
Electronic Preprint for Journal of Information Processing Vol.24 No.2

Regular Paper

A Partial-tree-based Approach
for XPath Query on Large XML Trees

Wei Hao1,2,a) KiminoriMatsuzaki1,b)

Received: July 3, 2015, Accepted: October 27, 2015

Abstract: XML is a popular data definition language and is widely used for representation of arbitrary data structures.
For queries on XML documents, XPath has commonly been used in many applications. The complexity of applying
queries increases as the number of nodes in an XML document increases. Querying very large XML documents be-
comes really difficult when there is not enough computer memory to store and manipulate the whole tree data. The
objective of this study is to develop an algorithm for querying very large XML trees in a distributed-memory environ-
ment. We split a large XML document into small chunks and parse the chunks to create special trees called partial
trees. Then the query is executed in parallel on the partial trees. The results from the partial trees are concatenated to
form the final query results for output. The algorithms were tested on a 16-node PC cluster, and the experiment results
showed a speedup of a factor of 6 on 16 nodes.

Keywords: XML, XPath, XML query, parallel programming, partial tree

1. Introduction

XML [21] (eXtensible Markup Language) is a standard lan-
guage for organizing and representing semi-structured (tree-
structured) data, and it has been widely used for decades. The
success of XML has led to a great many applications that have
been specially developed for XML. Among them, XPath [22] is
a query expression language for XML, and it uses a path expres-
sion to specify a set of XML elements. XPath is also the basis of
other query languages such as XQuery.

In the last decade, the rapid growth of the amount of informa-
tion has led to an urgent demand for high-performance data pro-
cessing technologies for business and scientific research. When
the size of XML data exceeds the size we can deal with by con-
ventional DOM-based tools, we need more involved techniques
such as parallelization in distributed-memory environments or
stream processing.

When we compute in parallel in distributed-memory environ-
ments, we first need to divide the input into smaller parts and al-
locate them to the computers. One possible approach is to adopt
a tree-dividing technique for the tree that an XML document rep-
resents. A naive way is to divide a tree at the root or at a fixed
depth, but this does not guarantee the size of subtrees. A more
involved way is to apply the m-bridge technique [9], [14] with
which we can divide a tree into parts no larger than the parameter
m. However, these tree-based divisions require parsing the whole
XML document in advance, and this may limit the applications.

1 School of Information, Kochi University of Technology, Kami, Kochi
782–8502, Japan

2 Department of Computer Science and Engineering, Anhui University of
Science and Technology, Huainan, Anhui, China

a) 188004h@gs.kochi-tech.ac.jp
b) matsuzaki.kiminori@kochi-tech.ac.jp

In this paper, we propose another approach for input division
in which we divide the XML document (text). Usually, XML
data are stored in the serialized format, and it is very easy to di-
vide a text into smaller chunks. It is, however, not trivial to apply
queries for those chunks because some necessary information to
applying queries is missing in a chunk.

To clarify the problem, consider that the input is the following
XML document and a chunk is given from the underlined part.

<A><C>c1</C><C>c2</C><C>c3</C><A><C>c4</C>

<A>

Figure 1 shows the tree structure that the XML document rep-
resents. Here comes a fundamental question. What structure does

the chunk represent? The chunk includes tags (beginning and/or
end tags), which are gray in Fig. 1. Note that some tags, such as
the first </C> or the last , miss their matching tags. It seems
that we cannot obtain the structure and that it is impossible to
apply the query to a randomly split chunk.

To solve this problem, we add some nodes from the root of the
tree and formalize the idea as a partial tree as shown in Fig. 2
(the figure has four different types of nodes, which will be dis-

Fig. 1 An example XML tree.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 2 Partial tree for the example.

cussed in detail in Section 3). By adding the nodes on the path
from the root, we are now able to apply the queries based on the
parent-child relationships.

In this paper, we deal with an important subset of XPath
queries called navigational XPath queries [7] in which we specify
the nodes with not only the parent-child relationships but also the
intra-sibling relationships and additional conditions called pred-
icates. Although a partial tree has the parent-child relationships
from the root, it lacks the information required to process navi-
gational XPath queries: a node may have only some of its chil-
dren, and some siblings may be on another partial tree. Therefore,
we develop a new algorithm for processing navigational XPath
queries over a set of partial trees with communication. Our al-
gorithm is easy to implement because it processes the steps in a
query (including those in predicates) one by one and is efficient
because we carefully analyzed the conditions to reduce the com-
munication among partial trees.

The contributions of our study are summarized as follows.
• Formalizing the structure for XML chunks: We first for-

malize the structure and properties of partial trees that are
given from chunks of an XML document (Section 3). We
also show an algorithm to parse the chunks and construct the
partial trees (Section 4).

• Parallelizing XPath Queries: We then develop an algo-
rithm for executing the navigational XPath queries in parallel
(Section 5). Basically, the algorithm runs independently on
partial trees, but it also performs communication to obtain
the correct query results.

• Experiments on GB-level XML documents: We imple-
mented the algorithm in Java and conducted experiments on
a PC cluster with GB-level XML documents (Section 6).
Our implementation successfully processed an 8 GB XML
document in parallel and obtained speedups of a factor of
6.0 over 16 PCs.

The remainder of the paper is organized as follows. In Sec-
tion 2, we review the XPath query. In Section 3, we discuss the
partial trees in detail. In Section 4, we discuss how to construct
partial trees from chunks of an XML document. In Section 5, we
discuss executing XPath query algorithms in parallel. We report
the experiment results in Section 6. Related work is shown in
Section 7, and we conclude the paper in Section 8.

2. XPath Query

XML path language (XPath) [22] is a W3C standard for repre-

Query ::= ‘/’ LocationPath
LocationPath ::= Step | Step ‘/’ LocationPath
Step ::= AxisName ‘::’ NameTest Predicate?
AxisName ::= ‘self’ | ‘child’ | ‘parent’

| ‘descendant’ | ‘ancestor’
| ‘descendant-or-self’ | ‘ancestor-or-self’
| ‘following-sibling’ | ‘preceding-sibling’

NameTest ::= ‘*’ | string
Predicate ::= ‘[’ SimpleLocationPath ‘]’
SimpleLocationPath ::= SimpleStep

| SimpleStep ‘/’ SimpleLocationPath
SimpleStep ::= AxisName ‘::’ NameTest

Fig. 3 Grammars of XPath queries used in this paper.

senting queries to XML documents. In XPath, a query is repre-
sented in path notation. In this paper, we focus on an important
subset of XPath queries called navigational XPath queries [7].
Figure 3 shows the grammar of the XPath queries we use in this
paper.

An XPath query in this paper starts from the root and consists
of one or more steps. Each step consists of an axis, a name test,
and at most one predicate. An axis defines a set of nodes relative
to the nodes matched for the steps so far. We can use nine axes *1,
including following-sibling and preceding-sibling. A
name test is used for selecting nodes: if the name of a tag in an
XML document is equal to the name test, the node is selected. A
predicate written between “[” and “]” describes additional con-
ditions on the matched nodes by using a path without predicates.
For example, “/descendant::a/child::b[following-
sibling::d]” is an XPath query with two steps where
descendant and child are the axes, a and b are the name
test, and a predicate following-sibling::d is attached to the
second step. This query first retrieves all the nodes with name a
in an XML document, and then among their children it retrieves
node b with one or more following siblings with name d. In
other words, the result of the query is a set of nodes b that has its
parent a and at least one sibling d on its right.

