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Abstract

Construction of a uniform color space (UCS) is one of the most challenging task in color engineering and
image processing. A major method until now is to find an appropriate map which deforms a color space into
the UCS. This seemed very diflicult since this map has to uniformize the target color space in both local and
global sense. In this paper, we switch to a methodology in the opposite direction. We simly calculate the
inverse image of the uniformization map to obtain a geodesic grid as a “polar coordinate system” of UCS.
Based on recent theoretical result on UCS, an efficient algorithm for both local and global UCS is obtained
giving perceptive discriminative data in a color space.
keyword Color Space, Uniform Color Space, MacAdam Ellipses, Riemannian Space, Geodesic

1. Introduction agree with geometric or Euclidean distance, or force
the the jnd or discrimination elliptics in color match-
ing such as MacAdam elliptics into unit circles. The
only way to do this was to certain nonlinear map to
deform the original color space locally or globally.

A uniform color space(UCS) is, according to var-
ious literature, characterized by two features, one
global and the other local: (1) It is a space in which
the perceptional difference between any pair of colors
agrees with the Euclidean distance, or the length of

the straightline between the two color vectors; (2) It ayailable, including several versions of standard UCS
is a color space where the local curveness is straighten  recommended by the CIE(Commission International
up so that the discrimination elliptics or ellipsoids of e |’Eclairage) [4] [12][2)[7]. However, it seems that
color matching at every points are rectified into unit o methods were able reach a UCS satisfying both
circles or unit spheres centered at these points. global and local definitions. E.g., the standard ver-

In fact, the strategies for construction of UCS sim-  sion of CIELAB space behaves better for global
ply followed these two above-mentioned definitions of  color difference comparing with the CIELUV space,
the UCS. i.e., either to force the color difference to  but can not locally uniformize the MacAdam ellip-

" As a result, a number of approximative UCS is
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tics. On the other hand, the standard CIELUV
space shows better local uniformation to rectify the
MacAdam elliptics than the CIELAB space but
worse in global uniformization.[12][7].

The reason for this is twofold. The first one is of
conceptual, As shown in [5], the global and local UCS
are in fact the same Riemannian space stated from
different points of view. In particular, global geome-
try of a Riemannian space is uniquely determined by
its local metric tensor. The second reason is mainly of
implementational. Rather than starting from global
fitting, it is natural and easier to start from local rec-
tification of the discrimination ellipsoids. However,
on the other hand, to reach a global UCS using the
local metric is a nontrivial task. For instance, one
needs global information such as the correspondence
between sampling points in the color space and their
images in the UCS, which is notoriously difficult as
already known in estimation of the nonlinear maps.

In this paper we propose a new method to obtain
UCS. Instead of trying to find a uniformation map
which deforms a color space into the UCS, we will
go in the opposite direction, i.e. to make use the
inverse map of the above map and try to build the
inverse images of the coordinate chart of the UCS.
The major difference between these two approaches
is that the latter is better understood and the inverse
images of coordinate chart in the UCS can be easily
obtained as geodesics of in the original color space as
a Riemannian space. As results one obtains an in-
verse image of the polar coordinate chart of the UCS
as a geodesic grid in the original color space so that
the coordinate of any color vector can be read from
this grid. In this way, we constructed a global UCS,
which according to our recent theoretical results in
[5] is also a local UCS. Finally, computer simulation
is also shown for construction of UCS using discrimi-
nant elliptics data obtained by MacAdam in 1942(3].

2. Geometry of color spaces

The color spaces have been known to have nontriv-
ial or non-Euclidean intrinsic geometry in both global
and local scales. In the global scale, the disagree-
ment between the perceptional color difference of two
color stimuli and the Euclidean distance between the
two color vectors in a color space has been a ma-
jor problem in color matching. Researches have been
reported on efforts to construct a global UCS, includ-
ing building the Munsell color space [12][2]. However,
global construction of such a UCS in a computational
way turned out very nontrivial.

Quantitative study of local geometry of a color
space began with the discovery of threshold phe-
nomenon in color matching by Wright, MacAdam
and Stiles. Specifically, they found the just-
noticeable difference (jnd) or just-perceptible differ-
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ence(jpd) thresholds near a center color are not con-
stant but change distinguishably depending on the
direction that the test color deviates from the center
color(3].

These results strongly suggest that the color space
is a Riemannian space rather than an Euclidean
space.

