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Abstract

Simplification orderings, like the recursive path or-
dering and the improved recursive decomposition or-
dering, are widely used for proving the termination
property of term rewriting systems. The improved re-
cursive decomposition ordering is known as the most
powerful simplification ordering.

In this paper, we investigate the improved recursive
decomposition ordering for proving termination of term
rewriting systems. We completely show that the im-
proved recursive decomposition ordering is closed un-
der substitutions.

1 Introduction

Term rewriting systems (TRSs, for short) are re-
garded as a computation model that reduces terms by
applying directed equations, called rewrite rules. TRSs
are widely used as a model of functional and logic pro-
gramming languages and as a basis of automated the-
orem proving, symbolic computation, algebraic specifi-
cation and verification [1, 15 2?;].

The terminating property is fundamental notion of
TRSs as computation models [4]. Since the terminat-
ing property of TRS is undecidable in general [5], sev-
eral sufficient conditions for proving this property have
been successfully developed in particular cases. These
techniques can be classified into two approaches: se-
mantic methods and syntactic methods.

Simplification orderings are representatives of syn-
tactic methods [18, 21]. %V[a.ny simplification orderings
(for instance, the recursive path ordering (with status)
(RPO(S), for short) [2, 10], the recursive decomposition
ordering (with status) (RDO(S), for short) [8, 12, 13],
the improved recursive decomposition ordering (with
statusg IRD(S), for short) [17, 19] and so on) have
been defined on TRSs. IRDS is among the most pow-
erful simplification orderings [19, 20].

First, Jouannaud, Lescanne and Reinig defined the
recursive decomposition ordering with multiset status
8]. They said that the closure under substitutions of
1t is straightforward using definition of decomposition.
However they did not give the formal proof of it.

The recursive decomposition ordering with arbitr.
status (RDOS) was first described by Lescanne [12].
Complete proofs concerning the lexicographical sta-
tus are given by Lescanne g[13] An implementation
of recursive decomposition ordering with multiset sta-
tus has been made in the first rewriting environment
with tools for proving termination called REVE as it
was a convenient tools for proposing extension of the
precedence [11].

Rusinowitch [17] gave the definition of the improved
recursive decomposition ordering (IRD) and investi-
gated the relationship between several simplification
orderings : the path of subterm ordering (PSO) [16],
the recursive path ordering (RPO) and the recursive
decomposition ordering (RDO). But they did not dis-
cuss that IRD is closed under substitutions.

Steinbach [19] gave the definition of the improved
recursive decomposition ordering with status (IRDS)
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based on IRD defined by Rusinowitch [17] and com-
pared of the power as well as the time behavior of
all orderings suggested [18, 20, 22]. They showed
that IRDS is a simplification ordering and IRDS is
closed under substitutions [18, 19], however their proof
was not complete. They used the proposition that
for any substitution 8, dec,(s) > g dec,(t) implies
decy (s0) > g decy (t0) as key idea in their proof with-
out proving. But this proposition was not trivial. So,
we need give the formal proof of it by induction on
| |+ |¢t]in this paper.

We proposed IRDS for higher-order rewrite systems,
called the higher-order improved recursive decomposi-
tion ordering (HIRDS, for short) [6, 7]. Our method
was inspired by Jouannaud and Rubio’s idea for RPOS
[9] and particular properties of IRDS. We showed that
our ordering is a more powerful ordering than their or-
dering. Furthermore we showed that HIRDS is closed
under substitutions. However our proof was very com-
plicated and generalized, so we try to show that IRDS is
closed under substitutions in this paper. Furthermore
we review that IRDS is a simplification ordering.

In section 2 we give the basic notations. Section 3
presents the definition of the improved recursive de-
composition ordering with status (IRDS) and we com-
pletely show that IRDS is closed under substitutions.
Also, we review that the IRDS is a simplification or-
dering.

2 Preliminaries

We mainly follow the basic notations of [14, 19]. An
abstract reduction system (ARS for short) is a pair
(A, —) consisting of a set A and a binary relation - C
Ax A. We say that ARS (A4, —) is terminating if there
is no infinite sequence ag = a; = a3 — ... of elements
in A. A binary relation on a set A is called a (strict)
partial ordering over A if it is a irreflexive and transi-
tive on A. The partial ordering is usually denoted by
>. A partial ordering > on a set A is well-founded if
> has no infinite descending sequences, i.e., there is no
seqzence of the form ay > a1 > a2 > ... of elements
in A.

A signature is a set of function symbols. Associated
with f € F is a natural number denoting its arity.
Function symbols of arity 0 are called constants. Let
T(F,V) be the set of all terms built from F and a
countably infinite set V of variables, disjoint from F.
The set of variables occurring in a term ¢ is denoted
by V(t). The root symbol of a term ¢ is defined as
follows: root(t) =t if t is a variable and root(t) = f if
t= f(t,... ,tn).

