
A semigroup of homomorphisms
based on vertex connectivity of weighted directed graphs

國持良行 †

　 Yoshiyuki Kunimochi

1. Introduction
In this paper we give our definition of homomorphisms

of general weighted directed graphs and investigate the
semigroups of surjective homomorphims and synthesize
graphs to obtain a generator of pricipal left (or right) ideal
in the semigroup. This study is motivated by reducing the
redundancy in concurrent systems, for example, Petri nets
which are represented by weighted bipartite graphs. Here
we can more simply obtain some results in weighted direct
graphs that is similar to the ones shown in Petri nets[11]

In a general weighted directed graph, weights given to
edges are mesured by some quantity, for example, usu-
ally nonnegative integers. Here slightly extending the
notion of weight, we adopt a kind of ring R as this
quantity. For weighted digraphs (Vi, Ei,Wi)(i = 1, 2),
a usual graph homomorphism ϕ : V1 → V2 satisfies
W2(ϕ(u), ϕ(v)) = W1(u, v) to preserve adjacencies of
the graphs. Whereas we originally extend this defini-
tion slightly and our homomorphism is defined by the
pair (ϕ, ρ) based on the similarity of the edge connection.
(ϕ, ρ) satisfies W2(ϕ(u), ϕ(v)) = ρ(u)ρ(v)W1(u, v),
where ρ : V1 → R and R is a principal ideal domain.
When this equality holds among two weighted digraphs,
interestingly the stuctures of these two graphs can be ex-
plained in terms of the similarity equivalence.

2. Preliminaries
Here we introduce an extension of homomorphisms of

a usual weighted directed graph and state some properties
of the semigroup of these homomorphisms.

2.1. Graphs and Homomorphisms
In a general weighted directed graph, weights given to

edges are mesured by some quantity, for example, usually
nonnegative integers. Here slightly extending the notion of
weight, we adopt a kind of ring R as this quantity. More
precisely we assume that (R,+, ·) has at least two distinct
elements 0, 1 ∈ R and satisfies a ring condition (i) to (iii):

(i) (R,+, 0) is an abelean group.
(ii) (R, ·, 1) is a monoid.
(iii) (R,+, ·) satisfies the distributive laws.

Moreover through the manuscript we assume that R is
a principal ideal domain (abbreviated as PID)[9], that is,
satisfies the following (iv), (v) and (vi).

(iv) (R, ·, 1) is a commutative monoid.
(v) ab = 0 implies a = 0 or b = 0.
(vi) Every ideal I in R is principal, that is, I = RaR
for some a ∈ R.
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We require the conditions (iv) and (v) that R is a do-
main, for defining the quotient field Q(R) = {r/s|r, s ∈
R, s ̸= 0} of R by Q(R), which is the smallest field con-
taining a domain R.

By (vi), for any nonempty S = {a1, a2, . . . , an} ⊂ R,
there exists a ∈ R such that a1R ∪ a2R ∪ · · · ∪ anR =
aR, which is called a greatest common divisor of S. The
set of all the greatest common divisors of S is denoted by
gcd(S).

Definition 1. A weighted directed graph (weighted di-
graph, for short) is a 3-tuple (V, E, W ) where
(1) V is a finite set of vertices,
(2) E (⊂ V × V ) is a set of edges,
(3) W : E → R is a weight function, where R is a PID.

2

According to custom, (u, v) ∈ E ⇐⇒ W (u, v) ̸= 0.

Definition 2. Let G1 = (V1, E1, W1) and G2 =
(V2, E2, W2) be weighted digraphs. Then a pair (ϕ, ρ)
is called a (weak weight preserving) homomorphism (for
short, w-homomorphism) from G1 to G2 if Wi : Ei → R
have the same image R and the maps ϕ : V1 → V2,
ρ : V → Q(R) satisfy the condition that for any u, v ∈ V1,

W2(ϕ(u), ϕ(v)) = ρ(u)ρ(v)W1(u, v), (1)

where Q(R) is the quotient field of R. Especially if ρ =
1V , i.e., ρ(u) = 1 for any u ∈ V , then w-homomorphism
is called a strictly weight preserving homomorphism (s-
homomorphism, for short). 2

Example 1. Let Gi = (Vi, Ei,Wi) (i = 1, 2) be the
weighted digraphs depicted in Fig.1, Wi : Vi → Z the
weight functions, where Z is the set of integers but we
don’t use its negative part. That is,
V1 = {u1, u2, v1, v2}, V2 = {u3, u4, v3},
E1 = {(u1, v1), (u1, v2), (u2, v1), (u2, v2)}
E2 = {(u3, v3), (u4, v3)}
W1 : (u1, v1) 7→1, (u1, v2) 7→2, (u2, v1) 7→3, (u2, v2) 7→6
W2 : (u3, v3) 7→ 3, (u4, v3) 7→ 9.