3. Partial Tree

The main idea of our approach for evaluating large XML doc-
uments is to split an XML document into chunks and query the
chunks on different computers of a cluster. To support this, we
first define the structure for presenting a chunk in the memory,
which is called a partial tree. The partial tree is the core concept
in our research. We use partial trees to represent chunks of an
XML document and the XPath queries are also applied to partial
trees. Therefore, to begin with, we will give a detailed introduc-
tion to the partial tree.

3.1 Node Types and Definitions
Partial trees contain many different types of XML nodes. Four

types of nodes are shown in Fig. 4. A closed node has both its
start tag and end tag. A node without one of its tags is called an
open node. A left-open node is missing its start tag, and a right-
open node is missing its end tag. In the figures, the missing tags

1 Since the name-test allows a wildcard “”, we can translate the
following and preceding axes into a path in the grammar: for
example following::x is the same as ancestor-or-self::*/
following-sibling::*/descendant-or-self::x.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 4 Four node types.

Fig. 5 A standard model of partial tree.

are illustrated by a black dot: •. A pre-open node is a node miss-
ing both of its tags. Actually a node is no longer a node if it misses
both of its tags, but we need it for representing the parent node
of a partial tree, which specifies the relationships from the root.
Note that our research focuses on querying nodes; therefore, it is
not interesting for us that no tag is contained in a chunk, even if
we can denote the whole chunk as a pre-open node. All the three
types of nodes, left-open node, right-open node, or pre-node, are
called open nodes.

3.2 Standard Model for Partial Tree
Now we discuss the characteristics that partial trees generally

have. Since the left-open nodes, right-open nodes, and pre-nodes
are the special nodes in partial trees, we focus on the properties
of the open node.

The first property is about the parent-child relationship of the
open nodes.

Property 1 If a node on a partial tree is left/right open, then

its parent is also left/right open.

The second property is about the sibling relationship of the
open nodes.

Property 2 If a node is left open, it is the first node among

its siblings in the partial tree. If a node is right open, it is the last

node among its siblings in the partial tree.

There is another important property of pre-nodes.
Property 3 If there exist multiple pre-nodes, then only one of

them has left-open/closed/right-open nodes as its child.

We develop a standard model of partial trees based on these
properties as shown in Fig. 5.

The partial tree consists vertically of two parts: a list of pre-
open nodes and a forest of subtrees. We call the list of pre-open
nodes pre-path. The pre-path plays an important role in applying
queries from the root. From property 3, one or more subtrees con-
nect to a pre-node at the bottom of the pre-path. Note that for each
subtree, there is only one root, which is a left-open/closed/right-

open node, but there could be one or more subtrees.
From properties 1 and 2, we know that the left-open nodes are

located on the upper-left part of a partial tree and the right-open
nodes are located on the upper-right part. More precisely, the left-
open nodes form a list from a root node of a subtree, and we call
the list the left list (LL). Likewise, we call the list of right-open
nodes the right list (RL).

4. Partial Tree Construction

Since the structure of a partial tree is different from ordinary
XML trees, we designed an algorithm for partial tree construc-
tion. The algorithm for constructing partial trees has three steps:
constructing subtrees from parsing chunks, pre-path computation,
and computation for ranges.

4.1 Construction of Subtrees from Parsing XML Chunks
A partial tree is constructed from parsing an input XML chunk,

which is a substring created from splitting an XML document.
We design an algorithm that parses the input XML string into a
similar tree by using an iterative function with a stack. We use
an example XML document listed below to demonstrate how our
algorithm works.
<A><C><E></E></C><D></D><E></E><D><E>

</E></D><C></C><C><E></E></C><D><E></E></D>

<E><D></D></E><D></D><C></C>

From the document, we can create an XML tree as shown in
Fig. 6. We number these nodes in a prefix order for identification.

Then, we split the document into five chunks as listed below.
chunk0:<A><C><E></E></C><D></D>
chunk1:<E></E><D><E></E></D>
chunk2:<C></C><C><E></E></C><D>
chunk3:<E></E></D><E><D></D></E>
chunk4:<D></D><C></C>

When splitting an XML document, we need to deal with nodes
with missing tags. During parsing, we push the start tag onto the
stack. When we meet an end tag, we pop the last tag to merge a
closed node. However, as a result of splitting, some nodes miss
their matching tags. In this case, we mark it left-open or right-
open based on which part is missing. Then, we add them onto the
subtrees in the same way as we add closed nodes.

We also need to handle the case when the split position falls
inside a tag and thus splits the tag into two halves. In this case,
we simply merge the split tags. Because there are at most two
split tags on a partial tree, the time taken for merging them is
negligible.

One or more subtrees can be constructed from one chunk. We
construct nine subtrees by parsing the five chunks above as shown
in Fig. 7. Chunk0 and chunk4 have only one subtree while chunk2

has three subtrees. After the parsing phase, these subtrees are
used for pre-path computation.

4.2 Pre-path Computation
The basic idea of computing the pre-paths for each partial tree

is to make use of open nodes, because missing parent and an-
cestor nodes are caused by splitting these nodes. Therefore, the
information needed for creating the pre-paths lies in these open

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 6 An XML tree from the given XML string.

Fig. 7 Subtrees from parsing chunks.

Table 1 Open node lists.

Left-open nodes Right-open nodes

pt0 [] [A0]

pt1 [] [B6, B7]

pt2 [B7] [D13]

pt3 [B6, D13] []

pt4 [A0] []

nodes.
Algorithm 0 outlines the pseudo codes for pre-path computa-

tion. Because one chunk may generate more than one subtrees,
the input is a list of subtree lists. The length of the list is equal to
the number of partial trees, thus we represent the length as P.

Algorithm 0 has three phases. The first phase selects all left-
open nodes to LLS and all right-open nodes to RLS (line 2-4).
LLS [P] collect the left open nodes of the pth partial tree, likewise
we have RLS [P]. Note that the nodes in LLS [P] or RLS [P] are ar-
ranged in order from root to leaves. For example, in Table 1, we
select all the open nodes and add them to corresponding lists.

In the second phase, we do the pre-path computation. Once we
split an XML document from a position inside the document, the
two partial tree created from splitting have the same number of
open nodes on the splitting side. Given two consecutive partial
trees, the number of right-open nodes of the left partial tree is the
same as the number of left-open nodes of the right partial tree.
We can use this feature to compute pre-paths for partial trees.