A substitution is a map 8 from V to T(F,V) with
the property that the set {z € V | 8(z) # z} is finite.
If 6 is a substitution and ¢ a term then @ denotes the
result of applying 8 to t. We call t§ an instance of t.

We introduce a fresh constant symbol O, named hole.
A contezt C[] is a term in 7(FU{O},V) containing
precisely one hole. If C[] is a context and ¢ a term
then C[t] denotes the result of replacing the hole in
C[] by t.

binary relation R on terms is closed under substi-
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tutions if s R t implies s8 R t0, for any substitution
#. And a binary relation R on terms is closed under
contexts if s R t implies C[s] R C[t], for any context
C[]- |t| denotes the size of term ¢, i.e., the total num-
ber of function symbols and variables occurring in ¢.
Terms are identified with finite labeled trees. A posi-
tion in a term can be viewed as a finite sequence of
natural numbers, pointing out a path from the root of
this tree. P(t) denotes the set of all positions of a term
t. Pr(t) denotes the set of all terminal positions (po-
sitions of all leaves) of the term ¢. The letter € denotes
root positions. We write w < z if w is a prefix of 2.
The subterms of t at position p is denoted by t|,, and
we write t > t|,. If t > ¢|, and t # t|, then #|, is called
the proper subterm of t, denoted by t D t|,.

A rewrite rule on T(F,V) is a pair of terms [ =7
such that I ¢ V and V(r) C V(). A term rewriting
system (TRS, for short) is a pair (F,R) where F is a
set of function symbols and R is a set of rewrite rules
on T(F,V). (F,R) is often abbreviated as R and in
that case F is defined to be the set of function symbols
that appear in R. We often present a TRS as a set
of rewrite rules, without making explicit its signature,
assuming that the signature consists of the %unction
symbols occurring in the rewrite rules. The smallest
rewrite relation on 7(F, V) that contains R is denoted
by = . So s = t if there exists a rewrite rule [ —r in
R, a substitution 8, and a context C such that s = C[l6]
and t = C[rf]. The subterm I8 of s is called a redex
and we say that s rewrites to ¢ by contracting redex 18.
We call s =4 ¢ a rewrite or reduction step.

Given a binary relation >, the multiset extension >
is defined as the transitive closure of the following re-
lation = on multisets. M U {8} = M U {t1,...,tn}
where n > 0 and s > t; for any ¢ € {1,...,n}. Assume
> is a well-founded ordering on a set A. Then > is a
well-founded ordering on the multisets of elements in
A [3]. We say that a binary relation R on terms has
the subterm property if C[t]Rt for any context C[] # O
and term ¢.

3 Improved Recursive Decomposition
Ordering Revisited
Throughout this section we are dealing with finite
signatures only.

Definition 3.1 ([2, 4, 14]) A simplification ordering
on T(F,V) is a partial ordering that is closed under
substitutions, contexts and has the subterm property.

Since we are dealing with finite signatures only, we
obtain the following result.

Theorem 3.2 ([2, 4, 14]) Simplification orderings are
well-founded.

We obtain the following theorem from the result of
Dershowitz [2].

Theorem 3.3 Let R be a TRS and let > be a simplifi-
cation ordering on T(F,V). IfL>r for anyl—=r€R
then R is terminating.

Proof. Assume that s =5 t, where s and ¢ are terms.
There exists a rewrite rule { = » in R, a substitution @
and a context C[] such that s = C[l8] and t = C[rf].
By the assumption ! > r and definition 3.1, hence s =
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C[l6]) > C[r6] = t holds. Since > is well-founded on
T(F,V) by theorem 3.2, R is terminating. O

he improved recursive decomposition ordering de-
pends on a partial ordering > on the signature 7, the
so-called precedence.

A status function 7 is assumed, mapping every f € F
to either mul or lex, for some permutation 7w on n el-
ements, where n is arity of f. For a partial ordering
> on T(F,V) the partial ordering >7/) is defined on
sequences of length n : 7(f) = mul describes multi-
set extension and 7(f) = lez, describes lexicographic
comparison according to the permutation w. The re-
sults of an application of the function args to a term
t = f(t1,...,tn) depend on the status of f : If 7(f) =
mul, then args(t) is the multiset {¢1,...,t,} and oth-
erwise, args(t) is the tuple (1,...,ts).

For u € Pr(t), a path-decomposition decy(t) = {t |4
u > v} is a set of subterms of t. Note that i.v €
Pr(f(t1, .- tn)) implies v € Pr(t;). We also define
a decomposition dec ({t1,...,tn}) = {decu(t;) | i €
{1,...,n}, u € Pr(t;)}. A decomposition is a multi-
set of all path-decomposition of the terms t;,... ,t,.
For the path-decomposition dec,(t), a set of subterms
of decy(t), sub(decy(t),s) = {s' € decy(t) | s > §'}.

