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Abstract

This paper presents a detailed study of the integration of
knowledge from hierarchical word ontologies into a
maximum-entropy-based tagging model that simultaneously
labels words with both syntax and semantics. Our findings
show that ontological information can lead to strong
improvements in overall system accuracy, and in particular
increased accuracy for words not seen in the training data.

2. Introduction

Part-of-speech (POS) tagging has been one of the fundamental
areas of research in natural language processing for many years.
Most of the prior research has focussed on the task of labeling
text with tags that reflect the words' syntactic role in the
sentence. In parallel to this, the task of word sense
disambiguation (WSD), the process of in which semantic sense
the word is being used, has been actively researched. This paper
addresses a combination of these two fields, that is: labeling
running words with tags that comprise, in addition to their
syntactic function, a broad semantic class that signifies the
semantics of the word in the context of the sentence, but does not
necessarily provide information that is sufficiently fine-grained
as to disambiguate its sense. This differs from what is commonly
meant by WSD in that although each word may have many
“senses” (by senses here, we mean the set of semantic labels the
word may take), these senses are not specific to the word itself
but are drawn from a vocabulary applicable to the subset of all
types in the corpus that may have the same semantics. The
problem of how to deal with out of vocabulary word (OOV’s) is
central to the task of semantic tagging because the single most
useful feature in tagging is the identity of the word being tagged.
When this word has not occurred in the training data we are
deprived of the key information we need to identify its
semantics.

In order to mitigate this problem, we draw on research from
several related fields, and exploit publicly available linguistic
resources, namely the WordNet database [5], and a large corpus
of unannotated text. Qur aim is to simultaneously disambiguate
the semantics of the words being tagged while tagging their POS
syntax. We treat the task as fundamentally a POS tagging task,
with a larger, more ambiguous tag set. However, as we will show
later, the 'n-gram' feature set traditionally employed to perform
POS tagging, while basically competent, is not up to this
challenge, and needs to be augmented by features specifically
targeted at semantic disambiguation.
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3. Related Work

Our work is a synthesis of POS tagging and WSD, and as
such, research from both these fields is directly relevant here.

The basic engine used to perform the tagging in these
experiments is a direct descendent of the maximum entropy (ME)
tagger of Ratnaparkhi [15] which in turn is related to the taggers
of Kupiek [6] and Merialdo [11]. The ME approach is well-suited
to this kind of labeling because it allows the use of a wide variety
of features without the necessity to explicitly model the
interactions between them.

The literature on WSD is extensive. For a good overview we
direct the reader to Nancy and Jean [13]. Typically, the local
context around the word to be sense-tagged is used to
disambiguate the sense Yarowsky [19], and it is common for
linguistic resources such as WordNet [9][12][14], or bilingual
data [8] to be employed as well as more long-range context. An
ME-system for WSD that operates on similar principles to our
system [17] was based on an array of local features that included
the words/POS tags/lemmas occurring in a window of +/-3 words

‘of the word being disambiguated. Lamjiri [7] also contributed an

ME-based system that used a very simple set of features: the
article before; the POS before and after; the preposition before
and after, and the syntactic category before and after the word
being labeled. The features used in both of these approaches
resemble those present in the feature set of a standard n-gram
tagger, such as the one used as the baseline for the experiments in
this paper.

The semantic tags we use can be seen as a form of semantic
categorization acting in a similar manner to the semantic class of
a word in the system of Lamyjiri [7]. The major difference is that
with a lefi-to-right beam-search tagger, labeled context to the
right of the word being labeled is not available for use in the
feature set.

Although POS tag information has been utilized in WSD
techniques (e.g. Suarez [17]), there has been relatively little work
addressing the problem of assigning a part-of-speech tag to a
word together with its semantics, despite the fact that the tasks
involve a similar process of label disambiguation for a word in
running text.

4. Experimental Data

The primary corpus used for the experiments presented in this
paper is the ATR General English Treebank. This consists of
518,080 words (approximately 20 words per sentence, on
average) of text annotated with a detailed semantic and syntactic
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Figure 1: Example sentences from the training corpus.

tagset.