Algorithm 0 GetPrepath(STS)

Input: STS: a list of subtree lists

Output: an indexed set of partial trees

1: /* open nodes in LLS or RLS are arranged in top-bottom order */

2: for all p ∈ [0, P) do

3: LLS[p] ← SelectLeftOpenNodes(STS[p])

4: RLS[p] ← SelectRightOpenNodes(STS[p])

5: /* Prepath-computation and collecting matching nodes */

6: AuxList ← []

7: for p ∈ [0, P − 1) do

8: AuxList.AppendToHead(RLS[p])

9: AuxList.RemoveLast(LLS [p+1].Size())

10: PPS [p+1] ← AuxList

11: /* Add pre-nodes to subtrees */

12: PTS ← []

13: for p ∈ [0, P) do

14: for i ∈ [0, PPS [p].S ize() − 1) do

15: PPS [p][i].children.Add(PPS [p][i+1])

16: PPS [p].last.children.Add(STS[p])

17: PTS[p] ← PPS [p][0]

18: return PTS

We first add the pth RLS to the head of an auxiliary list AuxList

(line 8), then remove the same number of nodes as the number of
(p − 1)th LLS (line 9). Last, we keep the nodes in the AuxList

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 8 Partial trees from the given XML string.

Table 2 Results of pre-path computation in AUX.

Left-open nodes Right-open nodes AUX

pt0 [] [A0] []

pt1 [] [B6, B7] [A0]

pt2 [B7] [D13] [A0,B6]

pt3 [B7, D13] [] [A0]

pt4 [A0] [] []

Table 3 All open nodes.

Left-open nodes Right-open nodes

pt0 [] [A0]

pt1 [A0] [A0, B6, B7]

pt2 [A0, B6, B7] [A0, B6, D13]

pt3 [A0, B6, D13] [A0]

pt4 [A0] []

to the (p + 1)th PPS , which holds the pre-nodes for each partial
tree. Table 2 shows the results of pre-path computation for the
given example.

In the last phase, we add pre-nodes to the corresponding par-
tial tree and copy the nodes in PPS [p] to PTS [p] as results for
output.Because pre-nodes in the pre-path are also open nodes, we
list all open nodes for each partial trees in Table 3. Then, the pre-
path computation is completed. For the given example, we obtain
the partial trees as shown in Fig. 8.

4.3 Creation of Ranges of Open Nodes
Once an XML node is split, it generates two or more open

nodes on consecutive partial trees. For example, as we can see
in Fig. 8, B6+ on pt1, +B6+ on pt2, and +B6 on pt3 are created
from the same node B6. For locating the open nodes of the same
node on different partial trees, we use two integers start and end

for the open nodes. With these two integers, we can decide the
partial trees that have matching nodes of the same open node.
Note that after adding nodes to a partial tree, the nodes from the
same node also have the same depth. Therefore, we can locate all
the matching nodes to set start and end for each open node. After

Table 4 Open node lists with ranges.

Left open nodes Right open nodes

pt0 [] [A0(0,4)]

pt1 [A0(0,4)] [A0(0,4), B6(1,3), B7(1,2)]

pt2 [A0(0,4), B6(1,3), B7(1,2)] [A0(0,4), B6(1,3), D13(2,3)]

pt3 [A0(0,4), B6(1,3), D13(2,3)] [A0(0,4)]

pt4 [A0(0,4)] []

computation, we obtain the ranges shown in Table 4.
By using these ranges, we can locate the matching nodes of the

same node on the different partial trees. For example, the range
of A0 is (0, 4), that means we can locate the same nodes of A0

from pt0 to pt4. As we can see, there are A0+, +A0+, +A0+, +A0+,
and A0+ on pt0 to pt4, respectively.

5. XPath Queries on Partial Trees

When we design the XPath query algorithms for a set of partial
trees, there are the following three main difficulties.

First, a node in the original XML tree may be split into two
or more nodes in different partial trees. When such a node is se-
lected in a partial tree (e.g., B6+ on pt1), the other corresponding
nodes (+B6+ on pt2 and +B6 on pt3) should also be selected to be
consistent.

Second, though the partial trees have all the parent-child edges
of their nodes, the sibling-relation that is split among partial trees
is missing. When we perform queries with following-sibling
or preceding-sibling, the results may be on another (possibly
far) partial tree. We need to design an algorithm to let the partial
trees know about such cases.

Third, when we perform queries with a predicate, we usually
execute the sub-query in the predicate from a set of matching
nodes. However, on a set of partial trees, the starting nodes and
the matching nodes of the sub-query may be on different partial
trees. We also need an algorithm to propagate the information
over partial trees for queries with predicates.

In this section, we develop an algorithm for XPath queries on
a set of partial trees. We first show the outline of the algorithm
and then describe the details of the queries. We use the following

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

three XPath expressions as our running examples.
Q1 : /child::A/descendant::B/descendant::C/parent::B
Q2 : /descendant::B/following-sibling::B
Q3 : /descendant::B[following-sibling::B/child::C]
/child::C

We also discuss the complexity of our algorithm at the end of this
section.

5.1 Node Definition
We give a few definitions to partial tree nodes for XPath

queries. Each node has a type denoting its node type and depth

denoting the number of edges from the node to the root. A node
has four pointers pointing to related nodes: the parent pointer
points to its parent and the children pointer points to its children.
For accessing siblings, it has the presib pointer and the folsib

pointer that point to its preceding-sibling node and following-
sibling node, respectively. It is a common requirement that we
should know from which partial tree a node comes in distributed
memory environments; therefore, we number each partial tree
with a unique id denoted as partial tree id or simply ptid for dis-
tinguishing partial trees. We number ptid from 0 to P - 1 (where
P is the total number of partial trees) in document order. Each
node has a unique id called uid, and we define data type Link for
holding ptid and uid. By using FindNode(pt, uid), we can locate
any node with a unique integer uid on partial tree pt. We assume
that we can find a node in constant time.

5.2 Queries without Predicate
Algorithm 1 in Fig. 9 shows the outline of our XPath query al-

gorithm. The inputs are a query and a set of partial trees. The
output is a set of matching nodes, each of which is associated
with the corresponding partial tree.

The query starts from the root of the XML tree. Note that
the root node corresponds to the root node of every partial tree,
and they are put into the lists for intermediate results (lines 1–2).
Hereafter, the loops by p over [0, P) are assumed to be executed
in parallel.

An XPath query consists of one or more steps, and in our algo-
rithm they are processed one by one. For each step, our algorithm
calls a sub-algorithm based on its axis (given later) and updates
the intermediate results (line 4).

Lines 6–9 will be executed when a query has a predicate. We
will explain this part later in Section 5.3.
5.2.1 Downwards Axes

Algorithm 2 in Fig. 10 shows the procedure for querying a step
with a child axis. The input InputList[P] has the nodes selected up
to the last step on each partial tree. The algorithm simply lists up
all the children of input nodes and compares their tags with the
node test (lines 3–4).

Algorithm 3 in Fig. 10 shows the procedure for querying a
step with descendant axis. Starting from every node in the in-
put, we traverse the partial tree by depth-first search with a stack.
To avoid traversing the same node more than once, we add the
isChecked flag for each node (lines 8–9). Note that we can re-
duce the worst-case complexity using this flag from square to lin-
ear with respect to the number of nodes.

Algorithm 1 Query(steps, pt[P])

Input: steps: an XPath expression

pt[P]: an indexed set of partial trees

Output: an indexed set of results of query

1: for p ∈ [0, P) do

2: ResultListp ← { ptp.root }
3: for all step ∈ steps do

4: ResultList[P]

← Query〈step.axis〉(pt[P],ResultList[P], step.test)

5: if step.predicate � null then

6: PResultList[P] ← PreparePredicate(ResultList[P])

7: for all pstep ∈ step.predicate do

8: PResultList[P]

← PQuery〈step.axis〉(pt[P],PResultList[P], pstep)

9: ResultList[P] ← ProcessPredicate(PResultList[P])

10: return ResultList[P]

Fig. 9 Overall algorithm of XPath query for partial trees.

