has been
established in the task being executed, the task terminates its exe-
cution, returning the exception as the result. This exception return
is notified to the victim worker of the aborted task so that a flag
named partial cancellation flag with tag is attached to the corre-
sponding parallel for statement in the victim. Then, the victim
notices that its task has a parallel for with the flag raised, and
then, raises an exception as if the stolen iterations of parallel for
were replaced with throw tag;. In our current implementation,
the check for the existence of such a parallel for is executed at
the same time of the check for a task request, that is, at every en-
try point of any (other) parallel for, so that the victim notices it
as soon as possible before it becomes idle waiting for the com-
pletion of the parallel for and eventually receives the exception
return. Furthermore, we can guarantee that a worker does not
abort a task in the middle of an atomic operation by limiting the
task cancellation points to those entry points.

In addition, if uncompleted parallel for statements exist in the
dynamic scope of an exception catcher to be disestablished, can-

cellation flags are set to the uncompleted tasks spawned from
such parallel for statements and all their descendant tasks. Then,
each thief notices the message, by polling again for immediate
abortion, for the stolen task that it is executing, and aborts the
task.

If uncompleted dynamic_wind statements exist in the dy-
namic scope of an exception catcher to be disestablished, cleanup
operations defined as statementafter are executed (in an innermost
to outermost order, if dynamic_winds are nested) before exiting
the corresponding try block, as in temporary backtracking de-
scribed in Section 3.2.

Figure 10 shows an example of a Tascell program using ex-
ceptions, which performs a backtrack search for Pentomino as the
program in Fig. 10 and terminates the search as soon as a worker
finds that the number of solutions is larger than THRESHOLD *2.
We show examples of exception handling using Fig. 11, which
shows a cactus stack representing an execution context of the pro-
gram in Fig. 10 with four workers, supposing the following two
cases.
a) When an exception tagged with 1, which would be caught

at catch 1 in task 0-0, is thrown by worker 0, cancellation
flags are set to task 1-0, task 2-0, and its descendants, that
is, tasks 3-0 and 2-1. Workers 1–3 notice the flags set to
tasks 1-0, 2-1 and 3-0, respectively, and abort these tasks.
After task 2-1 is aborted, worker 2 resumes task 2-0, but im-
mediately aborts it, since worker 2 notices the cancellation
flag. The control of worker 0 returns to catch 1 after the
cleanup operations at (1), (2), and (3) are executed in that
order.

*2 This program is used only as an example and for performance evalua-
tions in Section 6. Obviously, this algorithm is not efficient because a
worker cannot count the number of solutions found by other tasks until
it merges their results.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 10 Tascell program that performs backtrack search for Pentomino and
terminates the search as soon as a worker finds that the number of
solutions is larger than THRESHOLD.

Fig. 11 Execution context of the program in Fig. 10.

b) When an exception tagged with 1 is thrown by worker 1 and
not caught inside task 1-0, the exception return is notified to
worker 0, raising the partial cancellation flag for the parallel
for statement at join 1. After noticing the flag, worker 0
goes back to join 1 and performs a throw operation for the
returned tag 1 as if task 1-0 is replaced with the throw. This
exception is then caught at catch 1. Since the parallel for
corresponding to join 2 is exited, tasks 2-0, 2-1, and 3-0 are
aborted in the same manner as in Case a). Before the control
of worker 0 returns to catch 1, the cleanup operations at (1),
(2), and (3) are executed (operations at (3) are executed after
operations at (1) and (2)).

Note that a parallel for may have two or more exceptions at
the time when the worker responsible for it notices the excep-
tions. If this occurs, one of them is chosen arbitrarily, and the
others ignored. We cannot simply employ the same semantics as
Cilk Plus or X10 presented in Sections 2.1 and 2.2, because a task
may be aborted without returning a result or an exception.

If an exception is thrown during the execution of cleanup oper-
ations, the new exception is propagated from there, discarding the
old one (if any), as in Java [21]. Furthermore, a task may not be

aborted (partially) because of a (partial) cancellation flag during
the execution of cleanup operations. Note that, in our current im-
plementation, such an abortion does not occur because we limit
cancellation points to entry points of parallel for statements and
Tascell does not allow a parallel for statement to be executed
during the execution of cleanup operations.

5. Implementation of Exception Handling

We implemented the exception handling mechanism for Tas-
cell presented in Section 4 by modifying the Tascell compiler and
the task scheduler provided by Tascell, which are presented in
Section 5.1 and Section 5.2, respectively.