We give the improved recursive decomposition order-
ing with status (IRDS) defined by Steinbach (19, 20] as
following.

Definition 3.4 (IRDS) Let s and t be terms. For a
precedence >5 and a status T the improved recursive
decomposition ordering with status (IRDS) on T(F,V)
is defined as follows:

8 >1rps t &= dec({s}) >>gr dec({t}) where
S>> 1 is the multiset extension of >EL.

decp(u) 3 u' >pp v € decy(v) is defined by the follow-
ing (a), (b) and (c).

(a) root(u') > root(v'), or

(b) root(u') = root(v'), T(root(u')) = mul and either

o sub(dec,(u),u') >EL sub(decy(v),v'), or
e sub(dec,(u),u') = sub(decy(v),v') and
dec(args(u')) >>gr dec(args(v')), or

(¢) root(u') = root(v'), T(root(u')) # mul, args(u')

ST ) args(v') and {u'} >1rps args(v).

Next, we give the example of comparison using IRDS.

Example 3.5 We consider the term s = -X D (Y D
Z)Yandt =Y D (X V Z) where X,Y,Z € V, F =
{=,D,V} and *rgf) =mul for any f € F. We give the
precedence as follows: = >gD>x V.

We have Pr(s) {11,21,22} aend Pr(t)
{1,21,22}.

Then dec({s}) = {dec11(s),decz1(8),decz2(s)} where
deci1(8) = {s,~X, X}, decor(s) = {s,Y D Z,Y} and
decso(3) = {S,Y D Z,7Z}.

Then dec({t}) = {deci(t),decs1(t),decya(t)} where
deci(t) = {t,Y}, deca(t) {t, X V Z,X} and
decas(t) = {t,X vVZ,Z}.

By the following cases (1), (2) and (3), dec ({s})
>>pr dec (Igtg) holds. Then s >rrps t holds by def-
inition of IRDS.
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(1) dec11(8) >pr decsi(t) holds. s >gp t and
X >pr X V Z since sub(deci1(s),s) >EL
sub(decar(t),t) and ~ > £ V.

(2) decai(s) >gL deci(t) holds. s >pp t since
sub(deca1(s), 8) > g1 sub(dec; (t), ).

(3) decoz(s) >EprL decas(t) holds. s >pp t and
Y D 7 >g1 XV Z since sub(decsa(s),8) >EL
sub(decaa(t),t) and D> V.

We review that IRDS is a simplification ordering, i.e.,
IRDS is a partial ordering has the subterm property
on 7(F,V) that is closed under substitutions and is
closed under contexts. These properties are essential
for applying IRDS to termination proof of TRS.

Lemma 3.6 The IRDS is partial ordering has the sub-
term property on T(F,V) that is closed under contexts.

The following lemma is the key to prove the main
result in this paper that IRDS is closed under substi-
tutions.

Lemma 3.7 Let decy(s) > g1 decy(t) where s and t

are terms and p € Pr(s) and g € Pr(t). Then for any
substitution 8, the following two claims hold.

(1) If sl, = tlg € V then dec,.i(s6) >gr decy:(t9),
for any i € N* such that pi € Pr(s0) and q.i €
Pr(#9).

(2) Ift |, & V then dec, i(36) >grL dec,(t9), for any
i € N* such that p.i € Pr(s6).

Proof. See appendix A. m]

Lemma 3.8 Let s and t be terms. Then dec({s})
>> gL dec({t}) implies dec({s}) N dec({t}) = 0.

The following lemma is the main result in this pa-
per. We completely show that IRDS is closed under
substitutions.

Lemma 3.9 The IRDS is closed under substitutions,
ie., z >rrps t implies s6 >rpps t0 for any substitu-
tion 6.

Proof. Assume that s >1rpgs t, ie., dec({s}) >>pr
dec({t}) where s and t are terms. We show that
dec({s0}) >>pg1 decé{w%), i.e., s8 >rpps t6, holds
for any substitution 6. Strictly speaking, we must
prove: (Vg € Pr(t),3p € Pr(s) such that dec,(s) >gr
decy(t)) implies (Yq' € Pr(t8),3p' € Py (sh) such that
decy (s0) > gL decy (19)). Let ¢’ € Pr(t0), then 3i,q €
N* such that ¢’ = ¢.i and ¢ € P7(t). Since s >rrps t
and by lemma 3.8, there exists p € P7(s) such that
decy(s) > g1 decy(t). To prove that Ip' € Pr(sh) such

that decy (s8) >pr decy (t6), we have to distinguish
two cases:

1.t [g€ V, ie. s |p=1 |, (Otherwise dec,(s) B kL
decy(t)).

