
A System Generator for a Distributed Real-Time Operating System with Distributed
Shared Memory

Doan Truong Thi† Yuji Tamura† Myungryun Yoo† Takanori Yokoyama†

1. Introduction

Real-time operating systems (RTOS) are widely used
in embedded systems. In a RTOS, software modules
need to exchange its input and output values with each
other. This is often done through global variables.
Distributed shared memory (DSM) provides location-
transparent shared variables, therefore distributed soft-
ware modules can exchange their input and output values
through shared variables on DSM.

Based on OSEK OS[1], we have already developed a dis-
tributed real-time operating system (DRTOS) with a real-
time DSM service to fulfill that requirement[2]. In this pa-
per, we present a system generator (SG) for the DRTOS.
We extend the OIL—OSEK Implementation Language[3],
a language for a standardized configuration information
of OSEK OS—to declare DSM configuration. We also
extend the system generator (SG) to support generating
DSM configuration data referring to the extended OIL file.

2. Distributed Real-Time Operating System
with Distributed Shared Memory

The structure of the DRTOS with DSM which we have
developed is illustrates in figure 1. The DRTOS consists of
the OSEK OS original functions, a timer synchronization
module, a remote system call module, a distributed shared
memory module and configuration data.

The DRTOS has task location determination feature,
that task would get determined which node it belongs to
when a target task’s system call got issued. If that task
belongs to current node, DRTOS executes OSEK OS’s
original system call. If that task belongs to other node,
DRTOS executes remote system call.

The remote system call is another feature of DRTOS.
The DRTOS sends a request message to a node, on which
the target task of the remote system call resides. When
a remote system call’s request message is received from
other node, DRTOS executes the requested OSEK OS’s
system call and sends back return value as well as param-
eters to the request node.

The distributed shared memory module manages the
copies of shared variables and maintains the consistency
between all nodes in the system.

Figure 2 illustrates example distrbuted control software
with DSM, which shows how DSM maintains the con-
sistency of shared variables between nodes. Task11 on
Node1, Task21 on Node2, Task31 on Node3 and Task41
on Node4 respectively executes Software Module X, Soft-
ware Module Y, Software Module Z and Software Module
W. The DSM service on the DRTOS copies the shared
variables x and y to the nodes and maintains the consis-
tency of DSM.

Although it may be expected to maintain a sequenti-
cal consistency of DSM, it is hard to implement the se-
quential consistency while keeping the expected perfor-
mance. Using FlexRay communication features, we have
developed a DRTOS which supports two types of DSM

†Tokyo City University

ECU

Application Program

Distributed Real-Time Operating System

OSEK OS
Original

Functions

OSEK OS
System Call

Task Location 
Determination

Remote
System Call

Timer 
Synchronization

Distributed Shared 
Memory Resource 

Verification

Distributed
Shared Memory

Configuration Data

CPU
FlexRay Driver

FlexRay Controller

OSEK
COM

FlexRay

Figure 1: Structure of Distributed Real-Time Operating System

FlexRay

Application

SybsystemX

x

read write

DRTOS

Software Module 
X

Task11
Application

SybsystemX

y

write

DRTOS

Software Module 
Y

Task21

Shared Variables

Application

SybsystemX

x

read

DRTOS

Software Module 
Z

Task31

read

y

Application

SybsystemX

x

read

DRTOS

Software Module 
W

Task41

read

y

Consistency Maintenance

Node1 Node2 Node3 Node4

Figure 2: Example of Distributed Control Software

consistency, sequential-equivalent consistency and partial-
sequential consistency.

3. OIL Specification

Configuration information of DSM has to be defined in an
OIL file so that SG can generate source code of configura-
tion for DRTOS with DSM. Since the information needs
to be accessible from all CPU objects, we define them in
a separate section. We call it “distributed shared memory
section”. This section is defined after the implementation
section and before the application section. If there are
more than one DSM object, each one is defined one after
another.

Figure 3 represents an example of an OIL file for a
DRTROS with DSM. A DSM object consists of 3 at-
tributes: CDATATYPE, INITIALVALUE and CONSIS-
TENCY. CDATATYPE is the data type of the shared
variable. INITIALVALUE is the initial value of the
shared variable. CONSISTENCY is the consistency type
of DSM, which is either SEQUENTIAL (DSM must be
maintained a sequential-equivalent consistency), PAR-
TIAL (DSM can be maintained with a partial-sequential
consistency), or NONE (no need to maintain the consis-
tency).