(a) Weighted Digraph G1
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Fig. 1: Weighted Digraph G1 and G2 with G1 ⊒ G2.
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The following (ϕ1, ρ1) is a w-homomorphism from G1

to G2.

ϕ1=

(
u1 u2 v1 v2
u3 u4 v3 v3

)
, ρ1=

(
u1 u2 v1 v2
1 1 3 3/2

)
.

2

A w-homomorphism (ϕ, ρ) is called injective (resp.
surjective) if ϕ is injective (resp. surjective). In par-
ticular, it is called a w-isomorphism from G1 to G2 if
it is injective and surjective. Then G1 is said to be w-
isomorphic to G2 and we write G1 ≃w G2. Moreover,
in case of G1 = G2 = G, a w-isomorphism is called a
w-automorphism of G. By Autw(G) we denote the set of
all the w-automorphisms of G. Similarly s-isomorphism
≃s s-automorphism and Auts(G) are defined.

We obtain the following theorem, which is similar to the
result in [10].

Theorem 1. For a given finite group H , there exists a
graph G such that Auts(G) ≃ H . 2

Proof) Let H = {g1 = e, g2, . . . , gn} with the identity
g1 = e and p1, p2, . . . , pn be distinct integers. We define
the graphG = (H,E,W ) by for any g, h ∈ H W (g, h) =
pi if h = gig holds.

Then (ϕk,1) is an s-automorphism of G, where ϕk :
G → G, g 7→ ggk (1 ≤ k ≤ n) and 1 : G → Z, g 7→ 1
for any g ∈ G. Indeed, let any g, h ∈ H with h = gig.

W (ϕk(g), ϕk(h)) =W (ggk, giggk) = pi =W (g, h)

Conversely, suppose (ϕk,1) is an s-automorphism of G
and let gk = ϕ(e). Then since (ϕk,1) strictly preserves
the weights of edges in G, for any gi ∈ H ,

W (e, gi) = pi =W (ϕ(e), ϕ(gi)) =W (gk, ϕ(gi))

holds. By the construction of the weight function, we have
ϕ(gi) = gigk and thus ϕ = ϕk

Definitely (ϕk,1) corresponds to gk ∈ H because
ϕjϕk : g 7→ g(gjgk) holds. Thus Auts(G) =
{ϕ1 . . . , ϕn} ≃ H 2

2.2. Composition of the w-homomorphisms
We define the composition of the w-homomorphisms.

In this manuscript, we write ϕψ for the composition ψ ◦ ϕ
of maps.

Definition 3. Let Gi = (Vi, Ei,Wi) (i = 1, 2, 3) be
weighted digraphs, (ϕ, ρ) : G1 → G2 and (ψ, σ) : G2 →
G3 be w-homomorphisms. Then the composition of these
w-homomorphisms are defined by the semidirect product

(ϕ, ρ)(ψ, σ)
def
= (ϕ, ρ)⋊ (ψ, σ) = (ϕψ, ρ⊗ (ϕσ)),

where ρ⊗ (ϕσ) : V → Q(R), u 7→ ρ(u)σ(ϕ(u)).

Indeed, checking the validity of the definition.

W3(ψ(ϕ(u)), ψ(ϕ(v)))
= σ(ϕ(u))σ(ϕ(v))W2(ϕ(u), ϕ(v))
= σ(ϕ(u))σ(ϕ(v))ρ(u)ρ(v)W1(u, v)
= σ(ϕ(u))ρ(u)σ(ϕ(v))ρ(v)W1(u, v)
= (ρ⊗ (ϕσ))(u)(ρ⊗ (ϕσ))(v)W1(u, v)

hold.