A Riemannian space is a space M with a positive-
definite symmetric matrix G(x) smoothly defined on
x € M such that the infinitesimal distance near @
is measured by (dz,dz)c = dzTG(x)dz. Let ¢ =
(xlﬂ "'7xn)T7 G = [913]7 then

(dz,dz)¢ = gijdz‘dz’

(Here the Einstein symbol a’b; = ¥, a’b; is used).

The matrix G is called a Riemannian metric. The
threshold elliptics or ellipsoids then induce Rieman-
nian metric in the 2D or 3D color spaces. Hereafter
we will consider an nD Euclidean space R™ where the
metric G is smoothly defined on points in R™, and de-
note the Riemannian space as a pair M = (R",G).

Suppose that one had found a map from a UCS U
to the color space M, f: U — M,y — x. As be-
fore, we suppose this map is a global diffeomorphism
or its Jacobian matrix Df is full rank everywhere.
Thus its inverse b := f~1: M — U,z — y is also
a global diffeomorphism. Notice here, h is the uni-
formation map used most researches. In this paper,
we will mainly use its inverse map for its theoretical
clarity and more importantly, the accessibility of its
images in the color space.

Suppose two color vectors x,2’ € M are mapped
to y := h(x),y’ = h(z’) in the UCS U. Then the
distance between these two colors is naturally the
length of the straight line connecting images of these
two color vectors yy’ in U.

The global distance of any two colors ,z’' mea-
sured in the color space can be defined as the length
of the inverse image of the straight line yy’ under h.
For the distance to be well defined, the h has to be
distance preserving. i.e.

du(z, ') = |f wy)lm = lyy'llv =: dv(y, 9

As we show later, the inverse images of straight lines
in an Euclidean space, or the ”straight lines” in a Rie-
mannian space is a most important and special class
of curves called geodesics. They have nice proper-
ties such as be trajectories of mass points without
acceleration.

We now consider how to measure the length in M
by geodesics. If a spatial curve z(t) = (z*,---,z™)T
in a Riemannian space M = (R",G) is smooth for
a<t<bzxla)==zz0) =, ie., if i* exist and
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are continuous, then the integral

b
6 :/ gi;T¥idt G = (gi; 1
V9 (9:5) (1)
exists, and 6 is the length between x(a) = = and

z(b) =z

Since the Gamut is metrically complete, it is also
geometrically complete. Therefore, between any two
points « and @’ in M, there is a unique geodesic such
that its length 6 is minimal.

Thus the global distance between any two colors z
and @' is equivalently defined as the geodesic distance
or the arc length of the geodesic «(t) connecting =

z(a), ' = zz(b),
b
N =/ \/g,-jiciitjdt.
a

Local and global UCS

Before presentation of our approach to construct
UCS, we need to show definitions and discuss their
relationship.

Let M = (R*,G(z)),n = 2,3 be a color space as
a Riemannian space. Suppose a map from another
Riemannian space U = (R", H(y)), i.e., a UCS of M
to Mitself. f : U — M, y+—— z. Infacta UCS
is an Euclidean space (R",I).

Definition 1. (Local UCS )

A Riemannian space Uy = (R™,I) is a local UCS
of the color space M = (R™,G) if there is an isom-
etry (bijective local isometry) 3 f; : Uy — M s.t.
(f)s(D) = G, ice.

(dy,dy')1 = (dfi(y), dfl(¥"))c or |ldyllr = |ldfi(¥)llc
Dfi(y)"G(x)Dfi(y) =1

Therefore a local UCS is a color space where the
local curveness is straighten up. In particular, the
metric G in M is transformed by fl to the identity
matrix H(y) = I, or locally the discrimination ellp-
tics or ellipsoids in M are rectified into unit circles
or unit spheres centered at ¢ in U.

Definition 2. (Global UCS )
A Riemannian space Uy = (R™,I) is a global UCS
of M = (R",G) if there is a smooth map fq,,

Ify : Ug— M

the image fg(W) of the straightline yy' between y
toy' in Uy is a geodesic between fo(y) and f4(y') in
M and fy preserves global distance. i.e.

fg(y)afg(y,) EM
du(fo(), 10) = \/(w — ¥)T(y — ),

(2)

3.

which implies H(y) =

vy,y' € U,

(3)
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Thus, in a global UCS, the perceptional difference
between any pair of colors, or the geodesic distance
between the two colors f,(y) and f,(y’) agrees with
the Buclidean distance, or the length of the straight-
line between the two color vectors.

