FIT2005 (55 4 BIREMZFEMI +—5 L)

F-006

Case-Based Interior Coordination

Satoshi Onot
Christopher J. Ashley!

1 Introduction

Interior coordination is a task involving the careful se-
lection and placement of materials, fittings, fixtures
and furnishings. Coordinating interior is interesting
activity, but it requires a great deal of time to single
out the most desirable furniture items from an over-
whelming pallet of selection made by numerous man-
ufactures. It also requires highly qualified knowledge,
techniques, and sense to build a functional and com-
fortable room with consideration to inhabitants’ gen-
eration, life style, and preferences.

In this paper we focus on furniture selection and
placement in interior coordination. There are methods
for instrument placement and floor planning based on
artificial intelligence techniques such as constraint sat-
isfaction problem (CSP), genetic algorithm (GA) and
so on [1-4]. The methods formulate the instrument
placement problem involving a complicated structure,
and find a solution by combinatorial search algorithm.
But they do not consider instrument selection, and
combinatorial search algorithms can hardly deal with
the sensitivity of user preference and other implicit
knowledge which are difficult to be represented as ex-
plicit numerical function. In addition, it is difficult for
the methods to reuse past problem-solving results, i.e.
existing interior coordination. Therefore they must
solve problem instances similar to previously-solved
problem from scratch.

We propose a method that presents coordinated fur-
niture sets and their placement which adapt users’
room conditions, budget, preferences by using case-
based reasoning (CBR) [5-8] and CSP [9-12]. Inte-
rior coordination involves both an ill-defined and an
ill-structured problems: The former is furniture se-
lection, in which implicit domain knowledge must be
dealt with, and the latter is furniture placement, in
which it is difficult to find a value set that specifies
all conditions for a solution. The method uses exist-
ing model rooms, which are mainly made by furniture
manufacturers, distributors, stores and so on, as cases
which are past problem-solving results. It enables the
method to get appropriate furniture combinations, al-
though appropriateness is hard to be represented as
a numerical function. The method uses CSP to place
the selected furniture set, in order to decide appropri-
ate positions of furniture with consideration to various
conditions.

This paper is organized as follows: Section 2 gives
outlines of CBR and CSP. Section 3 discusses the pro-

TDepartment of Information and Computer Science,
Faculty of Engineering, Kagoshima University

201

Tatsuki Izumit
Shigeru Nakayama

posed method. Section 4 demonstrates output exam-
ples of the proposed method.

2 Proposed method
2.1 Principles

We propose a method for interior coordination based
on the following two principles:

Principle 1: Selecting furniture items by CBR.
Furniture selection must be performed with consider-
ing user’s ambiguous preferences and conditions, and
causes combinatorial explosion. The proposed method
therefore selects the same furniture item set to the
nearest case in a case base. It enables the method to
produce appropriate furniture combinations without
implementing implicit knowledge into the method, and
to solve the problem faster than starting from scratch.
The proposed method uses model rooms made by fur-
niture manufacturers, distributors, stores, designers,
and so on, as cases.

Problem-solving results obtained by using the pro-
posed method can also be added to case base. It en-
ables the method to acquire knowledge incrementally.
Principle 2: Placing furniture items by CSP.
There are gaps between conditions and preferences of
user’s room and those of the model room retrieved by
CBR, although CBR proposes the model room near-
est to the problem. The proposed method therefore
uses selected furniture items and their positions in the
model room as an initial solution candidate and finds a
feasible solution by repair-based combinatorial search.

The proposed method represents knowledge re-
quired to place furnitures as constraints. This en-
ables a solution to be found, that is a feasible furniture
placement, by the employment of a general combinato-
rial search algorithm like hill-climbing, simulated an-
nealing, GA, and so on.

In general CBR requires a case adaptation process
depending on a target problem. Formulating furniture
placement, which corresponds to case adaptation, as
CSP gets rid of developing the case adaptation mod-
ule. This is a modification of an idea for combining
CBR and GA proposed by Louis et al. [13] in order to
combine CSP and CBR [14,15].

2.2 Data and Process Flow

Figure 1 shows data and process flows in which
constraint satisfaction paradigm and CBR solves
the problem respectively. Constraint satisfaction
paradigm deals with the knowlegde necessary to place
furniture items well, but has trouble with furniture se-
lection. On the other hand, CBR deals with furniture

FIT2005 (55 4 EEHAFERTE I+ —5 L)

Problem (User inpat un and coneepti

Initial solution

Room information

Room shape
{Doors
Fittings < Windows
{Lights
{Ceiling
Materials < Wall
{Floor
Concepts
Attributes Example
Usage LD
Intuitive Decforgnveness Simple
concepts { Artificially Moderate
{ Originality *
Colors White
Budget 700,000
Standard sitting height Chair(low)
#Inhabitants 2

Figure 3: User input data.

selection well, but finds it hard to deal with furniture
placement.