5.1 Tascell Compiler
Since the Tascell compiler is implemented as a translator to

C code, techniques are required to implement the non-local exit
mechanism with cleanup code execution in finally clauses. Al-
though the setjmp method and two return values method are well
known as techniques for implementing such a mechanism as a
translator to C [22], we implemented it by exploiting nested func-
tions, which are already used for the temporary backtracking
mechanism of Tascell, in order to minimize the implementation
cost and additional overheads to the baseline Tascell.

The functions task_exec and search in Fig. 10 are translated
to the programs in Fig. 12 and Fig. 13, respectively. Each try-
catch statement is translated into a piece of code that includes a
definition of a nested function (lines 22–45 in Fig. 12), as well as
parallel for and dynamic_wind statements. These nested func-
tions are called in the order of newest to oldest for propagating
an exception (line 56 in Fig. 13), aborting a task (line 38), or
spawning tasks (line 42). Temporary backtracking for spawning
tasks is executed in the same manner as in the baseline Tascell,
as explained in Section 3.3.2. During backtracking for propagat-
ing an exception, a worker executes cleanup operations in nested
functions derived from dynamic_winds, aborts, and waits for
tasks spawned at parallel for statements (lines 16–23). When the
worker reaches a nested function derived from a try-catch state-
ment, the catcher tag of which is equal to the tag of the thrown
exception, it exits the try block by exiting the nested function
using goto (see Section 3.3.1 for this capability of nested func-
tions). If the exception is not caught in the task being executed,
the nested function located at the termination of the backtracking
(lines 5–17 in Fig. 12) is called to exit pentomino_task_exec.
After exiting pentomino_task_exec, the scheduler notices that
the task is exited with an exception return from the fact that
_thr->backtrack_rsn is EXCEPTION. Backtracking for abort-
ing a task is done in a similar manner as for propagating an excep-
tion, except that the check for the exception tag value is unneces-
sary in a try-catch statement (lines 38 and 39 in Fig. 12), and a
worker retrieves an exception and rethrows it if a task spawned at
a parallel for statement has returned the exception (lines 18–21
in Fig. 13).

5.2 Task Scheduler
In order to support the exception handling mechanism, we en-

hanced the task scheduler of Tascell as follows:
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Fig. 12 Translation result from the function task exec for Pentomino in
Fig. 10, including translation of a try-catch statement.

• We implemented cancellation flags of tasks and partial can-
cellation flags of parallel for statements, and

• We enhanced the message handler among workers so that a
worker can return an exception as the result of a task when
the exception is not caught inside the task and notify the
abortion of a task to which a cancellation flag is set.

When a worker returns an exception as a task result, a partial can-
cellation flag is set to the parallel for statement at which the task
is spawned. In addition, cancellation flags are set to all the tasks
that are spawned at the parallel for statement and all the parallel
for statements dynamically enclosed by it.

Cancellation flags are set also when a worker performing back-
track for propagating an exception reaches a parallel for state-
ment; flags are set to all the tasks spawned at the statement
(line 17 in Fig. 13). In addition, when a cancellation flag is set
to a task, flags are set to all the tasks spawned during its recursive
execution.

Fig. 13 Translation result from the worker function search for Pentomino
in Fig. 10, including translation of a parallel for statement and a
throw statement.

At every entry point of parallel for statement, a worker checks
whether a cancellation flag is set to a task being executed and par-
tial cancellation flags to parallel for statements in the task *3. If
any flags exist, the worker (partially) aborts the task by calling
nested functions (lines 35–39 in Fig. 13).

Note that a task to which a (partial) cancellation flag is set may
be suspended, such as task 2-0 in Fig. 11, and a worker cannot
notice such a flag only by the check for a task being executed.
However, we can guarantee that such a task will become active
immediately, after other active tasks are aborted. This is because,
as a result of the Leapfrogging employed by the current Tascell
implementation (Section 3.2), a suspended task is always an an-
cestor of a task being executed, and we implemented the sched-

*3 In order to avoid costly operations for checking all the parallel for state-
ments periodically, we implement a task object having a counter of par-
tial cancellation flags.
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uler so that, when a flag is set to a task, flags are also set to all
its descendant tasks automatically. Thus, it is necessary only to
allow each worker to check for a task being executed.

6. Performance Evaluation

We evaluated our implementation of the enhanced Tascell us-
ing the following programs:
• Fib(n): recursively computes the n-th Fibonacci number.
• Nq(n): finds all solutions to the n-queens problem. In Tas-

cell, this is coded with a combination of a parallel for and a
dynamic_wind in the same way as for Pentomino.

• Pen(n): finds all solutions to the Pentomino problem with
n pieces, using additional pieces and an expanded board for
n > 12.

The evaluation environment is summarized in Table 1.

