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Application of Genetic Recombination to Genetic Local Search in TSP
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Abstract In this paper, an approach based upon
Genetic Recombination is proposed, and applied to the
TSP. The algorithm is composed of two SGAs which only
consist of the basic genetic operators such as selection,
crossover and mutation. One of the SGAs is named as
the Global Genetic Algorithm (GGA), and encompasses
the main tours where it is designed to search for the
global optimal solutions. Another one is named as the
Local Genetic Algorithm (LGA) and traverses over the
sub tours to find the local optimal solutions. The LGA is
combined to the GGA as an operator. The local optimal
solutions are recombined to the main tours for
improving the search quality. To investigate the
features of the proposed algorithm, it is applied to a
small double circles TSP, and some interesting results
are presented in our experiments.

1. Introduction

TSP is one of the well-studied combinatorial
optimization problems. Many researchers from various
fields have devoted to developing new algorithms for
solving it. It has been proved that the hybrid of different
algorithms is more effective than a single algorithm. For
example, the local search has been successful for
improving GAs in the search processes [1],[9],[10]. Most
of the works on solving the TSP are focused on the
efficiency of how to solve the larger TSP instances.

Some of the works aim at expanding the theories of
search algorithms, especially in the GAs domain.

In this paper, our attempt is to make a discussion on
the GAs based on Genetic Recombination. The algorithm
is composed of two SGAs which only contain basic
genetic operators. One is the GGA which is applied to
the main tours, for searching for the global optimal
solutions. Another is the LGA which is applied to the
sub tours for searching for local optimal solutions. The
SGA was developed by John Holland, and his original
algorithm is approximately the same as shown in the
Fig.1. [5]. In the early studies, the SGA played an
important role in the development of GAs, and attracted
the researchers' attentions widely. Goldberg made a
detailed discussion on how the SGA works with some
simple optimal mathematical functions and other
problems in his book [3]. Reeves discussed the
differences, and similarities between the SGA and the
neighborhood search [2]. Computer scientist Michael D.
Vose provided an introduction to what is known about
SGA theory. He also made available algorithms for the
computation of mathematical objects related to SGA [7].
All the studies have shown that the SGA is still valuable
in heuristic search algorithms.
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Fig.2. New Algorithm

Our approach is to use a sub tour which contains a set
of continuous cities ordered according to the visiting
order. The basic idea is to find a better sub tour to
replace the original one. This operation acts like the
Genetic Recombination in the Genetic Engineering field.
Genetic Recombination is the process by which the
combination of genes in an organism's offspring are
different from the combination of genes in that organism.
In the TSP, it is the technique related to the local search.
To find the better cities in the tour, we chose a set of
contiguous cities from the main tour to form a sub tour,
and then apply the LGA to the sub tour to find better
solutions to feed into the main tour. This operation
cultivates fitter GENES in a way that mimics biology,
the details of which are described in the following
section.

2. New algorithm.

The new algorithm is shown in Fig.2.. The parts A and
B in the figure are both separately a SGA before part B
is intercalated into part A. Part B is the LGA in the
algorithm. The two parts form the new algorithm--GGA.
Part B performs as a local search operator in the GGA.
The GGA is applied to the main tour for searching for
global optimal solutions. To obtain the global optimal
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solutions in the process of the TSP, the GGA may just
need to improve the order of a set of cities in the best
tour, especially in the latter stages of the process. A set
of continuous cities are chosen to create the sub tour in
the experiment. The LGA is applied to the sub tour, for
finding the local optimal solution to replace the original
part chosen from the main tour.

In the LGA, the sub tour is an open tour. The length
of the tour is calculated from the start city to the end
city, not including the distance between the end city and
the start city. Another important point is that all
individuals in the population of the LGA have the same
start and end cities during the processing. This
imperative is for avoiding the main tour becoming
longer at the connection points after the recombination
of the sub tour. : '

Local Operations: The tour which consists of n cities is
expressed as ¢=c0, ..., ci, ci+l, ..., cn-1. The distance dci,
ci+1 is given for the pair of cities ci and ci+1. All cities
are coded using path representation.

1. Randomly choose one main tour ¢=C,..., €;,C;, ... ,

C,_; from population of the GGA.

2. Randomly choose one sub tour which contains Ns
continuous cities in the main tour c. The sub tour is cs=ci,
..., ¢. The start city is ci and the end city is ¢j. j1i > 4.
This is the first individual of the LGA. The length of the
first individual is set as do.

3. Reproduce the first individual to the population size of
the LGA. The start city ci and the end city c; are kept
unchanged. The population of the LGA is created with
Ps same individuals.

4. Run the LGA in every generation of the GGA. The
start and end cities of all individuals of the LGA are
kept unchanged during the processing.

5. The best individual in the population of the LGA is
obtained when the LLGA stopped. Its length is set as d1.
6. The best individual is recombined back into the main
tour to replace the original part.

Let the ratio Ratio=do/d1, where the range is Ratio > 1.0.
The Ratio is discussed again in the next section.

3. Results and Discussions

The main tour which contains n cities is given as c=cq,

., Ci, Ci+1, ..., cn'1 where the distance between two cities
¢, ci+1 is d(ci, ci+1). A sub tour which contains m cities
from the main tour is c=cy, ..., Ck, Ck+1, ..., Cm-1 Where the
distance between two cities ck, ck+1 is d(ck, cx+1). Total
distances of the main tour and the sub tour are dm and
ds respectively:

n—1
= Z d(c;5¢.)
i=0
where cn=co.
m-2
ds = Z d(ck H ck+1 ) (2)
k..