To understand the nature of the task involved in the
experiments presented in this paper, one needs some familiarity
with the ATR General English Tagset. For detailed presentations,
see Black et al. [3){2][1]. An apercu can be gained, however,
from Figure 1, which shows two sample sentences from the ATR
Treebank (and originally from a Chinese take-out food flier),
tagged with respect to the ATR General English Tagset. Each
verb, noun, adjective and adverb in the ATR tagset includes a
semantic label, chosen from 42 noun/adjective/adverb categories
and 29 verb/verbal categories, some overlap existing between
these category sets. Proper nouns, plus certain adjectives and
certain numerical expressions, are further categorized via an
additional 35 “proper—noun” categories. These semantic
categories are intended for any “Standard-American-English”
text, in any domain. Sample categories include:
“physical.attribute” (nouns/adjectives/adverbs), “alter” (verbs/
verbals), “interpersonal.act” (nouns/adjectives/adverbs/verbs/
verbals), “orgname” (proper nouns), and “zipcode” (numericals).
They were developed by the ATR grammarian and then proven
and refined via day-in-day-out tagging for six months at ATR by
two human “treebankers”, then via four months of tagset-testing-
only work at Lancaster University (UK) by five treebankers, with
daily interactions among trecbankers, and between the
treebankers and the ATR grammarian. The semantic
categorization is, of course, in addition to an extensive syntactic
classification, involving some 165 basic syntactic tags.

The test corpus has been designed specifically to cope with the
ambiguity of the tagset. It is possible to correctly assign any one
of a number of ‘allowable' tags to a word in context. For
example, the tag of the word battle in the phrase “a legal battle”
could be either NN1PROBLEM or NN1INTER-ACT,
indicating that the semantics is either a problem, or an inter-
personal action. The test corpus consists of 53,367 words
sampled from the same domains as, and in approximately the
same proportions as the training data, and labeled with a set of up
to 6 allowable tags for each word. During testing, only if the
predicted tag fails to match any of the allowed tags is it
considered an error.

5. Hierarchical Ontologies

The contribution of this paper is to consider the effect of
features derived from hierarchical sets of words. The primary
advantage is that we are able to construct these hierarchies using
knowledge from outside the training corpus of the tagger itself,
and thereby glean knowledge about rare words. In these
experiments we use the human annotated word taxonomy of
hypernyms (IS-A relations) in the WordNet database, and an
automatically acquired ontology made by clustering words in a
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large corpus of unannotated text.

We have chosen to use hierarchical schemes for both the
automatic and manually acquired ontologies because this offers
the opportunity to combat data-sparseness issues by allowing
features derived from all levels of the hierarchy to be used. The
process of training the model is able to decide the levels of
granularity that are most useful for disambiguation. For the
purposes of generating features for the ME tagger we treat both
types of hierarchy in the same fashion. One of these features is
illustrated in Figure 2. Each predicate is effectively a question
which asks whether the word (or word being used in a particular
sense in the case of the WordNet hierarchy) is a descendent of the
node to which the predicate applies. These predicates become
more and more general as one moves up the hierarchy. For
example in the hierarchy shown in Figure 3, looking at the nodes
on the right hand branch, the lowest node represents the class of
apple trees whereas the top node represents the class of all
plants.

We expect these hierarchies to be particularly useful when
tagging out of vocabulary words (OOV's). The identity of the
word being tagged is by far the most important feature in our
baseline model. When tagging an OOV this information is not
available to the tagger. The automatic clustering has been trained
on 100 times as much data as our tagger, and therefore will have
information about words that tagger has not seen during training.
To illustrate this point, suppose that we are tagging the OOV
pomegranate. This word is in the WordNet database, and is in the
same synset as the ‘fruit' sense of the word apple. It is reasonable
to assume that the model will have learned (from the many
examples of all fruit words) that the predicate representing
membership of this fruit synset should, if true, favor the
selection of the correct tag for fruit words: NN1FOOD. The
predicate will be true for the word pomegranate which will
thereby benefit from the model's knowledge of how to tag the
other words in its class. Even if this is not so at this level in the
hierarchy, it is likely to be so at some level of granularity.
Precisely which levels of detail are useful will be learned by the
model during training.

5.1 Automatic Clustering of Text

We used the automatic agglomerative mutual-information-
based clustering method of Ushioda [18] to form hierarchical
clusters from approximately 50 million words of tokenized,
unannotated text drawn from similar domains as the treebank
used to train the tagger. Figure 2 shows the position of the word
apple within the hierarchy of clusters. This example highlights
both the strengths and weaknesses of this approach. One strength
is that the process of clustering proceeds in a purely objective
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Figure 2: Dendrogram from automatically
acquired clustering process.

fashion and associations between words that may not have been
considered by a human annotator are present. Moreover, the
clustering process considers all types that actually occur in the
corpus, and not just those words that might appear in a dictionary
(we will return to this later). A major problem with this approach
is that the clusters tend to contain a lot of noise. Rare words can
easily find themselves members of clusters to which they do not
seem to belong, by virtue of the fact that there are too few
examples of the word to allow the clustering to work well for
these words. This problem can be mitigated somewhat by simply
increasing the size of the text that is clustered. However the
clustering process is computationally expensive. Another
problem is that a word may only be a member of a single cluster;
thus typically the cluster set assigned to a word will only be
appropriate for that word when used in its most common sense.

