FIT2004 (58 3 MERMFRIMT +—5 L)

C-018

Hardware Design and Cost Evaluation of a Speculative Selection Router

TRAN CONG SO, SHIGERU QYANAGI AND KATSUHIRO YAMAZAKI

Graduate School of Science and Engineering, Ritsumeikan University.

1. Introduction

We have proposed the Speculative Selection Routing (SSR) that
improves the capability of selection function for various routing
functions [1]. An SSR router would utilize idle cycles of the net-
work links to relay its own condition to adjacent routers (normally
the router utilization values), thus, the condition exchange process
does not add noticeable delay to the network operation.

The SSR router has given messages high selection flexibilities to
dynamically adapt with the changing network condition, thus, re-
quiring quite complex hardware to accomplish. In this study, we
evaluate the hardware design of an SSR router for 2D torus net-
work. The router is designed based on *-Channels routing function
[2], and then the SSR selection is applied. This study describes the
speculation hardware to give a more clear view of the hardware
implementation. Moreover, we try to estimate the required hard-
ware cost for implementing SSR into *-Channels in a quantitative
approach that gives the number of logic gates required for the se-
lection computation.

2. The SSR Routing algorithm

In this paper, the router is evaluated with the *-Channels routing
function in the base with SSR selection algorithm. The *-Channels
routing algorithm [2] is a simple and flexible routing function
which uses quite small number of virtual channels. The *-Channels
algorithm divides virtual channels into two sets of the star channels
and non-star channels. Messages move through star channels as
when doing the dimension-order oblivious routing. The non-star
channels are used when taking any turn that would not be allowed
by the dimension-order routing algorithm, thus obtaining full adap-
tivity without deadlock.

The SSR selection algorithm uses a set of input status to calcu-
late the output channel [1]:

The link’s (virtual channel) availability F= {free, busy}.

e The link’s dimension D: D = [if the message came from the
same link’s dimension, otherwise D = 0.

e The link’s current request number R

The next-node LUCs (Local Utilization Counter) belong to the

link values N; and N,, which are corresponding one-hop-far and

two-hop-far values.

The selection function evaluates E = D + R + N; + kN,. With the
two-hop configuration, k = 0.5 to decrease the weight of N,. The
best channel is the channel with the minimal E value if there are
multiple free channels or all channels are busy.

3. Hardware Design of a SSR Router

3.1 Router Structure

Figure 1 shows the router structure implementing for *-Channels
on the 2D torus network. The Input and Output circuitries control
virtual channels to adjacent routers. These virtual channels and the
network condition buffers share the same physical channel in
time-sharing manner. To minimize the latency of the router, multi-
ple routing function (RF) circuitries are placed in Input circuitries
to decode messages header and give out the requests to selection
function circuitry. Based on local information and network condi-

263

INPUT OUTPUT
X0*+ »
> 1 RE < IE "
NCB '>§ » X1*+ gl
X1*+ » E
X0"— » O
——p RF). X » X0*~
| NCB {7 : 3
: (o]
YO*+ ; O
" i » Y0+
Y1*+ ¥ 8
; l RF H P Y1*+ —
NCB » A » Y+
Y+ » 2] S
Ll 8‘ o
" al
YO S X o
——’ .-: » - »
! NCB)5 - Y-
Y- > 3
Injection =t »{ Exvacion |
| _RF_j»t f
RF. Routing Function) ‘
NCB: Network H Selection LUC: Local Utilization
Condition Buffer ~ * >} Counter
1 Luc p»

Fig.1 Router Structure

tions, the selection function actually commands the Crossbar to
connect an Input to appropriate Output or queues that command
until the requiring output is available.

In each router, we have a Local Utilization Counter (LUC) to
record how many messages are currently staying in the router. LUC
counts up when a message reaches the node and counts down when
the message leaves the node. The Network Condition Buffers
(NCBs), which is located in Input circuitry, stores other nodes
LUCs [1]. In the exchange process, the outputs transfer the value of
LUC and 1-hop NCB to corresponding inputs.

3.2 Input Buffers and Network Condition Buffers

This section illustrates the structural design of the Input circuitry
on the X+ as an example. Other Input circuitries have the same
design with only variation in the number of virtual channels.

Followed the routing function, the virtual channel control signals
manage the rotation between virtual channel buffers to receive flit
data. On the exchange period, the exchange control signals in the
link request the control of link’s bus, then direct the two NCBs in
the X+ input circuit to receive 1-hop and 2-hop values in sequence.
After that, the link’s bus is returned to the control of VC control
signals. Whenever a message arrives to the current router, the input
circuitry provides an signal to LUC in the Selection unit to increase
current router LUC value, as to decrease it when the message leave
the router. The 1-hop NCB is directly sent to the Selection unit as
also to X+ output to be relayed to the next router. The 2-hop NCB
is shifted right 1 bit to calculate the kN, value and then the value is
sent to the Selection unit.

3.3 Selection Unit

The Selection unit is depicted in Fig.2. The SSR router has the
same Output Channel Request Queuing Table (Arbitrator) as other
oblivious router that controls the requests from the Input circuitry.