Example 2. LetGi = (Vi, Ei,Wi) (i = 2, 3) be weighted
digraphs depicted in Fig.2. The following (ϕ1, ρ1) is the
w-homomorphism from G1 to G2 in Example 1. (ϕ2, ρ2)
is a w-homomorphism from G2 to G3.

ϕ1=

(
u1 u2 v1 v2
u3 u4 v3 v3

)
, ρ1 =

(
u1 u2 v1 v2
1 1 3 3/2

)
,

ϕ2 =

(
u3 u4 v3
u u v

)
, ρ2 =

(
u3 u4 v3
5/3 5/9 1

)
.

We have

ϕ1ρ2 =

(
u1 u2 v1 v2
5/3 5/9 1 1

)
.

Therefore, (ϕ, ρ) = (ϕ1ϕ2, ρ1 ⊗ (ϕ1ρ2)) =
(ϕ1, ρ)(ϕ2, ρ2) is the composition of them, where

ϕ=

(
u1 u2 v1 v2
u u v v

)
, ρ=

(
u1 u2 v1 v2
5/3 5/9 3 3/2

)
.

(b) Weighted Digraph G2
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(c) Weighted Digraph G3
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Fig. 2: Weighted Digraphs G2 and G3.

2

Immediately, we obtain the following lemma regarding
to ⊕.

Lemma 1. Let ϕ and ψ be arbitrary maps on V and
f, g : V → Q(R). 1V means the constant mapping de-
fined by 1V : V → Q(R), v 7→ 1, f−1 means the mapping
V → Q(R), v 7→ 1/f(v). Then the following equations
are true.
(1) (ϕψ)f = ϕ(ψf).
(2) ϕ(f ⊗ g) = (ϕf)⊗ (ϕg).
(3) ψeV = eV .
(4) (ϕf)⊗ (ϕf−1) = eV .
(5) (ϕf)−1 = ϕf−1.
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Proof) We can easily verify the equations. 2

For weighted digraphs G1 and G2, we write G1 ⊒ G2

if there exists a surjective w-homomorphism from G1 to
G2. The relation ⊒ forms a pre-order (a relation satisfying
the reflexive law and the transitive law) as shown below.
Of course, the pre-order ⊒ is regarded as an order up to
w-isomorphism.

Proposition 1. Let G1, G2, G3 be weighted digraphs.
Then,
(1) G1 ⊒ G1.
(2) G1 ⊒ G2 and G2 ⊒ G1 ⇐⇒ G1 ≃ G2.
(3) G1 ⊒ G2 and G2 ⊒ G3 imply G1 ⊒ G3.

Proof) We can easily verify the inequalities. 2

Remark that in Example 2, ϕ1 and ϕ2 are sujective,
ϕ1ϕ2 is also. Therefore G1 ⊒ G2 ⊒ G3 holds.

2.3.Similarity of vertices
Similarity of vertices means that vertices can be reduced

to one vertex by some w-homomorphism.

Definition 4 (Similar). Let G = (V,E,W ) be a weighted
digraph. Two vertices u, v ∈ V are said to be similar if
there exist some s, t ∈ R \ {0} such that sW (u, x) =
tW (v, x) and sW (x, u) = tW (x, v) for all x ∈ V . 2

The similarity defined above forms obviously an equiv-
alence relation on V . We denote this relation by ∼G (or
simply ∼) and the ∼G-class of a vertex u by C(u). A ver-
tex u is said to be isolated if u has no connection, that is,
W (u, x) =W (x, u) = 0 to any x ∈ V .

Note that any two isolated vertices u and v are similar
because for any element s ̸= 0 in R, sW (u, x) = 0 =
sW (v, x) and sW (x, u) = 0 = sW (x, v)for all x ∈ V .

Proposition 2. Let G = (V,E,W ) be a weighted di-
graph. The following conditions are equivalent.

(1) u and v are similar.
(2) There exist a graph G′ = (V ′, E′,W ′) and a sur-

jective w-homomorphism (ϕ, ρ) from G to G′ such that
ϕ(u) = ϕ(v).