Approximately 93% of running words in the test corpus, and
95% in the training corpus were covered by the words in the
clusters (when restricted to verbs, nouns, adjectives and adverbs,
these figures were 94.5% and 952% respectively).
Approximately 81% of the words in the vocabulary from the test
corpus were covered, and 71% of the training corpus vocabulary
was covered.

5.2 WordNet Taxonomy

For this class of features, we used the hypernym taxonomy of
WordNet Fellbaum [5]. Figure 3 shows the WordNet hypernym
taxonomy for the two senses of the word apple that are in the
database. The set of predicates query membership of all levels of
the taxonomy for all WordNet senses of the word being tagged.
An example of one such predicate is shown in the figure.

Only 63% of running words in both the training and the test
corpus were covered by the words in the clusters. Although this
figure appears low, it can be explained by the fact that WordNet
only contains entries for words that have senses in certain parts
of speech. Some very frequent classes of words, for example
determiners, are not in WordNet. The coverage of only nouns,
verbs, adjectives and adverbs in running text is 94.5% for both
training and test sets. Moreover, approximately 84% of the words
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Figure 3: WordNet hierarchy derived from
hypernym taxonomy.

in the vocabulary from the test corpus were covered, and 79% on
the training corpus. Thus, the effective coverage of WordNet on
the important classes of words is similar to that of the automatic
clustering method.

6. Experimental Results

The results of our experiments are shown in Table 1. The task
of assigning semantic and syntactic tags is considerably more
difficult than simply assigning syntactic tags due to the inherent
ambiguity of the tagset. To gauge the level of human
performance on this task, experiments were conducted to
determine inter-annotator consistency; in addition, annotator
accuracy was measured on 5,000 words of data. Both the
agreement and accuracy were found to be approximately 97%,
with all of the inconsistencies and tagging errors arising from the
semantic component of the tags. 97% accuracy is therefore an
approximate upper bound for the performance one would expect
from an automatic tagger. As a point of reference for a lower
bound, the overall accuracy of a tagger which uses only a single
feature representing the identity of the word being tagged is
approximately 73%.

The overall baseline accuracy was 82.58% with only 30.58%
of OOV's being tagged correctly. It is immediately apparent from
Table 1 that there is a strong response to the new features based
on the ontological hierarchies. Performance for both clustering
techniques was quite similar, with the WordNet taxonomical
features being slightly more useful, especially for OOV's. One
possible explanation for this is that overall, the coverage of both
techniques is similar, but for rarer words, the MI clustering can
be inconsistent due to lack of data (for an example, see Figure 2:
the word newsstand is a member of a cluster of words that appear
to be commodities), whereas the WordNet clustering remains
consistent even for rare words. It seems reasonable to expect,
however, that the automatic method would do better if trained on
more data. Furthermore, all uses of words can be covered by
automatic clustering, whereas the common use of the word apple
as a company name is beyond the scope of WordNet.
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1 | Baseline

70.99

82.58 67.47 74.32
2 | Automatically Acquired Ontology 83.71 35.08 71.89 75.83 75.34
3 | WordNet 83.90 36.18 72.28 76.29 74.47

Table 1: Results of the tagging experiments (all figures quoted as percentages).

7. Conclusion

We have described a method for simuitaneously labeling the
syntax and semantics of words in running text. We develop this
method starting from a state-of-the-art maximum entropy POS
tagger which itself outperforms previous attempts to tag this data
[3]. We augment this tagging model with word class membership
information of the word being tagged. We define the features in
such a manner that the granularity of the word classes used is
automatically selected by the model. Our experimental results
show that large gains in performance are obtained.

Both hierarchical ontology-based approaches increased overall
performance, but with particular emphasis on OOV's, the
intended target for this feature set. Visual inspection the output of
the tagger on held-out data suggests there are many remaining
errors arising from special cases that might be better handled by
models separate from the main tagging model. In particular,
numerical expressions and named entities cause OOV errors that
the techniques presented in this paper are unable to handle. In
future work we would like to address these issues, and also
evaluate our system when used as a component of a WSD
system, and when integrated within a machine transiation
system.
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