Theorem 1. [5] The definition of a global UCS and
the definition of a local UCS are equivalent.

Therefore, if one could somehow found a UCS ei-
ther local or global, then this UCS should be both
locally and globally uniform. In the next section we
will show how to construct such a UCS.

4. Algorithm to construct UCS

In order to construct a UCS, thus, one can follows
either the local or the global definitions of the UCS.
It seemed however, both approaches used the same
straightforward way to construct a space: try to find
a nonlinear map which deforms the color space locally
or globally into UCS, respectively. Such a map A :
M — U will be called the uniformation map.

To find such a uniformation map is quite different
for local UCS and global UCS. In fact, it is easy to
find a local uniformation h; at a neighborhood of a
point * € M to a point y € U. One needs only to
find a nonlinear map hy s.t. y = hy(x) and to satisfies

Dh{ (x)Dhy(z) = G(z)

When y € U is specified, this is only a linear alge-
bra. However, it is hard to uniformize all neighbor-
hoods of points V& € M simultaneously, i.e. to find a
global UCS. This is because to define or even to ap-
proximate such a global uniformation map needs to
specify the image y € U for arbitrary £ € M. Such
point- corresponding is hard and usually conducted
by e.g. empirical color matching formula.

To avoid the difficulty for constructing the uni-
formization map h, we consider its inverse map f :
U — M,y +—— x. As mentioned before, this inverse
map is better understood. In particular, the inverse
images of the straightlines in U are geodesics in M.
Moreover, these geodesics can also be easily calcu-
lated if the local discrimination data are available.

Define the Christoffel symbols l";k as

I

095 , Ogu _ %ﬁ)

Ba:k 0z oxl

where G7! = (g”' ), the inverse matrix of G. The
geodesics of the Levi-Civita connection are solutions
of the second order ODE:

o= 2g (O ()

(5)

Furthermore, we chose a particularly suitable co-
ordinate chart, of the color space M, which is the

&+ T’ " = 0.
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inverse image of the polar coordinate system in the
UcsvU.

Denote Ty M the tangent space of x € M. Given
a tangent vector a € TxM at © € M , denote the
geodesic starting from a with the initial vector a as
v(t,a),t the parameter, then an exponential map is
defined as

expgp : TeM — M (6)

(7)

If one draws all geodesics for all directions a € Tp M
simultaneously, the image of the unit circle C in
TxM under expg(-) is an open neighborhood N =
expgp(C) in M. This N is called a normal neighbor-
hood of . Therefore, for any point @ € N, there is
a t,a and geodesic (-, @) such such that z = y(¢, a).
i.e. x is determined uniquely by the length of the
geodesic and the angle of a. This ”polar coordinate”
of the normal neighborhood is called Riemannian or
normal coordinate. which can be regarded as the
inverse image of polar coordinate in UCS U. We as-
sume the color space M can be defined as a normal
neighborhood of a & € M.and build the normal co-
ordinate chart as a geodesic grid.

a — expg(a):=17(1,a)

Algorithm
Step 1 For a 2D color space, choose unit tangent
vectors {ax,k = 1,..., K} centered at x € M, with
angles {k¢o, $o = 2m/K for prechosen resolutions K;
In 3D case, choose unit tangent vectors {a;,i =
1,..,K;,7=1,.., K3} centered at € M, with an-
gles (igo, jto), po = 2m/K1,90 = 2 /K3 for precho-
sen resolutions K, Ko.

Notice here the length of a,||lal| = (a”Ga) = 1,
the angle cos(a,b) = a’Gb
Step 2 Draw geodesics {vp(0,ar),k = 1,..,K}
in the 2D case and geodesics v (6,as;),i
1,..,K1,7=1,..., Ky in the 3D case;
Step 3 Output the geodesic grid. Denote the
geodesic distance from & as {, the data {({,k),n =
1,..Nk = 1,.,K} or {({,3,5),n = 1,..,N,i
1,..,K1,7=1,..., K3} can be used as the 2D or 3D
normal coordinates.

5. Simulation

The long and short axises of the discrimination el-
liptics in CIEYxy [3] are transformed into CIELUV
and interpolated using Akima’s algorithm [1] with
interval 0.01. The geodesics are obtained using the
third order Runge- Kutta method with resolution 0.1,
started from the perfect reflecting diffuser. The first
order partial derivatives in Christoffel symbol are cal-
culated simply using the central difference. The re-
sulting geodesics grid is shown in fig. 1.
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