Proof) (1)⇒ (2) We will construct the graph G′ =
(V ′, E′,W ′) as follows: V ′ = V \ {v}, E′ = E ∩
(V ′ × V ′), and W ′ = W |(V ′ × V ′)(the restriction of
W to V ′ × V ′). Since u and v are similar, there ex-
ist s, t ∈ R \ {0} such that sW (u, x) = tW (v, x) and
sW (x, u) = tW (x, v) for all x ∈ V . Then we define the
w-homomorphism (ϕ, ρ) : G→ G′ as follows:

ϕ(u) = u, ρ(u) = 1,
ϕ(v) = u, ρ(v) = t/s,
ϕ(x) = x, ρ(x) = 1 ∈ R if x ∈ V \ {u, v}.

We can verify for the w-homomorphism (ϕ, ρ) to preserve
the weight functions.

(2)⇒(1) Let ρ : P → Q(R). By the definition of w-
homomorphism , W ′(ϕ(u), ϕ(x)) = ρ(u)ρ(x)W (u, x) =
ρ(v)ρ(x)W (v, x) = W ′(ϕ(v), ϕ(x)) for any x ∈ V . We
have

ρ(u)W (u, x) = ρ(v)W (v, x), and similarly
ρ(u)W (x, u) = ρ(v)W (x, v).

Then since we can write ρ(u) = s′/s′′ ∈ Q(R) and
ρ(v) = t′/t′′ ∈ Q(R), setting s = s′t′′ and t = t′s′′

we conclude that u and v are similar. 2

3. Ideals in the semigroup S
In this section we define the set S of all surjective w-

homomorphisms between two weighted digraphs and a
(extra) zero element 0. Introducing the multiplication by
the composition, S forms a semigroup,

For a surjective w-homomorphim x : G1 → G2, G1 is
called the domain of x, denoted by Dom(x), and G2 is
called the image(or range) of x, denoted by Im(x). Es-
pecially Dom(0) = Im(0) = ∅. The multiplication of
x = (ϕ, ρ) and y = (ψ, σ) is defined by

x · y def
=

{
(ϕψ, (ϕρ)⊗ σ) if Im(x) = Dom(y).
0 otherwise.

3.1.Green’s equivalences on the semigroup S
For convenience of notation, S1 = S ∪ {1} is the

monoid obtained from a semigroup S by adjoining an (ex-
tra) identity 1, that is, 1 · s = s · 1 = s for all s ∈ S and
1 · 1 = 1.

In general, Green’s equivalences L,R,J ,H,D on a
semigroup S, which are well-known and important equiv-
alence relations in the development of semigroup theory,
are defined as follows:

xLy ⇐⇒ S1x = S1y,
xRy ⇐⇒ xS1 = yS1,
xJ y ⇐⇒ S1xS1 = S1yS1,
H = L ∩R,
D = (L ∪R)∗,

where (L∪R)∗ means the reflexive and transitive closure
of L∪R. S1x (resp. xS1) is called the principal left (resp.
right ) ideal generated by x and S1xS1 the it principal
(two-sided) ideal generated by x. Then, the following facts
are generally true[7, 3].

Fact 1. The following relations are true.

(1)D = LR = RL
(2)H ⊂ L (resp.R) ⊂ D ⊂ J

Fact 2. An H-class is a group if and only if it contains an
idempotent e, that is e2 = e.

Now we consider the case of S = S in the rest of the
maniscript. The following lemma is obviously true.
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Lemma 2. Let x : G1 → G2, y : G3 → G4 ∈ S . Then,
(1) xS1 ⊂ yS1 =⇒ G1 = G3 ⊒ G4 ⊒ G2.
(2) S1x ⊂ S1y =⇒ G1 ⊒ G3 ⊒ G2 = G4.
(3) xS1 = yS1 =⇒ G1 = G3 and G2 ≃w G4.
(4) S1x = S1y =⇒ G1 ≃w G3 and G2 = G4. 2

Remark that any reverses of the implications above are
not necessarily true.

Proposition 3. The following conditions are equivalent.
(1) H is an H-class and a group.
(2) H = Autw(G) for some weighted digraph G.