FIT2015（第 14 回情報科学技術フォーラム）

Copyright © 2015 by Information Processing Society of Japan and
The Institute of Electronics, Information and Communication Engineers
All rights reserved.

 257

C-012

第1分冊



In each TASK object, in order to tell the object which
memory to access and its access authorization, we add
a new attribute called SHAREDRESOURCE. This at-
tribute has the following information: name of DSM which
it refers to and parameter ACCESS that shows the access
type to that DSM, which is either READWRITE, READ
or WRITE.

With all above added configuration information, the
new OIL specification is defined.

...
DSM sharedData0 {

CDATATYPE = "long";
INITIALVALUE = 0x0000;
CONSISTENCY = EQUIVALENT;

};
CPU cpu0 {

...
SHAREDRESOURCE = sharedData0 {

ACCESS = READWRITE;
}
...

};
CPU cpu1 { ... }
...

Figure 3: Example of OIL for a Distributed Real-Time Operating System
with Distributed Shared Memory

4. System Generator

The System Generator that we develope in this research
is based on TOPPERS/OSEK OS’s System Generator[5].
It can generate all nodes’ standard configuration data as
well as DSM data at once.

The system generation process is devided into two
phases—extraction phase and parsing phase.

4.1. Extraction Phase

The configuration information for a DRTOS with DSM is
defined in an OIL file with new sepcification presented in
section 3. All processes that are executed in this phase
are explained below:

• The SG reads the implementation section from input
OIL file and copies these definitions into each node’s
application OIL file (app.oil)

• The SG reads the DSM section from input OIL file
and copies these definitions into each node’s DSM
OIL file (dsm.oil)

• The SG reads the application section from input
OIL file, extracts each CPU’s definition and appends
it into the appropriate node’s application OIL file
(app.oil)

4.2. Parsing Phase

The whole process of the parsing phase is shown in fig-
ure 4. First of all, the SG parses each node’s app.oil
file which is generated at extraction phase and generate
each node’s configuration header file (kernel id.h) as well
as implementation file (kernel cfg.c). This is done using
the original TOPPERS/OSEK OS SG’s original functions.
The SG then parses each node’s dsm.oil file and gener-
ate a DSM definition’s header file (distmem.h) and an
implementation file (distmem.c) for each node.

app.oil

kernel_id.h

kernel_cfg.c

dsm.oil

distmem.h

distmem.c

Figure 4: System Generator’s parsing phase for each node

5. Conclusion

We have extended the OIL specification to adopt the def-
inition of DSM objects. We designed and implemented
an SG which is able to parse that new OIL specification
and generate configuration data for DRTOS with DSM.
With the extended SG, the generation process of config-
uration data for DRTOS with DSM could finally be done
completely automatically.

Acknowledgments

We would like to thank the members of the TOPPERS
Project for the development of TOPPERS/OSEK Ker-
nel. This work was supported in part by JSPS KAKENHI
Grant Number 24500046 and 15K00084.

References

[1] OSEK/VDX: Operating System Version 2.2.3, February 17,
2005.

[2] Takahiro Chiba, Myungryun Yoo, Takanori Yokoyama: A
Distributed Real-Time Operating System with Distributed
Shared Memory for Embedded Control Systems, IEEE 11th
International Conference on Dependable, Autonomic and Se-
cure Computing (DASC) 2013, Chengdu, China, pp.248-255,
December 21-22, 2013, doi:10.1109/DASC.2013.71.

[3] OSEK/VDX: System Generation, OIL: OSEK Implementa-
tion Language Version 2.5, July 1, 2004.

[4] TOPPERS Project, http://www.toppers.jp/en/

[5] WITZ Co. Ltd: TOPPERS/OSEK OS SG Instruction Man-
ual Ver. 3.00, May 30, 2006 (In Japanese).

FIT2015（第 14 回情報科学技術フォーラム）

Copyright © 2015 by Information Processing Society of Japan and
The Institute of Electronics, Information and Communication Engineers
All rights reserved.

 258

第1分冊