6.1 Overheads
In order to evaluate the overheads of the exception handling

mechanism, we measured the performance of the baseline and
enhanced implementations of Tascell using Fib(n), Nq(n), and
Pen(n). In addition, in order to evaluate the cost of the excep-
tion handlers, we measured the performance of the programs that
perform the same computation to Fib(n), Nq(n), and Pen(n), re-
spectively, but where the entire body of each recursive function
is enclosed by an unused try block. We also compared the per-
formance of each implementation with that of the sequential pro-
grams written in C.

The measurement results are shown in Table 2 (sequential ex-
ecutions) and Fig. 14 (parallel executions). We can see that the
overheads of the exception handling mechanism itself, including
checking cancellation flags and additional operations in nested
functions called when spawning tasks, e.g., checking the rea-
son for backtracking, are less than 6.2% for all the measure-
ment conditions. Note that the overheads are very small even
for Fib(51), which performs the checking for cancellation flags
very frequently. Furthermore, except for Fib(51), which creates
exception handlers very frequently, the cost of try blocks is rel-
atively small: the performance degradation as compared to the
baseline Tascell is less than 16% for Nq(17) and Pen(15). Ac-

Table 1 Evaluation environment.

Appro Green Blade 8000 (1 node)

CPU Intel Xeon E5-2670 2.3 GHz 8-core × 2 (16 cores in total)
Memory DDR3-1600 64 GB
OS Red Hat Enterprise Linux Server release 6.6 (Santiago)
Compiler GCC 4.4.7 with -O3 option
Nested functions Trampoline-based implementation in GCC
Worker Created by pthread create with PTHREAD SCOPE SYSTEM

Table 2 Execution time and relative time to sequential C programs with one
worker.

Elapsed time in seconds
(relative time to plain C)

C Tascell Tascell Tascell
(baseline) (enhanced) (enhanced, w/ try)

Fib(51) 54.3 208 203 432
(1.00) (3.82) (3.74) (7.97)

Nq(17) 464 476 489 540
(1.00) (1.03) (1.05) (1.16)

Pen(15) 685 640 630 738
(1.00) (0.933) (0.920) (1.07)

cording to these results, we can expect that the technique can be
used to abort the redundant search shown in Fig. 4, which requires
that an exception handler be created at every search step, without
large costs.

For Pen(15), the performance of the C program is worse than
that of Tascell. Although not certain, a bad optimization of GCC
could have caused the performance degradation.

6.2 Task Abortion Time
In order to evaluate the time taken to abort tasks, we measured

the performance of the programs that perform the same computa-
tion as Fib(n), Nq(n), and Pen(n), respectively, but terminate the
computation by throwing an exception as soon as a worker finds
that the answer is larger than a threshold, as shown in Fig. 10 for
Pen(n). The threshold θ is set to θ = α · A, where A is the true an-
swer of the computation and α is set to 0–0.3 in units of 0.01 and
0.4–1 in units of 0.1 (computation terminates without exceptions

Fig. 14 Speedups relative to C with multiple workers.
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Fig. 15 Elapsed time between the time when an exception is thrown and the
termination of the computation.

when α = 1). We executed these programs using 2 and 16 work-
ers, and measured the total elapsed time (T ) and the elapsed time
before the first exception is thrown (Tthrow).

The measurement results are shown in Fig. 15. In addition,
as for the 16-worker executions, the elapsed time between the
first throw operation and the termination of the program execu-
tion (T − Tthrow) and the number of aborted tasks are shown in
Fig. 16. The number of aborted tasks here includes tasks that
terminate returning exceptions and tasks aborted collaterally by
cancellation messages from their parents.

We can see that the abortion time increases in proportion to the
number of aborted tasks, but is very short (less than 500 μs in all
the executions), even when an exception is thrown in the middle
of the execution and tens of tasks are aborted collaterally.

7. Conclusion and Future Work

We proposed an implementation of exception handling such
that all running parallel tasks in a try block with an exception
are collaterally aborted as soon as possible, as an enhancement of
the existing task-parallel language, Tascell. We implemented the
non-local exit mechanism by exploiting nested functions, which
are already used for the temporary backtracking mechanism of
Tascell. We also modified the task scheduler provided by Tas-
cell so that a worker can abort a task that is being executed. Our
implementation achieved an exception mechanism with low over-
heads and short task abortion time.

Future work will include the implementation and evaluation of
the proposed exception handling mechanism in distributed mem-
ory environments and for other task-parallel languages, such as

Fig. 16 Elapsed time between the first throw operation and the termina-
tion of the program execution, and the number of aborted tasks (16-
worker executions).

Cilk. We will also attempt to improve the performance of parallel
search for various practical applications, such as graph mining,
using exceptions to reduce redundant search.

The proposed Tascell implementation is available at https:
//bitbucket.org/tasuku/sc-tascell.
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