Proof) (1)=⇒(2) By Fact2, H contains an idempotent
e, that is e2 = e. This implies Dom(e) = Im(e) = G
for some weighted digraph G. By (3) and (4) of Lemma
2, Dom(x) = Dom(e) = G and Im(x) = Im(e) = G
for any x ∈ H because xS1 = eS1 and S1x = S1e hold.
Therefore each element of H is a w-automorphism of G.
Conversely, for a w-automorphism x ofG, x ∈ H because
x is a surjective morphism with Dom(x) = Im(x) = G.
Hence we have H = Autw(G).
(2)=⇒(1) For x, y ∈ H = Autw(G), there exist z, w ∈
H such that x = zy and wx = y. This implies S1x =
S1y. Similarily we have xS1 = yS1. Therefore xHy.
Conversely, xHy and x ∈ H imply y ∈ H because y is
a surjective w-homomorphism with Dom(y) = Im(y) =
G. Hence H is an H-class and a group. 2

Proposition 4. On the semigroup S, J = D .

Proof) Since D ⊂ J holds, it is enough to show the
reverse inclusion.

xJ y ⇐⇒ S1xS1 = S1yS1

⇐⇒ ∃u, v, z, w ∈ S1 (x = uyv, y = zxw)

implies that x = uzxwv, y = zuyvw. Setting
P = Dom(x),Q = Dom(y),R = Im(x) and S =
Im(y), uz : P → P , zu : Q → Q, wv : R → R,
vw : S → S are w-automorphisms. This implies that
u, v, z, w are w-isomorphisms. Let t = xw. Then,

x = x(ww−1) = (xw)w−1 = tw−1

y = z(xw) = zt
t = (z−1z)t = z−1(zt) = z−1y

Therefore xS1 = tS1 and S1t = S1y, that is, xRtLy.
Thus D ⊂ J . 2

3.2.Intersection of principal ideals
The aim here is that for given x, y ∈ S we find a ele-

ments z such that S1x ∩ S1y = S1z (resp. xS1 ∩ yS1 =
zS1). xS1 ∩ yS1 = {0} (resp. S1x ∩ S1y = {0}) is
a trivial case(z = 0). We should only consider the non-
trivial case. For a surjective map ϕ : V1 → V2, we denote
the equivalence relation ϕϕ−1 = {(u, v)|v ∈ ϕϕ−1(u)}
on V1 by kerϕ, that is, the set of all pairs of vertices which
map to the same image by ϕ.

Lemma 3. Let Gi = (Vi, Ei.Wi)(i = 1, 2, 3) be
weighted graphs, x = (ϕ, ρ) : G1 → G3, y = (ψ, σ) :
G2 → G3 be elements of S. If |ϕ−1(u)| ≤ |ψ−1(u)| for
any u ∈ V3, then S1y ⊂ S1x.

Proof) By the assumption, we can choose some surjec-
tive morphism ξ : V2 → V1 such that ξ(ψ−1(u)) =
ϕ−1(u) for any u ∈ V3.

W1(ξ(u), ξ(v)) =
σ(u)σ(v)

ρ(ξ(u))ρ(ξ(v))
W2(u, v).

So τ : V2 → Q(R) is defined by τ = σ ⊗ (ξρ)−1. Then,
we can verify that (ξ, τ) is a surjective morphism from G2

to G1 and thus z ∈ S1, y = zx. Therefore S1y ⊂ S1x.
2

Remark that enumerating all the surjective maps such as
ξ in the proof, the number N of them is represented as

N =

k∏
i=1

(smi
ni

×mi!),

where V3 = {u1, u2, . . . , uk}, mi = |ϕ−1(ui)|, ni =
|ψ−1(ui)| , and smi

ni
is the Stirling number (of the second

kind). smi
ni

(ni ≥ mi) is the number of partitions of a set
of ni objects into mi classes[1].

Lemma 4. Let Gi = (Vi, Ei.Wi)(i = 0, 1, 2) be
weighted digraphs, x = (ϕ, ρ) : G0 → G1, y = (ψ, σ) :
G0 → G2 be elements of S. If kerϕ ⊂ kerψ, then
yS1 ⊂ xS1.