Now let us look at our running example Q1. For the first step
child::A, we obtain only one node for each partial tree.

pt0 pt1 pt2 pt3 pt4

[A0+] [+A0+] [+A0+] [+A0+] [+A0]

Then we perform the next step descendant::B independently
for each partial tree from the result shown above. The following
are the results up to descendant::B.

pt0 pt1 pt2 pt3 pt4

[B1] [B6+, B7+] [+B6+,+B7] [+B6] [B17, B20]

For the third step descendant::C, the algorithm works in a sim-
ilar way. It is worth noting that the isChecked flag now works.
For example, on pt1, starting from B6+, we traverse B7+, D8, E9,
and then starting from B7+, we can stop the traverse immediately.
The results up to descendant::C are as follows.

pt0 pt1 pt2 pt3 pt4

[C2] [] [C10, C11] [] [C19]

5.2.2 Upwards Axes
In the querying of a step with downwards axes, the algorithm

has nothing specific to partial trees. This is due to Property 1 in
Section 3.2. Let an open node x be selected after a downwards
query. Then, it should have started from an open node (this is an
ancestor of x) and the corresponding nodes should have all been
selected, which means all the nodes corresponding to x should be
selected after the query.

This discussion does not hold for the queries with an upwards
axis. When an open node is selected after an upwards query, it
may come from a closed node and we have no guarantee that all
the corresponding open nodes are selected. Therefore, we add
a postprocessing of sharing the selected nodes for the upwards
axes.

Algorithm 4 in Fig. 11 shows the procedure for querying a step
with parent axis. It has almost the same flow as that of the child
axis (lines 1–5), except for the last call of the ShareNodes func-
tion.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Algorithm 2 Query〈child〉(pt[P], InputList[P], test)

Input: pt[P]: an indexed set of partial trees

InputList[P]: an indexed set of input nodes

test: a string of nametest

Output: an indexed set of results

1: for p ∈ [0, P) do

2: OutputListp ← []

3: for all n ∈ InputListp do

4: OutputListp

← OutputListp ∪ [nc | nc ∈ n.children, nc.tag = test]

5: return OutputList[P]

Algorithm 3 Query〈descendant〉(pt[P], InputList[P], test)

Input: pt[P]: an indexed set of partial trees

InputList[P]: an indexed set of input nodes

test: a string of nametest

Output: an indexed set of results

1: for p ∈ [0, P) do

2: SetIsChecked(ptp, false)

3: OutputList ← []

4: for all n ∈ InputListp do

5: Stack ← {n}
6: while not Stack.Empty() do

7: nt ← Stack.Pop()

8: if nt.isChecked then continue

9: nt.isChecked ← true
10: OutputListp

← OutputListp ∪ [nc | nc ∈ nt.children, nc.tag = test]

11: Stack.PushAll(nt.children)

12: return OutputList[P]

Fig. 10 Query algorithm for downwards axes.

The ShareNodes function in Fig. 11 keeps open node consis-
tency. It consists of two parts *2. First, it collects all the selected
open nodes from partial trees (lines 4–6). Then, based on the
range information of node n (n.start and n.end), we add all the
corresponding selected nodes to all the partial trees.

Now, we continue our running example Q1. For the
parent::B after the descendant::C, we first directly select the
parent nodes of the intermediate results independently. The re-
sults are as follows.

pt0 pt1 pt2 pt3 pt4

[B1] [] [+B7,+B6+] [] [B17]

Here, unfortunately node +B7 is selected on pt2, but its corre-
sponding node on pt1 is not selected.

We then compute the ShareNodes function. By collecting
all the open nodes from all the partial trees, we have a list
[+B7,+B6+]. Since they have ranges (1, 2) and (1, 3), respec-
tively, pt1 receives two nodes B7+ and B6+, pt2 receives two nodes

*2 In our implementation of this ShareNodes function, there are two phases
of communication: all the partial trees send their open nodes to a process
and then the necessary data for a partial tree are sent back.

Algorithm 4 Query〈parent〉(pt[P], InputList[P], test)

Input: pt[P]: an indexed set of partial trees

InputList[P]: an indexed set of input nodes

test: a string of nametest

Output: an indexed set of results

1: for p ∈ [0, P) do

2: OutputListp ← []

3: for all n ∈ InputListp do

4: if n.parent � null and n.parent.tag = test then

5: OutputListp.Add(n)

6: return ShareNodes(pt[P], OutputList[P])

Algorithms 5 ShareNodes(pt[P], NodeList[P])

Input: pt[P]: an indexed set of partial trees

NodeList[P]: an indexed set of nodes

Output: an indexed set of nodes after sharing

1: /* Select all open nodes and append them to a node list */

2: ToBeShared ← []

3: for p ∈ [0, P) do

4: OpenNodes← [n | n ∈ NodeListp,

5: n.type ∈ {LeftOpen,RightOpen,PreNode}]
6: ToBeShared ← ToBeShared ∪ OpenNodes

7: /* Regroup nodes by partial tree id and add them to NodeList */

8: for p ∈ [0, P) do

9: ToBeAddedp ← [n | n ∈ ToBeShared, n.start ≤ p ≤ n.end]

10: OutputListp ← NodeListp ∪ ToBeAddedp

11: return OutputList[P]

Fig. 11 Query algorithms for upwards axes.

+B7 and +B6+, and pt3 receives one node +B6. By taking the
union with the previous intermediate results, we obtain the fol-
lowing final results.

pt0 pt1 pt2 pt3 pt4

[B1] [B6+, B7+] [+B7,+B6+] [+B6] [B17]

5.2.3 Intra-sibling Axes
The following- or preceding-sibling axes retrieve nodes from

a set of nodes that are siblings of the current node. In our par-
tial trees, a set of those sibling nodes might be divided into two
or more partial trees. Therefore, these intra-sibling axes require
querying on other partial trees in addition to the local querying.

Without loss of generality, we discuss the following-sibling
axis only. Algorithm 6 in Fig. 12 shows the procedure for query-
ing a step of following-sibling axis, which consists of four stages:
local query, preparation, regrouping, and remote query.

In the local query, we utilize the folsib pointer and the
isChecked flag to realize linear-time querying (lines 6–10). Then,
in the preparation, we select the nodes that are passed to another
partial tree to perform the remote query. The latter two conditions
(lines 14, 15) are rather easy: we will ask a remote query if the
parent node can have more segments on the right (i.e., right open).
The former condition (line 13) is a little tricky. Even if the latter
two conditions hold, we do not need a remote query if the node it-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

self is right open. Notice that if a node is right open then it should
have a corresponding left-open node on another partial tree, and
that node will ask for a remote query. The regrouping is almost
the same as that in ShareNodes, and the difference is the range
we consider (we only look at the right for the following-sibling).
Finally, the remote query finds the children from the intermediate
nodes given by regrouping.