Since ¢' = q.i for some i € N*, decy(s) >Er
decy(t), 80 |p=t0 |q=0(t |4) and lemma 3.7, Vi €
Pr(@(t |g), decp.i(s6) >gpr decy:(t). Hence,
P’ = p.i with i € Pr(8(t |,))-
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2. t|g¢V,ie ¢ =gq.

(1) s ¢ V. Since decy(s) >gr decy(t) and
lemma 3.7, dec,(s0) > gL dec,(t6). Hence,
P=p

(2) s |p€ V. Since decy(s) >Er decy(t) and
lemma 3.7, Vi € Pr(0(s |p)), decy.i(s0) >EL
dec,(t6). Hence, p' = p.i with i € Pr(6(s |,

. ()

Lemma 3.10 The IRDS is a simplification ordering
on T(F,V).

Proof. By lemmas 3.6 and 3.9, the IRDS is partial
ordering on 7(F, V) that is closed under substitutions,
contexts and has the subterm property. 0

Example 3.11 ([18]) Given the following signature
and TRS R: F = {—, D, V},

R={-XD>¥D2Z)—Y>D(XV2Z).

We give the following precedence and status: = >
D >x Vand 7(f) = mul for any f € F. Since - X
D > 2)>rps Y D (X V Z) by example 3.5 and
theorem 3.3 and lemma 3.10, R is terminating.

4 Conclusion

We have investigated the improved recursive decom-
position ordering to term rewriting systems for proving
termination. We completely have shown that the im-
proved recursive decomposition ordering is closed un-
der substitutions as main result in this paper. Also we
have reviewed the improved recursive decomposition
ordering is a simplification ordering.
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A Proof of lemma 3.7

Definition A.1 Let 8 be a substitution.
{81,---,80} be a subset of T(F,V). {81,-..,5.}0
notes {s10,...,5,0}.

Lemma A.2 (Lemma 3.7) Let decy(s) > g1 decy(t)

where s and t be terms and p € Pf,-gs) and q € Pr(t).
Then for any substitution 6, the following two claims
hold.

(1) If slp = t|g € V then decy.i(s8) >pr decy.i(t0),
for any i € N* such that p.i € Pr (s0) and q.i €
Pr (t6).

(2) Iftly & V then decy.;(s8) > gL decy(t6), for any i
€ N* such that p.i € Pr(sf).

Proof. We show that the claim (1) A (2) by induction
on |s| + |t|. Assume that dec,(s) > L decy(t).

(1) Consider the case s|, = t|g € V.

By the assumption decy(s) > decy(t) and def-
inition of multiset extension, consider the cases
that decp(s) = M U {s1,...,8m}, decy(t) = M U
{t1,-..,tn}, and for any k € {1,...,n}, there ex-
ists | € {1,...,m} such that decp(s) 3 s1 >EL tx
€ dec,(t).

For any i € N* (g.i € Pr(t8)), we can show that
decp.i(s6) = MO U {810, ..., 8m8} U L, decy ;(t0)
=MOU{t:0,...,t,0} UL where L = {v | v €
sub(dec;(s|0),3]p0)}. Hence we have to show that
decy(8) 3 8 >EL tr € decy(t) implies decy i(s6) >
810 > gL t0 € decy.;(t6). We distinguish the cases
with respect to the definition of >gr.

Let
de-

(a) If root(s;) >F root(ty) then root(s;0) >
root(tr08) holds.

(b) If root(s;) = root(ty), T(root(s;)) = mul
and sub (decy(8),81) >gr sub (dec,(t),tr)
then we can show sub(decp.i(s6),518) >EL
sub(dec, i(t60),tx9) by induction hypothesis.
In the case that root (s;) = root (t), T
(root(s;)) = mul, sub (decy(s),s;) = sub
(decy(t),tx) and dec (args(s1)) >>Er dec
(args(ty)), it follows that dec (args(sif))
>>pr dec (args(tx6)) from induction hy-
pothesis.

Consider the case that root(s;) = root(ty),

r(root(s)) # mul, args(s)) >rapec)
args(tx) and {s;} >rrps args (t). We
can show args(s;9) >;g§°§(8')) args(t) and
{818} > 1rDs args(tx0) by induction hypoth-
esis.

(2) Incaseoft|, € V, for anyi € N* (p.i € Pr(s6)), we
can show that decp.i(s) = M6 U {s19,..., 36}
U L where L = {v | v € sub(dec;(s[,6) ,5|p6)},
decy(t0) = MO U {t16 ,..., t,0}. Hence we can
show that decp(s) d s; >gr tx € decy(t) implies
decy.i(80) 3 8,0 >gr t8 € decy(t6), in similar to
the proof of (1). a

(o)
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