Proof) Let u, v be arbitrary elements of V1, respectively.
By the assumption, ū, v̄ ∈ V2 are uniquely determined and
let

ϕ−1(u) = {u1, u2, . . . , un} ⊂ ψ−1(ū),
ϕ−1(v) = {v1, v2, . . . , vm} ⊂ ψ−1(v̄),

Then we can easily check that

W1(u, v) =W1(ϕ(ui), ϕ(vj)) = ρ(ui)ρ(vj)W0(ui, vj),

W2((̄u), (̄v)) =W2(ψ(ui), ψ(vj)) = σ(ui)σ(vj)W0(ui, vj),

for any i = 1, 2, . . . , n and j = 1, 2, . . . ,m. The right
hand sides of the equations above are constants not de-
pending on i and j. So

ξ : V1 → V2, u 7→ ū, where ϕ−1(u) ⊂ ψ−1(ū), and
ν : V1 → Q(R), u 7→ σ(ui)ρ

−1(ui), where ϕ(ui) = u

are well-defined. Therefore we have z = (ξ, ν) ∈ S and
thus y = xz, that is, yS1 ⊂ xS1. 2

Proposition 5 (Intersection of Principal Left Ideals). Let
Gi = (Vi, Ei,Wi)(i = 1, 2, 3) be weighted digraphs, x =
(ϕ1, ρ1)) : G1 → G3, y = (ϕ2, ρ2)) : G2 → G3 be
elements of S, V3 = {u1, u2, . . . , uN}. Let

ni = max{|ϕ−1
1 (ui)|, |ϕ−1

2 (ui)|} for each i = 1, 2, . . . , N.
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Taking sets U1, U2, . . . , UN with their sizes |Ui| = ni(i =
1, 2, . . . , N), we construct a weighted digraph G =
(V,E,W ), where V =

∪
1≤i≤N Ui and for any u, v ∈ V ,

W (u, v) =W3(ui, uj) if u ∈ Ui, v ∈ Uj ,

Then, z = (ϕ,1⊗V
) : G → G3, where ϕ : Ui ∋ u 7→ ui

and 1⊗V : V → Q(R), v 7→ 1 ∈ Q(R), is a surjective
morphism. Moreover, S1x ∩ S1y = S1z.

Proof) By Lemma 3 and the construction of G, z =
ax = by for some a, b ∈ S1. Therefore z ∈ S1x ∩ S1y.

Conversely we show that w = (ψ, σ) ∈ S1x ∩ S1y
implies w ∈ S1z. We can write w = a′x = b′y for
some a′, b′ ∈ S1. Let ui ∈ V3. In our construction,
|ϕ−1(ui)| = max{|ϕ−1

1 (ui)|, |ϕ−1
2 (ui)|}. Since w =

a′x = b′y holds, we have |ϕ−1
1 (ui)| ≤ |ψ−1(ui)| and

|ϕ−1
2 (ui)| ≤ |ψ−1(ui)| and thus |ϕ−1(ui)| ≤ |ψ−1(ui)|.

By Lemma 3, we conclude S1x ∩ S1y = S1z. 2

Corollary 1 (Diamond Property I). Let Gi =
(Vi, Ei,Wi) (i = 1, 2, 3) be weighted digraphs withG1 ⊒
G3 and G2 ⊒ G3. Then there exists a weighted digraph G
such that G ⊒ G1 and G ⊒ G2.

We consider the intersection of two principal right ide-
als. The case of principal right ideals is rather difficult
compared to that of principal left ideals.
(kerϕ ∪ kerψ)∗ is the smallest equivalence relation on

V which includes both kerϕ and kerψ, that is, it is the
reflexive and transitive closure of kerϕ ∪ kerψ.

Proposition 6 (Intersection of Principal Right Ideals). Let
Gi = (Vi, Ei.Wi)(i = 0, 1, 2) be weighted digraphs,
x = (ϕ1, ρ1) : G0 → G1, y = (ϕ2, ρ2) : G0 →
G2 be elements of S. Let C1, C2, . . . , CN be all the
(kerϕ1 ∪ kerϕ2)

∗-classes in V0.
ρ : V0 → Q(R) is defined by if u is 0-isolated then

ρ(u) = 1 and otherwise

ρ(u) = 1/ gcd({W0(u, v),W0(v, u) | v ∈ V0})

where n = |V0| and V0 = {v1, v2, . . . , vn}.
(1) The weighted graph G3 = (V3, E3.W3) can be con-
structed in the following way:

V3 = {C1, C2, . . . , CN},

For each i, j ∈ {1, 2, . . . , N},

W3(Ci, Cj) = ρ(u)ρ(v)W0(u, v)for anyu ∈ Ci, v ∈ Cj ,

are well-defined.
(2) Let z = (ϕ, ρ) : G0 → G3, where ϕ is the canon-

ical surjection from V0 onto V3. Then, z is a surjective
morphism and xS1 ∩ yS1 = zS1.