Now, let us look at our running example Q2. After
descendant::B, we have the following results.

pt0 pt1 pt2 pt3 pt4

[B1] [B6+, B7+] [+B6+,+B7] [+B6] [B17, B20]

With the first phase of following-sibling::B, we get the
following results.

pt0 pt1 pt2 pt3 pt4

[] [] [] [] [B20]

Then, we collect the parent nodes that satisfy the conditions (lines
13–15). Such nodes and their ranges are: A0+with range [1,4] (on
pt0), +B6+ with range [3,3] (on pt2), and +A0+ with range [4,4]
(on pt3). By regrouping the nodes based on the partial tree id, the
input nodes for the remote query are as follows.

pt0 pt1 pt2 pt3 pt4

[] [+A0+] [+A0+] [+A0+,+B6] [+A0]

Starting from these intermediate results, we query their children
and obtain the following results. Note that these results are also
the final results for the query since the result of a local query is a
subset of this remote query.

pt0 pt1 pt2 pt3 pt4

[] [B6+] [+B6+] [+B6] [B17, B20]

5.3 Queries with Predicate
Predicates in this paper are filters that check existence of

matched nodes by given steps (simple steps without predicates).
Our algorithm for handling predicates consists of three 3 phase:
preparing, evaluating steps in predicates, and processing predi-
cates. The main differences of processing predicates are the el-
ements of their intermediate data. In the evaluation of steps, we
select nodes as we do for steps without predicates. In the query-
ing in predicates, we also attach a link to the original nodes from
which the predicates are evaluated. Since the upwards or intra-
sibling axes may select a node on a different partial tree, the link
is a pair of partial tree id and the index of nodes in the partial tree.
The intermediate data will be denoted as (x, (i, y)) in the pseudo
code or as x → {pti.y} in the running example, both of which
mean node x is selected and it has a link to node y on pti.
5.3.1 Preparing Predicate

Algorithm 7 in Fig. 13 shows the procedure for initializing the
process of a predicate. It just copies the nodes from the input with
a link to the node itself.

For example in Q3, we have the following matched nodes up
to the step descendant::B before the predicate evaluation.

Algorithm 6 Query〈following-sibling〉(pt[P], InputList[P], test)

Input: pt[P]: an indexed set of partial trees

InputList[P]: an indexed set of input nodes

test: a string of nametest

Output: an indexed set of results

1: for p ∈ [0, P) do

2: /* Local query */

3: SetIsChecked(ptp, false)

4: OutputListp ← []

5: for all n ∈ InputListp do

6: while n.isChecked = false and n. f olsib � null do

7: n.isChecked ← true
8: n← n. f olsib

9: if n.tag = test then

10: OutputListp.Add(n)

11: /* Preparing remote query */

12: for all n ∈ InputListp do

13: if n.type � {RightOpen,PreNode}
14: and n.parent � null

15: and n.parent.type ∈ {RightOpen,PreNode} then

16: ToBeQueried.Add((n.parent, p + 1, n.parent.end))

17: /* Regroup nodes by partial tree id */

18: for p ∈ [0, P) do

19: RemoteInputp ← [n | (n, st, ed) ∈ ToBeQueried, st ≤ p ≤ ed]

20: /* Remote query */

21: RemoteOutput[P] ← Query〈child〉(pt[P], RemoteInput[P], test)

22: for p ∈ [0, P) do

23: OutputListp ← OutputListp ∪ RemoteOutputp

24: return OutputList[P]

Fig. 12 Algorithm for Following-sibling axis.

pt0 pt1 pt2 pt3 pt4

[B1] [B6+, B7+] [+B6+,+B7] [+B6] [B17, B20]

After the call of PreparePredicate, we have the following in-
termediate results. Note that all the links point to the nodes them-
selves at the beginning.

pt0 pt1

[B1 → {pt0.B1}] [B6+→ {pt1.B6+}, B7+→ {pt1.B7+}]

pt2 pt3

[+B6+→ {pt2.+B6+},+B7 → {pt2.+B7}] [+B6 → {pt3.+B6}]

pt4

[B17 → {pt4.B17}, B20 → {pt4.B20}]
5.3.2 Evaluation of Steps in Predicate

The evaluation of steps is almost the same as that without pred-
icate. For example, Algorithm 9 in Fig. 14 shows the procedure
for querying a step with a child axis in the predicate; the differ-
ence is the type of intermediate values and the copying of links.

There is another important difference for the descendant, an-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

cestor, following-sibling, and preceding-sibling. In the querying
without predicate, we used the isChecked flag to avoid travers-
ing the same node more than once. In the querying in predicates,
however, the different nodes may have different links and this pre-
vents us from using the flag. As we can see in the discussion on
complexity later, this modification makes the algorithm over lin-
ear.

Now we continue our running example Q3. We then apply the
query following-sibling::B in two phases: the local query
and the remote query. The local query is the same as that of the
previous section. The results are as follows.

pt0 pt1 pt2 pt3 pt4

[] [] [] [] [B20 → {pt4.B17}]
The bigger difference exists in the remote queries.

pt0 pt1 pt2 pt3

[] [B6+→ {pt0.B1}] [+B6+→ {pt0.B1}] [+B6 → {pt0.B1}]

pt4

[B17 → {pt0.B1, pt3.+B6}, B20 → {pt0.B1, pt3.+B6}]
Although selected nodes are the same as before, they may have
multiple links: selected B17 and B20 both have two links. By merg-
ing results from local and remote queries, we finally have the fol-
lowing intermediate results after following-sibling::B in the
predicate.

pt0 pt1 pt2 pt3

[] [B6+→ {pt0.B1}] [+B6+→ {pt0.B1}] [+B6 → {pt0.B1}]

pt4

[B17 → {pt0.B1, pt3.+B6}, B20 → {pt0.B1, pt3.+B6, pt4.B17}]
Similarly, by applying the following step child::C, the inter-

mediate results are as follows.

pt0 pt1 pt2 pt3 pt4

[] [] [+C11 → {pt0.B1}] [] [C19 → {pt0.B1, pt3.+B6}]
5.3.3 Processing Predicate

Finally, we process the intermediate results to obtain the re-
sults after filtering. Algorithm 8 in Fig. 13 shows the procedure
for processing the predicate.

The algorithm is similar to the ShareNodes function, but in this
case we consider all the results instead of open nodes. First, we
collect all the links (lines 3–4) and then select only the nodes that
have at least one link to the node (lines 5–6). Since there is no
guarantee that all the corresponding open nodes have been acti-
vated by predicates, we need an additional call of ShareNodes.

For our running example Q3, Algorithm 8 works as follows.
Links C11 → {pt0.B1} in the intermediate results of pt2 adds node
B1 to the result list of pt0 and C19 → {pt0.B1, pt3.+B6} in the inter-
mediate results of pt4 adds two nodes, B1 on pt0 and +B6 on pt3,
respectively. We then apply the ShareNodes function and obtain
the following intermediate results.

pt0 pt1 pt2 pt3 pt4

[B1] [B6+] [+B6+] [+B6] []

Algorithm 7 PreparePredicate(InputList[P])

Input: InputList[P]: an indexed set of lists of nodes

Output: an indexed set of lists of (node, link)

1: for i ∈ [0, P) do

2: OutputListp ← [(n, (p, n.uid))|n ∈ InputListp]

3: return OutputList

Algorithm 8 ProcessPredicate(pt[P], InputList[P])

Input: pt[P]: an indexed set of partial trees

InputList[P]: an indexed set of lists of (node, link)

Output: an indexed set of lists of filtered nodes

1: /* regroup links by partial tree id. */

2: AllLinks← []

3: for i ∈ [0, P) do

4: AllLinks← AllLinks ∪ [(p′, i′)|(n′, (p′, i′)) ∈ InputListp]

5: for i ∈ [0, P) do

6: Activatedp ← [n | (p′, i′) ∈ AllLinks, p = p′, n.uid = i′]

7: return ShareNodes(pt[P], Activated[P])

Fig. 13 Query algorithm for handling predicate.