The proposed method therefore solves the prob-
lem as shown in Figure 2. The method selects fur-
niture items by retrieving a case and places furni-
ture positions by iteratively revising the case in or-
der to support mutually between constraint satisfac-

Figure 4: Furniture item examples.

Table 1: A solution example.

furniture ID position direction
F1 | Sofa.KMAO00O1 (2000, O, 1200) North
F, Table_TB15 East

(200, 0, 2200)

tion paradigm and CBR. From the viewepoint of CBR,
the proposed method performs case adaptation by us-
ing CSP. From the viewepoint of constraint satisfac-
tion, the proposed method makes an initial solution
by case-based reasoning.

2.3 User Input Data

A user inputs two kind of information: room condi-
tions and concepts. Figure 3 shows a definition and
a example of user input. Room conditions consist of
room size, shape, use, fittings such as doors, windows,
and lights, and interior materials of wall, floor, and
ceiling.

The user inputs the room’s shape including fittings
and interior materials by using 3D My Home Designer,
a software for designing houses and apartments. Room
conditions are derived from the room shape.

The user also inputs the concept for the room by us-
ing another graphical user interface. The user doesn’t
need to input all features. A feature of which user
omits to input a value has a wild-card value ‘¥’ which
means “I do not care”.

Standard sitting height means the height at which
inhabitants sit when they make themselves at home in
the room; they sit on a floor or cusion directly placed
on the floor in Japanese style room, and they sit on a
chair in a dining room. Standard sitting height affects
not only furniture selection of sofas, chairs and so on,
but positions and heights of television, table, and other
furnitures.

2.4 Furniture Database

The proposed method uses furniture items which are
on the market in Japan. Each furniture item has shape

202

FIT2005 (36 4 MBHRBFRMI+—5 L)

Table 2: Examples of constraints.

ID Constraints Type
C1 | A furniture item must be in a room. Unary
C2 | No furniture item must be placed in front of a Unary
door.
C3 | Furniture items must not overlap each other. Binary
C4 | At least 800 mm width space must be free in Unary,
front of functional faces of furniture. Binary
____ Table 3: Examples of weak constraints.
1D Constraints Type
O1 | Furniture items having the same standard sit- Binary
ting height should be closed.
O2 | A furniture item whose height exceeds 1,000 Unary
mm should be placed with its back against a
wall.

and attribute information. Furniture shape is repre-
sented as Java3D code and furniture attributes are
represented in XML. Figure 4 shows examles. The
attribulte involves 7 features: type, name, size, func-
tional face, color, price, and manufacturer. Type rep-
resents kinds of furniture such as sofa, chair, desk, ta-
ble and so on. Functional face represents the sides
which human uses the furniture. Color represents the
most characteristic color of the furniture.

2.5 Furniture Selection by CBR
In the proposed method, a case involves input informa-
tion, which is composed of room conditions and con-
cepts, and a problem solving result, which is composed
of selected furnitures and their positions. If there is a
model room data involving room condition, concepts,
furniture items, and their placements, it is easy to
make a case: furniture selection and placement are
only required in addition to making user input data
as shown in section 2.3, and are done by using 3D My
Home Designer.

Distance between user input and a case is calculated
as follows:

A(ILE) = wg(ia, €a)

I is user input and F is a case. i, and e, are values
of feature ¢ in I and E. w, is an weight of feature a.
In the case that feature a has numeric value, 6(iq,€,)
is calculated as follows:

v —
5n(v1,v2) = : 2

Umaz — Ymin

In the case that feature a has symbolic value, §(iq, €4)
is calculated by distance tables which are manually
made for each attribute. If i, = ‘«’, then §(i,,¢e,) is
always 0.

2.6 Furniture Placement by CSP

We define a solution as a set of variables — furniture
identification number (ID), its position and direction
as shown in Table 1.

(a) Model room R (b) Model room R

(c) Model room Ry3 (d) Model room Rpmgq

Figure 5: Model room examples.

(a) Remaining 5 violations (b) Remaining 3 violations

(d) Remaining no violation

(c) Remaining 2 violations

Figure 6: Example of furniture placement progress.

Table 2 lists examples of constraints the proposed
method uses. “Type” relates to the number of vari-
ables that pertain to the constraint, and can be either
“Unary” or “Binary” depending upon whether there
is one or two variables defining the constraint.

The proposed method utilizes hill-climbing search
algorithm to find a solution containing no violation.
A solution candidate x, which is represented in Ta-
ble 1, is initialized to have values of the nearest case.
Till £ contains no violation, the following procedure
is repeated; A violating variable v is chosen randomly
and some simple value-allocation operators make z’s
neighborhoods y; (i = 1,...,n) by changing a value
of v. If there is a neighbor y; having less violations
than z, z is then updated with the neighbor y;. The
operators usually changes variables representing furni-

203

FIT2005 (56 4 EIRBBFERMI+—5 L)

Figure 7: An example solution postprocessed.

ture position or direction, but they changes variables
representing furniture ID in case that the number of
violations have not decreased for T step, a threshold
judging local minima.