Proof) Let i, j ∈ {1, 2, . . . , N}. We shall show that for
any u, u′ ∈ Ci and v, v′ ∈ Cj ,

ρ(u)ρ(v)W0(u, v) = ρ(u′)ρ(v′)W0(u
′, v′), (2)

Before proving the equation (2), under the condition that
ϕk(u) = ϕk(u

′) and ϕk(v) = ϕk(v
′) hold for k = 1, 2,

we show the equation (2). First,

ρk(u)ρk(v)W0(u, v) =Wk(ϕk(u), ϕk(v))
=Wk(ϕk(u

′), ϕk(v
′)) = ρk(u

′)ρk(v
′)W0(u

′, v′)
(3)

holds and especially considering the case of v = v′, we
have

ρk(u)W0(u, v) = ρk(u
′)W0(u

′, v), and similarly
ρk(u)W0(v, u) = ρk(u

′)W0(v, u
′).

(4)

Next the following equation (5) holds.

neither u nor v is 0-isolated =⇒
ρ(u)ρ(v)ρk(u

′)ρk(v
′) = ρ(u′)ρ(v′)ρk(u)ρk(v).

(5)

Indeed since u and u′ are not 0-isolated, the greatest
common divisors give the following equations.

ρ(u)ρk(u
′)

= ρ(u′)ρ(u)ρk(u
′)ρ−1(u′)

= ρ(u′)ρ(u)ρk(u
′) gcd({W0(u

′, v),W0(v, u
′) | v ∈ V0})

= ρ(u′)ρ(u)ρk(u) gcd({W0(u, v),W0(v, u) | v ∈ V0}) ∵ (4)
= ρ(u′)ρ(u)ρk(u)ρ

−1(u)
= ρ(u′)ρk(u){ρ(u)ρ−1(u)}
= ρ(u′)ρk(u)

Similarily we have ρ(v)ρk(v′) = ρ(v′)ρk(v). These imply
that the equation (5) holds. The equation (3)implies that
W0(u, v) = 0 ⇐⇒ W0(u

′, v′) = 0. Since it is trivial in
case of W0(u, v) = 0, we may assume that W0(u, v) ̸= 0
and thus u is not 0-isolated.

ρ(u)ρ(v)W0(u, v)
= ρ(u)ρ(v)ρk(u)

−1ρk(v)
−1ρk(u)ρk(v)W0(u, v)

= ρ(u)ρ(v)ρk(u)
−1ρk(v)

−1ρk(u
′)ρk(v

′)W0(u
′, v′)

= ρ(u′)ρ(v′)ρk(u)
−1ρk(v)

−1ρk(u)ρk(v)W0(u
′, v′) ∵ (5)

= ρ(u′)ρ(v′)W0(u
′, v′)

If ϕk(u) = ϕk(u
′) and ϕk(v) = ϕk(v

′) hold for k = 1, 2,
we have shown the equation (2) and return to the proof of
the equation (2) in case of u, u′ ∈ Ci and v, v′ ∈ Cj .

Since u, u′ ∈ Ci and v, v′ ∈ Cj , there exist sequences

s0 = u, s1, . . . , sℓ = u′,
with(sk1, sk+1) ∈ kerϕ1 ∪ kerϕ2(0 ≤ k ≤ ℓ),

t0 = v, t1, . . . , tm = v′,
with(tk−1, tk) ∈ kerϕ1 ∪ kerϕ2(0 ≤ k ≤ m).

Then,

ρ(s0)ρ(t0)W0(s0, t0) = ρ(s1)ρ(t0)W0(s1, t0) = . . .
= ρ(sℓ)ρ(t0)W0(sℓ, t0) = ρ(sℓ)ρ(t1)W0(sℓ, t1) = . . .
= ρ(sℓ)ρ(tm)W0(sℓ, tm)

Therefore the equation (2) and thus W3 are well-defined.
(2) Let k ∈ {1, 2}. By the statement (1) above, the fol-
lowing maps are well-defined.