Algorithm 9 PQuery〈child〉(pt[P], InputList[P], test[P])

Input: pt[P]: an indexed set of partial trees

InputList[P]: an indexed set of lists of (node, link)

test: a string of nametest

Output: an indexed set of lists of (node, link)

1: for p ∈ [0, P) do

2: OutputListp ← []

3: for all (n, link) ∈ InputListp do

4: OutputListp

← OutputListp ∪ [(nc, link) | nc ∈ n.children, nc.tag = test]

5: return OutputList[P]

Fig. 14 Query algorithm for child axis in a predicate.

The last step is simply calling the processing of the step with child
axis, and the final results for Q3 are as follows.

pt0 pt1 pt2 pt3 pt4

[C2] [] [C11] [] []

Then, the query of Q3 is completed. All the nodes in the result
lists are the final results.

5.4 Worst-case Complexity
At the end of this section, we discuss the time complexity of

our algorithms. Here we analyze the worst-case complexity in the
following categorization:
• axes,
• without or in predicate, and
• local computation and network communication.
For discussion, let N be the total number of nodes in a given

XML document, H be the tree height, and P be the number of
partial trees. Assuming that the given document is evenly split,
the number of nodes in a chunk is N/P. Each partial tree may
have pre-path, which has at most H extra nodes. Therefore, the

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Table 5 Time complexity.

without predicate in predicate

computation network computation network

child O(N/P + H) 0 O(N/P + PK2) 0

descendant O(N/P + H) 0 O(KN/P + PK2) 0

parent O(K) O(PH) O(PK2) O(P2HK)

ancestor O(N/P + H) O(PH) O(KN/P + PK2) O(P2HK)

folsib O(N/P + H) O(PH) O(KN/P + PK2) O(P2HK)

prepare O(N/P + H) 0

process O(P2K2) O(P2K2)

number of nodes in a partial tree is at most N/P + H. The num-
ber of open nodes are at most 2H. Let the number of nodes in
the intermediate results be K; this is also the size of the input for
processing a step.

Table 5 shows the time complexity of the axes without or with
predicates. We discuss some important points with regard to the
time complexity.

For the querying without predicate, the local computation cost
is linear with respect to the size of the tree. Naive implementa-
tion of the descendant, ancestor, or following-sibling would have
squared the cost. In our algorithm, we obtained the linear cost by
using the isChecked flag.

For the downwards axes (child and descendant) and to prepare
predicates, we need no communication. For the parent, ancestor,
and following-sibling, we require communication. The amount of
data to be exchanged is O(PH). With these results, the total com-
plexity of our XPath query algorithm is O(N/P + PH) if we have
no predicates. This is a cost optimal algorithm under P <

√
N/H.

When there are predicates, the worst-case complexity becomes
much worse. The two main reasons are as following.
• Due to the links, we cannot simply use the isChecked flag.

This introduces additional factor K for the computation.
• The number of links is at most PK for each node. If all

the open or matched nodes on all the partial trees have that
many links, then the total amount of network transfer be-
comes O(P2HK) or O(P2K2).

By summing all the terms, the time complexity of querying XPath
with predicate is bound by O(KN/P + P2K2).

6. Experiments and Discussion

In this section, we report the results of the experiments con-
ducted to test the efficiency of our algorithms. The experiments
test two queries on difference sizes of machine-generated XML
documents, ranging from 669 MB to 8 GB.

6.1 Experimental Data
The experimental data we used in our experiments are gen-

erated by xmlgen, which is an XML document generator devel-
oped under the an XML benchmark project, XMark [24]. The
XMark project aims to provide a benchmark suite that allows
users and developers to gain insights into the characteristics of
their XML repositories. It produces XML documents model-
ing an auction website, a typical e-commerce application. The
xmlgen-generated data are well-formed, valid, and meaningful to

Fig. 15 Structure of xmlgen generated XML tree.

the size of several GBytes. The number and type of elements
are chosen in accordance with a template and parameterized with
certain probability distributions. The characteristics of the doc-
ument are fully preserved under scaling, aiding the analysis of
bottlenecks and how they evolve with increasing data volume.

The xmlgen generates XML documents by repeating nodes
many times from a model tree, which means we can obtain the
tree with the same structure when nodes that have the same tag
names on the same level are removed. This root and first level of
this model are shown in Fig. 15. The root site has many nodes
with different names (actually, there are 7 children). The xml-
gen generates XML documents of different sizes with only one
input parameter. For example, we can create 1 GB of file by a pa-
rameter of 9. In our experiments, the sizes of XML files created
by xmlgen range from 669 MB (the parameter is 7) to 8 GB (the
parameter is 72).

To show the effectiveness of our parallel XPath query algo-
rithm, we perform two types of tests. In the first test, we applied
queries to an XML file of 669 MB to show the scalability of the
algorithm with respect to the number of PCs. In the second test,
we fixed the number of PCs to 16 and increased the size of the
XML documents.

We use the queries in Table 6 for our tests. The first three
queries Q4, Q5, and Q6 test the scalability and data processing
ability. The last Q7, which has the most steps, is to test how
much the network communications affect the performance.

6.2 Hardware
The algorithm was implemented under a server/client architec-

ture programmed in Java. The server ran on a single PC, which
had an Intel(R) Core(TM) i5-760 CPU @ 2.80 GHz CPU, 8 GB of
memory, and the OS and Java environment were Windows 7 and
Java 1.8. The clients ran on at most 16 PCs in a PC cluster, where
9 PCs had Intel(R) Core(TM) i5-2500 @ 3.30 GHz CPU, 7 PCs
had Intel(R) have Core(TM) i5 CPU 760 @ 2.80 GHz, 8 GB of
memory, and the OS and Java environment were Ubuntu 14.04
LTS (Linux kernel: 3.16.0-41-generic) and Java 1.8. We solely
focus on the performance of our algorithms querying on partial
trees; thus, we construct only one partial tree for each client com-
puter and do not use any multi-thread techniques, hyper thread-
ing, or other memory-sharing techniques.

6.3 Parallel Speedups
This first experiment tested the efficiency and parallel speedups

of querying with respect to the number of PCs. We use an XML
file of size 669 MB and the three queries Q4, Q5, and Q6 with
1, 2, 4, 8 and 16 client PCs. The size of XML data on one sin-
gle computer we have tested is 669 MB. We split the input trees
evenly by size.

Figure 16 shows the speedups and time taken for the three

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Table 6 Queries used for the experiments.