The Request Queuing Table is connected to Evaluation Value
Computation (EVC) components, which, in turn, calculate the

FIT2004 (55 3 MIBHMZFRMI +—5 L)

Crosibar
Output
Channel
Request

Queuing

HEE YY)
:

Fig.2: Selection Hardware

evaluation value E=D + R+ N; + kN,.

The hardware structure of the EVC of the X+ input is shown in
Fig.2. Messages coming from X+ input would leave the router in
the pair of (Y+, X+) or in the pair of (Y-, X+) because the
*-Channels routing function is minimal. So that, the Selection unit
needs to compare the E values between Y+ and X+ output or to
compare the E values between Y- and X+.

We need to notice that the 1-hop and 2-hop values that are lo-
cated in X— input are the network statuses for the next nodes on the
X+ output direction, as also the Y+ and Y- input stores the network
statuses of the next nodes on the Y—and Y+ directions, respectively.
The first stage of adders calculates D + N, + kN, and then, in the
second stage of adders, the results are added with the number of
requests R values, which are calculated by Request Queuing Table,
of corresponding outputs. Noticed that D = 1 on the adder that adds
the 1-hop and 2-hop values (located in X— input) of X+ output, as
the X+ output is in the same dimension that messages come from,
and D = 0 with other outputs. Finally the Request Queuing Table
takes the comparison results to decide the selection, queues the
requests and commands the crossbar connections.

Other EVC computation components in Fig.2 for inputs of Y+,
Y- and X- have the same construction while the Injection compo-
nent is an exception which requires the E values from all other four
inputs Y+, Y—, X+ and X- to be calculated.

4. Hardware Cost Evaluation

The two NCB buffers are added to each input block along with
several control signals. The fixed shifter for 2-hop NCB value can
be implemented very simply by wiring that costs no logic at all.
The output blocks of the router only need the virtual channel multi-
plexer to be modified for an additional channel, and then a multi-
plexer is used to select the LUC value or corresponding 1-hop NCB
value to be transferred to the next adjacent node. Thus, the state
machine that controls the information transmission would be sim-

264

Table 1: Hardware Cost Estimation

SSR 9X 9 Crossbar
Computation
2-input LUT 340 -
3-input LUT 20 72
4-input LUT - 441
XOR 215 -
1-bit Multiplexer 330 -
5-bit Multiplexer - 144
Flip-Flop 80 —
Total 985 657
No. of Slices 180 273
ple too.

The largest added hardware stays in the EVC components in the
selection block. With the current unclean straight design, the sec-
tion requires 32 adders and 16 comparators to do the job. The
change to Request Queuing Table is minimal also as it is required to
supply four R values to the computational components.

Table 1 gives an estimated hardware cost required for SSR im-
plementation in this router design. Comparative blocks were de-
signed with Verilog HDL and then complied into Xilnix’s Spartan
II XC2S200 FPGA chip using ISE Foundation tools. We assume
that the data width of buffers and adders is 1-byte which would be
more than enough since the value of E would never exceed 32 in
this case of router (the maximum value depends on the number of
virtual channels which decides the maximum number of messages
that possibly stay inside the router). For comparative use, the hard-
ware cost for the 9X9 Crossbar in Fig.1 is provided. As Table 1
shows, the logic count of the SSR computation appears higher than
the Crossbar, but we do notice that, the Crossbar uses more com-
plex logic units (such as 4-input gate and 5-bit multiplexer) than the
hardware for SSR selection. On the other hand, the SSR hardware
requires a small number of Flip-flops. In total required area, the
SSR requires only 65% the number of slices compared with the
Crossbar.

5. Conclusion

This paper presented the hardware implementation method and
cost evaluation for Speculative Selection of a 2D torus router. The
SSR implementation appears to be simple and straight forward
design. The cost estimation shows that the SSR selection hardware
would cost less than other important units of the router, such as
crossbar unit. In addition, the designing of arithmetic units such as
adders and comparators in the speculative selection is not difficult
with currently available design methodology of using HDL and
EDA tools. Moreover, the SSR hardware can be designed more
smartly to reduce hardware cost and to improve the speed of the
router.

References

T.C.So, S.Oyanagi, and K. Yamazaki, “Speculative Selection in Adap-
tive Routing on Interconnection Networks”, IPSJ Transactions on
Advanced Computing Systems, Vol44, No. SIG1l (ACS3),
pp147-156, 2003.

P.E.Berman, L.Gravano, G.D.Pifarré, J.L.C.Sanz, “Adaptive Dead-
lock- and Livelock-Free Routing with all Minimal Paths in Torus
Networks”, Proc. of the fourth annual ACM symposium on Parallel
algorithms and architectures, pp.3-12, 1992.

(1

[2]

[3] H.Hosogoshi, O.Mitobe, T.Yoshinaga, and M.Sowa, “Design of a
Fault-Tolerant Fully Adaptive Router”, Symposium on Advanced
Computing Systems and Infrastructures (SACSIS2003), IPSJ Sym-

posium Series, Vol.2003, No.8, pp.53-56, 2003