ϕk
′ : Vk → V3, v 7→ ϕ(u) whereϕk(u) = v,

ρk
′ : Vk → Q(R), v 7→ ρ(u)ρk(u)

−1 whereϕk(u) = v.
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For any v, t ∈ Vk, there exists u, s ∈ V0 such that ϕk(u) =
v and ϕk(s) = t, and thus we have

W3(ϕk
′(v), ϕk

′(t))=W3(ϕ(u), ϕ(s))=ρ(u)ρ(s)W0(u, s)
= ρ(u)ρ(s)ρk(u)

−1ρk(s)
−1Wk(ϕk(u), ϕk(s))

= ρk
′(v)ρk

′(t)Wk(v, t).

Therefore x′ = (ϕ1
′, ρ1

′) : G1 → G3 and y′ =
(ϕ2

′, ρ2
′) : G2 → G3 are w-homomorphisms. We can

easily show that ϕk′(k = 1, 2) are surjective, that is,
z = xx′ = yy′ (x′, y′ ∈ S). Therefore zS1 ⊂ xS1 ∩ yS1.

Conversely, we show that for any w ⊂ xS1 ∩ yS1 there
exists z′ ∈ S1 such that w = zz′.

If we can write w = xa = yb, a = (ψ1, σ1), v =
(ψ2, σ2) ∈ S , then w = (ψ, σ) = (ϕ1ψ1, ρ1 ⊗ ϕ1σ1) =
(ϕ2ψ2, ρ2 ⊗ ϕ2σ2). Let Im(w) = G4 = (V4, E4,W4)

Let u, u′ ∈ Ci. Since a sequence s0 = u, s1, . . . , sℓ =
u′ such that for 0 ≤ j < ℓ ϕ1(sj) = ϕ1(sj+1) or ϕ2(sj) =
ϕ2(sj+1) exists, ψ(sj) = ψ(sj+1) holds. This implies that
there exists v ∈ V4 such that Ci ⊂ ψ−1(v). By Lemma 4,
wS1 ⊂ zS1. Therefore, xS1 ∩ yS1 ⊂ zS1. 2

Corollary 2 (Diamond Property II). Let Gi =
(Vi, Ei,Wi) (i = 0, 1, 2) be weighted digraphs withG0 ⊒
G1 and G0 ⊒ G2. Then there exists a weighted digraoh
G3 such that G1 ⊒ G3 and G2 ⊒ G3.

We define the concept of irreducible forms of a Petri net
with respect to ⊒.

Definition 5 (Irreducible). A weighted digraphG is called
a ⊒-irreducible if G ⊒ G′ implies G ≃ G′ for any
weighted digraph G′. Then G is called an ⊒-irreducible
form. 2

Corollary 3. LetG,G′ andG′′ be weighted digraphs with
G ⊒ G′ and G ⊒ G′′. Then one has: If G′ and G′′ are
⊒-irreducible, then G′ ≃ G′′.

Proof) Trivial by Corollary 2 and the definition of ⊒-
irreducibility. 2

4.Conclusion
In this paper we introduced our graph homomorphisms

based on similarity of vertecies. Some algebraic proper-
ties related to them were investigeted. We first consid-
ered Green’s relations and ideals in the semigroup S of all
surjecvtive w-homomorphisms between two weighted di-
graphs, to which is adjoined the extra zero 0. In the semi-
group S, the intersection of principal left (resp. right) ide-
als is also a principal left (resp. right) ideal. This implies
two kinds of diamond properties with respect to the pre-
order induced by surjective homomorphisms. It is techni-
cally interesting to construct such two kinds of synthesis
of weighted digraphs.

The following problems remains open, for example,
whether the intersection of two principal (two-sided) ide-
als is also a principal ideal in S, whether weighted di-
graphs with the same irreducible form constitute a lattice

with respect to the order up to isomorphism. In addition to
these problems, we develope the application the elemen-
tary group theory to automorphim groups of weighted di-
graphs and would like to apply our graph homomorphism
to formal languages and codes and to fundamental and
common problems related to weighted digraphs.
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