The dm and ds are defined as the Fitness of the
individuals. The shorter the distance is, the higher the

)
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Fitness is, in other words, the fitness is inversely
proportional to the distance. The parameters are shown
in Table 1..

Our source code is written in Java and run on a PC
(CPU: Pentium III 1.0GHz, RAM: 256MB) with
Microsoft Windows2000 Operating System.

Table 1. Parameters in the GGA and the LGA.

GGA (Main tour) | LGA (Sub-tour)

Population 100 80

size

Cities 24 424

Generations 1,000 0 10, 20, 30, 40, 50, 60,

70, 80, 90, 100

Crossover 75.0% 75.0%

rate

Mutation rate | 2.0% 2.5%

Selection 2 shortest 2 shortest individuals
individuals replace | re-place the 4 longest
the 4 longest ones | ones

The TSP instance of the double concentric circle, which
contains only 24 cities is used in the experiments (Fig.3.).
The ratio of the inner radius (R) and the outer radius
(Ro) is Ri/Ro. If Ri/R, < 0.58879, the optimal tour is C-
type (Fig.3.-a). If Ri/Ro > 0.58879, the optimal tour is O-
type (Fig.3-b).

a. C Type, Ri/Ro<0.58679

Fig.3.

. O Type, Ri/R0o>0.58879
TSP instances.

4.1. Distributions of Optimal Solutions

Fig.4. shows the number of the optimal solutions
which is obtained in 20 runs. A peak appears around the
mid point, where the number of cities in the sub tour is
about half that of the main tour. The Fitness is shown in
Fig.5.. The process is stopped at the 1,000th generation.
The process converges faster with the increase of the
number of cities in the sub tour at the beginning. This
happens because there are many more
improvable spaces in a big sub tour of the LGA. Stable
convergences appears when the city numbers of the sub
tour range around half that of the main tour. The result
is not satisfied when the LGA performs as the reversion
operator in the experiments.

4.2. Computation Time

The GAs usually take a long time to run to reach a
good result. Consequently it increases the computation
time greatly by combining the LGA into the GGA. The
computation time was examined by increasing the city
number and the generations in the LGA respectively.

The results are shown in Fig6. and Fig.7.. The
computation time linearly became longer with the
increase of the number of cities and the generations in
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the LGA. Decreasing the number of cities and
generations in the LGA took a shorter time, but it might
not be sufficient for finding a better sub tour to improve
the main tour.

4.3. Time and Generations for obtaining the Optimal
Solutions

Fig.8. is the figure of the computational time for
obtaining the optimal solutions. There are 3 points on
every vertical line; the low, upper, and central points
show the shortest, longest, and mean time, respectively
for obtaining the optimal solutions in 20 runs. The time
taken to find the optimal solutions increases with the
number of cities in the sub tour. In Fig.9., the three
points on the lines show the earliest, latest, and mean
generations for reaching the optimal solutions
respectively in 20 runs. The earliest generations
appeared when the number of cities in the sub tour

ranged around half the number of cities of the main tour.

Some optimal solutions appeared early when the sub
tours contained more cities. But, it takes a far longer
computational time when the number of cities of the sub
tour is increased as stated above.

4.4 Recombination Rates and Ratios

Tig.10 is the figure of the recombination rates. We
suppose the number of the individuals which were
recombined with the LGA is Nr and the number of the
individuals which were searched by the L.GA is Ns. The
recombination rate Rate Nr/N X 100. The
recombination rates increase with the increase of the
generations and the number of cities in the sub tours.
More generations are advantageous for finding a better
sub tour to carry out the recombination, but it takes a
longer time to run the LGA. The same trend appears
with the changes of the number of cities because there
are more improvable spaces in the bigger sub tour. The
part chosen from the main tour is easier to improve.
Fig.11 is the ratio figure. The ratio Ratio = do/d: and
Ratio > 1.0, where do is the original sub tour from the
main tour and di is a sub tour searched to be shorter in
the LGA. The peaks of the ratios appear when the
number of cities in the sub tour ranged from 8 to 13. The
higher ratio means a sub tour was found to be
shorter in the LGA than the original part from the main
tour. The result is correlative with the distribution of
the optimal solutions in Fig.4.

4.5 Dynamics of the LGA

Fig.12 and Fig.13 show the dynamics of the LGA.
Fig.12. presents the ratio distributions of a single GGA
in which the optimal solution is obtained at the 252nd
generation. Because the original part from the GGA is
preserved in the LGA and the ratio Ratio = do/di, the
value of the Ratio > 1.0. It indicates that the LGA
creates a shorter sub tour and recombines it to the GGA
when Ratio > 1.0. The LGA works efficiently and more
ratios are bigger than 1.0 before the optimal solution is
obtained at the 252nd generation. When the population
converges to the optimal solution, the LGA can not
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create a better sub tour than the original part from the
main tour and the ratios become 1.0. Fig.13. shows the
ratio distributions of another GGA in which the
premature convergence occurs at the 151st generation.
There are many points distributed over 1.0 after the
premature convergence occurs, which indicates that the
LGA still works efficiently even though the GGA reaches
the premature convergence.

5. Summary

A local search algorithm based on genetic
recombination is discussed in this paper. The LGA acts
as a local search operator in the GGA. A good result is
presented when the number of cities of the sub tour is
set to around half the number of cities of the main tour.
Even so, we think it would be reasonable running a
small LGA for a big TSP instance because half the
number of cities of a big TSP still forms a new big TSP
instance. It may be more effective in distributed and
parallel processing running the LGA as an island to
*improve the main tour. This will be discussed in our
future works.
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