After finding a solution containing no violations, the
proposed method starts fine tuning of furniture posi-
tions by using some weak constraints as shown in Table
3 and the same algorithm to that of constraint satis-
faction described above.

3 Output Examples

At this stage the system based on the proposed method
focuses on living and living/dining room. The furni-
ture database involves about 550 furniture items: 30
chairs, 90 sofas, 90 tables, 60 racks, and 240 storage
items such as chest, shelf, cupboard, sideboard and so
forth. The case base involves about 40 cases.

Figure 5 and Figure 6 show an output example of the
proposed system, assuming that a user inputs room
Ry shown in 3. Figure 5 shows model room examples
Rmi, RMma, - - ., RMmgq in our system’s case base. At first,
the proposed system calculates distances between Ry
and all model rooms, and finds Ry as a room nearest
to Ry. The method then selects furniture items in
Rm1, and makes an initial solution candidate (Figure
6 (a)) from Ry, but there are violations because of
the difference between their room sizes and shapes.
By revising furniture positions iteratively, the method
produces a solution containing no violation (Figure 6
(d))-

Figure 7 shows a derived room in which small arti-
cles such as a television, foods, and so forth are placed
by postprocessing.

4 Conclusion

We have proposed an interior coordination method
based on CSP and CBR. The method uses model
rooms as cases, searches for a solution by iteratively
revising an initial solution that is the case nearest to
user input. The method allows users to input ambigu-
ous, incomplete request, and enables them to obtain
an ergonomically respectful customary collocation of
furniture efficiently and without the use of an interior
designer. We plan to modify constraint-based furni-
ture placement in our method to consider appropri-
ateness of relations between furniture items evaluated

by cooccurrence frequency.

Acknowledgment
We would like to thank MEGASOFT Inc. and TIS
Inc. for supporting this research.

References
(1] M. Gosele and W. Stuerzlinger, “Semantic constraints
for scene manipulation,” Proceedings of Spring Con-
ference in Computer Graphics '99, pp. 140-146, 1999.

[2] M. Korenaga and M. Hagiwara, “An interior layout
support system with interactive evolutionary com-
putation,” IPSJ (Information Processing Society of
Japan) Journal, Vol. 41, No. 11, pp. 3152-3160, 2000.

[3] J. Miles, G. Sisk, and C.J.Moore, “The conceptual
design of commercial buildings using a genetic algo-
rithm,” Computers & Structures, Vol. 79, p. 1583.

[4] G. Zhi, S. Lo, and Z. Fang, “A graph-based algorithm
for extracting units and loops from architectural floor
plans for a building evacuation model.”

[8] C. K. Riesbeck and R. C. Schank, Inside Case-Based
Reasoning. Hillsdale, New Jersey: Lawrence Erl-
baum, 1989.

[6] R. Schank and A. K. C. Riesbeck, Inside Case-Based
Ezxplanation. Hillsdale, New Jersey: Lawrence Erl-
baum, 1994.

[7] B. Bartsch-Sporl, M. Lenz, and A. Hubner, “Case-
based reasoning - survey and future directions,” Pro-
ceedings XPS-99, Springer Verlag, LNAI, 1999.

[8] D. B. Leake and D. C. Wilson, “Combining cbr with
interactive knowledge acquisition, manipulation and
reuse,” Proceedings of the Third International Con-
ference on Case-Based Reasoning, 1999, pp. 203-217.

[9} R. Haralick and L. Shapiro, “The consistent label-
ing problem: Part i,” IEEE Tr. PAMI, Vol. PAMI-1,
No. 2, pp. 173-184, 1979.

[10] R. Haralick and L. Shapiro, “The consistent label-
ing problem: Part ii,” IEEE Tr. PAMI, Vol. PAMI-2,
No. 3, pp. 193-203, 1980.

[11] S. Minton, A. B. P. M. D. Johnston, and P. Laird,
“Minimizing conflicts: a heuristic repair method for
constraint satisfaction and scheduling problem,” Ar-
tificial Intelligence, Vol. 58, pp. 161-205, 1992.

[12} J. Singer, I. P. Gent, and A. Smail, “Backbone
fragility and the local search cost peak,” Journal of
Artificial Intelligence Research, Vol. 12, pp. 235-270,
2000.

[13] S. J. Louis and G. Li, “Case injected genetic algo-
rithms for traveling salesman problems,” INFORMA-
TION SCIENCES, Vol. 122, pp. 201-225, 2000.

[14] S. Ono, Y. Hamada, M. Mizutani, K. Mizuno, and
S. Nishihara, “Improving search performance using
case-based reasoning for floor layout rearrangement,”
Proceedings of The International Conference on Com-
puting, Vol. 2, p. 365.

[15] S. Ono, Y. Hamada, M. Mizutani, K. Mizuno, and
S. Nishihara, “A rearrangement system for floor lay-
outs based on case-based reasoning and constraint sat-
isfaction,” Proceedings of 21st IASTED International
Conference on Applied Informatics, p. 363.

204