Q4 /child::site/descendant::keyword/parent::text

Q5 /child::site/child::people/child::person[child::profile/child::gender]/child::name

Q6 /child::site/child::open auctions/child::open auction/child::bidder[following-sibling::bidder]

Q7 /child::site/child::closed auctions/child::closed auction/child::annotation/child::description/

child::text/child::keyword

Fig. 16 Speedups and time with respect to the number of clients PCs.

Fig. 17 Time taken and data processing ability.

queries. The time taken is significantly reduced for all three
queries as the number of clients increases. It is more apparent
for Q4. Because Q4 has no predicate and the communication af-
fects the overall time less. We achieved speedups of a factor of
6.0 for Q4 with 16 clients. Both Q5 and Q6 have a predicate, and
it requires more communication phases. The speedups for them
are relatively low, a factor of 3.6 for Q6 and 2.3 for Q5. We will
discuss these lower speedups by analyzing the network commu-
nication cost in Section 6.5.

6.4 Scalability
The second experiment is designed to evaluate the performance

of data processing ability per computer as the sizes of input XML
data increase. The size of XML data on a single computer that can
be processed is limited to around 669 MB because of the limit of
the size of memory of a single computer. Some necessary fields

and variables of a single node are declared, which takes extra
space that is more than the size of the original XML string. We
split input data at a maximum of 512 MB for a single computer.
We use 16 computes for computation, and the sizes of the input
XML data range from 1 GB to 8 GB. The time taken is shown in
Fig. 17 (1).

The times taken of Q4 and Q5 are almost doubled as the sizes
of the input XML data doubled as shown in Fig. 17 (1). For Q6,
the time taken is doubled when the size of data increases from
1 GB to 2 GB and 2 GB to 4 GB. However, when the size of data
increases from 4 GB to 8 GB, the time taken is a little more than
doubled. We believe that the extra time is likely caused by the
cost by the rapid increase of intermediate data and the cost of
network communication. We will discuss the cost of the network
communication in the following section.

From Fig. 17 (2), the data processing ability of a single com-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Fig. 18 Cost of network communication.

puter ranges from about 200 MB/s to 300 MB/s. We also find
that when the size of data increases, the data processing ability
increases as well. It also attributes to the cost of the network
communication.

6.5 Communication Cost
Our algorithms are implemented with server/client architec-

ture. The communication between the server and the clients is
based on TCP/IP protocol. The server is in charge of partial tree
construction and evaluation control of queries. It holds the in-
formation of open nodes of all the partial trees, including the
ranges. The communication mechanism in our framework is
based on string messages. We tested the communication between
the server and the clients. The results are shown in Fig. 18.

As we can see in Fig. 18 (1), when a new client is added, it
takes approximately 1 extra millisecond for a single step on the
network. For 16 clients, each query step takes around 20 ms for
network communication. We also tested Q7. Even if we use more
computers, we obtain a speedup of less than 1, which means the
efficiency is slowed down by the cost of network communication.

For Q7, the efficiency goes down even when the number of
clients increases. The reason is that for each step of the Q7, it
takes around 20 ms for the communication when 16 clients are
used. In addition, the child axis does not take too much time for
evaluation. Therefore, the time saved by increasing the number
of clients is wasted due to the cost of network communication.

We also evaluated the cost of network communication for the
former two experiments. For the experiments in Section 6.3,
as we can see in Fig. 18 (2), the more computers are used, the
more time is taken on network communication. That is why the
speedup increase was not obvious when more computers were
added. We can obtain the same conclusion from Fig. 18 (3).

For the experiments in this section, since the number of com-
puters are the same, the time taken on network is almost the same.
When the size of the data increases, the effect of network commu-
nication becomes less. Therefore, we can conclude that we can
obtain better performance as the size of the data increases. For
the network, if we could improve the implementation to reduce
the cost of network communication, we could get better perfor-
mance for a small amount of data.

6.6 Imbalance of Xmlgen-generated XML Tree
After analyzing these data carefully, we find that our algorithm

does not show the best performance by using these XML docu-
ments, because of the imbalanced structure of xmlgen-generated

Fig. 19 An example of tree assignment to computers.

XML documents.
In Fig. 15, the children of the root have different tags. When

we evaluate an XPath query on this tree by using our algorithm,
we sometimes only query a small part of the tree, which means
we apply queries on some of the partial trees that contain specific
nodes while we do nothing to the other.

For example, as we can see in Fig. 19, the highlighted parts
are the traversed edges of the tree by Q7. We use two comput-
ers for the query. The specific nodes are all on the first partial
tree on computer 1. While on computer 0, there is no node that
has the tag name “close auction” as child of site; therefore,
computer 1 is idle after testing the second step of Q7.

From our experiments, we also find that only part of the com-
puters take part in the computation. When we use only one com-
puter for loading 669 MB of data, the total number of nodes is
10023967. And there are 15300 person nodes for Q5 and 72000
closed auction nodes for Q6. As we can see in Table 7 and
Table 8, we only obtain 2 out of PCs 4 and 3 out of 16 PCs that
have a result node after processing /child::person in Q5. That
means only a few of the PCs are used in the query while the oth-
ers are idle. We also notice that when the number of computers
increased from 4 to 16, the number of the computers for com-
putation only increased from 2 to 3 for child::people. Thus,
we cannot utilize the total number of PCs. We can obtain the
same conclusion when we take a look at the data for processing
/child::close auction step in Q6.

One more thing we have noticed is the imbalance of nodes dis-
tribution of partial trees. Note that for PC9 or PC10, there are
almost three times more nodes compared to others. Due to the
fact that we need to wait until all the computers’ work is done for
the next step, the imbalanced distribution of nodes also reduces
the speedup of these experiments.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

Table 7 16 PCs are used for steps in Q5 and Q6.

PC id Nodes Count /person /open auctions

1 442240 0 0

2 444828 0 0

3 442158 0 0

4 444515 0 0

5 441671 0 0

6 442697 0 0

7 442021 0 0

8 546640 14247 0

9 1331617 102551 0

10 1042920 36204 12032

11 886279 0 18666

12 890306 0 18643

13 891300 0 18720

14 591080 0 3943

15 513317 0 0

16 230460 0 0

Table 8 4PCs are used for steps in Q5 and Q6.

PC id Nodes Count /person /open auctions

1 1773703 0 0

2 1872954 14242 0

3 4151158 138759 49338

4 2226168 0 22663

From the above discussion, we come to the conclusion that the
structure of input XML documents affects the speedups of the
experiments. If we apply our algorithm to some well-balanced
XML trees, we could obtain better speedups related to the in-
crease in the number of computers.

7. Related Work

Many papers have addressed the topic of implementations of
XPath queries in parallel. One significant paper was presented
by IBM [3]. The paper proposes three kinds of strategies for
XPath queries in parallel: data partition strategy, query partition
strategy, and hybrid partition strategy. Many papers can be cat-
egorized to one of the strategies. References [11], [15], [25] fo-
cus on XPath queries implemented in a shared-memory environ-
ment. References [19], [23] focused on XML parsing, which is
related to our parsing algorithm. Reference [1] proposed ideas
about XML processing techniques that are helpful for our re-
search. Some prior researches are based on a common assump-
tion that a large amount of XPath queries are executed over an
XML stream. YFilter [5] and XMLTK [2] execute thousands of
small queries in parallel. The parsing phase is still sequential.
Indexing is also a hot topic for improving the performance of
parallel XML queries processing. References [4], [10], [12] are
related to this field. They examined the indices on different types
of trees, including B+-tree, R-tree, and XR-tree.

The idea of dividing the XML documents and running the com-
putation for trees with the chunks is not new. Kakehi et al. [13]

showed a parallel tree reduction algorithm from the nodes in
chunks. Based on the idea given by Kakehi et al., Emoto
and Imachi [6] developed a parallel tree reduction algorithm on
Hadoop, and Matsuzaki and Miyazaki [17] developed a parallel
tree accumulation algorithm. A similar approach was taken by
Sevilgen et al. [20] who developed a simpler version of tree accu-
mulations over the serialized representation of trees.

It is known that we can develop a parallel algorithm for XPath
queries using the tree accumulations [16]. The approach we took
in this paper is inspired by the work by Morihata [18]. To dis-
cuss the advantages of the proposed algorithm and compare by
implementation with other approaches are our important future
work.

8. Conclusion

In this paper, we proposed algorithms for a subset of XPath
queries on a large XML tree in parallel and implemented them
on a 16-node PC cluster. We developed our own framework for
the experiments. The experiment results showed a speedup of a
factor of 6 on a 16-node PC cluster.

Acknowledgments Part of this work was supported by JSPS
KAKENHI No.25330088.

References

[1] Andriescu, E.-M., Azzabi, A. and Hains, G.: Parallel processing of
Forward XPath queries: An experiment with BSML, TR-LACL, Vol.11
(2010).

[2] Avila-Campillo, I., Green, T.J., et al.: XMLTK: An XML toolkit for
scalable XML stream processing, Technical report, PlanX (2002).

[3] Bordawekar, R., Lim, L., Kementsietsidis, A. and Kok, B.: To Par-
allelize or Not to Parallelize: XPath Queries on Multi-core Systems,
IBM Research Report (2009).

[4] Chien, S.Y., Vagena, Z., Zhang, D., Tsotras, V.J. and Zaniolo, C.:
Efficient Structural Joins on Indexed XML Documents, VLDB 2002,
pp.263–274 (2002).

[5] Diao, Y., Fischer, P., Franklin, M., et al.: YFilter: Efficient and scal-
able filt. of XML doc. In ICDE, pp.341–342 (2002).

[6] Emoto, K. and Imachi, H.: Parallel tree reduction on MapReduce,
Proc. International Conference on Computational Science (ICCS
2012), Procedia Computer Science, Vol.9, pp.1827–1836, Elsevier
(2012).

[7] Franceschet, M. and XPathMark: Functional and performance
tests for XPath, XQuery Implementation Paradigms, Dagstuhl
Seminar Proceedings, No.06472, Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many (2007).

[8] Francis, N., David, C. and Libkin, L.: A direct transation from XPath
to nondet. automata, Workshop on Foundations of Data Management,
pp.350–361 (2011).

[9] Gazit, H., Miller, G.L. and Teng, S.-H.: Optimal tree contraction in
EREW model, Proc. Princeton Workshop on Algorithms, Architec-
tures, and Technical Issues for Models of Concurrent Computation,
1987 APLAS, pp.139–156 (2002).

[10] Grust, T.: Accelerating XPath Location Steps, SIGMOD 2002,
pp.109–120 (2002).

[11] Huang, X., Si, X., Yuan, X. and Wang, C.: A Dynamic Load-balancing
Scheme for XPath Queries Parallelization in Shared Memory Multi-
core Systems, Journal of Computers, pp.1436–1445 (2014).

[12] Jiang, H.F., Lu, H.J., Chin, B. and Wang, W.: XR-Tree: Indexing
XML Data for Efficient Structural Joins, ICDE, pp.253–264 (2003).

[13] Kakehi, K., Matsuzaki, K. and Emoto, K.: Efficient Parallel
Tree Reductions on Distributed Memory Environments, 7th Interna-
tional Conference on Computational Science (ICCS2007), pp.601–
608 (2007).

[14] Kawamura, K. and Matsuzaki, K.: Dividing Huge XML Trees Using
the m-bridge Technique over One-to-one orresponding Binary Trees,
IPSJ Trans. Programming, pp.40–50 (2014).

[15] Krulis, E. and Yaghob, E.: Efficient Implementation of XPath Proces-
sor on Multi-Core CPUs, pp.60–71 (2010).

[16] Matsuzaki, K.: Parallel Programming with Tree Skeleton, Ph.D. The-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.2

sis, The University of Tokyo (2007).
[17] Matsuzaki, K. and Miyazaki, R.: Parallel Tree Accumulations on

MapReduce, International Journal of Parallel Programming, online
(2015).

[18] Morihata, A.: Work Efficient Distributed-Memory Parallel Evalua-
tion of XPath Queries, 30th JSSST Conference Proceedings (2013)
(in Japanese).

[19] Pan, Y., Lu, W., Zhang, Y. and Chiu, K.: A static load-balancing
scheme for parallel XML parsing on multicore CPUs, IEEE Inter-
national Symposium on Cluster Computing and the Grid, Janeiro,
pp.351–362 (2007).

[20] Sevilgen, F.E., Aluru, S. and Futamura, N.: Parallel Algorithms for
Tree Accumulations, Journal of Parallel and Distributed Computing,
Vol.65, No.1, pp.85–93 (2005).

[21] W3C, XML Tutorial, available from 〈http://www.w3schools.com/
xml/〉 (accessed 2010).

[22] W3C, XML Path Language (XPath) 2.0 (Second Edition), available
from 〈http://www.w3.org/TR/xpath20/〉 (accessed 2010).

[23] Wu, Y., Zhang, Q., Yu, Z. and Li, J.: A Hybrid Parallel Processing for
XML Parsing and Schema Validation, The Markup Conference, Clus-
ter Computing and the Grid, Seventh IEEE International Symposium,
pp.351–362 (2008).

[24] XMark, XMark - An XML Benchmark Project, available from
〈http://www.xml-benchmark.org/generator.html〉 (accessed 2010).

[25] Zhang, Y., Pan, Y. and Chiu, K.: A Parallel XPath Engine Based on
Concurrent NFA Execution, IEEE 16th International Conference on
Parallel and Distributed Systems, pp.314–321 (2010).

Wei Hao is a Ph.D. student in Kochi Uni-
versity of Technology in Japan and is a
Lecturer in Anhui University of Science
and Technology in China. He received
his B.E. and M.S. from Anhui Univer-
sity of Science and Technology in 2004
and 2007, respectively, and began doc-
toral study since 2014. His current re-

search interest is in parallel programming and XML data pro-
cessing.

Kiminori Matsuzaki is an Associate
Professor of Kochi University of Technol-
ogy in Japan. He received his B.E., M.S.
and Ph.D. from The University of Tokyo
in 2001, 2003 and 2007, respectively. He
was an Assistant Professor (2005–2009)
in The University of Tokyo, before join-
ing Kochi University of Technology as an

Associate Professor in 2009. His research interest is in parallel
programming and algorithm derivation. He is a member of ACM,
JSSST, IEEE.

c© 2016 Information Processing Society of Japan

