FIT (BRAZERITT #—35L5) 2002

Relativized Collapsing Results under Stringent Oracle Access

LA-T Jin-Yi Cai*

1 Introduction

The P vs. NP conjecture is one of the most important con-
jectures in mathematical science. Though we are proud
of this conjecture originated in Theoretical Computer Sci-
ence, it is pity that we have not been able to find any clue
solving this conjecture. In fact, it has been widely be-
lieved that this and similar related conjectures cannot be
proved by any of our known proof techniques.

This pessimistic belief is supported by relativized re-
sults. That is, we can relativize the conjecture both ways.
More specifically, there exist two oracles A and B such
that P4 = NP4 (the collapsing) holds and P? —’,é NP3
(the separation) holds. Intuitively, for each oracle set X,
the relative computation model allowing oracle queries
to X provides a “relativized complexity world” where all
computation is the same as our real world except that one
can use some special set of instructions, i.e., queries to the
oracle set X. From this intuition, it is said that almost all
known proof techniques are relativizable; that is, they are
applicable in such relativized worlds. Therefore, having
the above oracles A and B means that almost all known
proof techniques are hopeless for resolving the conjecture.

In this paper, however, we point out that some of
those relativized results (the collapsing ones) are not strin-
gent enough compared with our intuition explained above.
‘We introduce more stringent oracle access and propose to
prove such relativized results under this type of oracle ac-
cess. We then prove, for example, that BPP® = NP¢
with some oarcle C under the stringent oracle access.

To explain the problem of existing relativized argu-
ments, we review the relativized collapsing result for the P
vs. NP conjecture. For an oracle A satisfying P# = NP4,
we may consider any complete set for PSPACE. For ex-
ample, let us consider the following canonical complete
set for A.

A = {(M,z,0°) : M accepts z by using s space }.

Where M, z, and 0° are respectively the description of a
deterministic Turing machine, a string in {0,1}", and a
sequence of s 0’'s. We assume that (M, z,0°) is encoded
as a string in {0,1}" in some reasonable way.

It is easy to check that P4 = NP4. That is, relative
to the oracle A, every oracle NP-machine can be simulated
by some oracle P-machine. To see how queries are used
for this collapsing argument, we consider the simulation of
any oracle NP-machine Qp. Note that the computation
of Q¢ can be simulated by some PSPACE-machine M.
Let so be a polynomial space bound for Mg. Then the
construction of an oracle P-machine Q; simulating Qp is
easy. On a given input z of length n, Q; simply asks the

*Computer Sciences Dept., University of Wisconsin

VRERIERY BRETEMIR B8 - SHEREER

Osamu Watanabe!

query (Mo, z,0%°™) to A, and then outputs its answer.
It is easy to see that Qf simulates Qf correctly.

Notice here that the query made by Q: is much longer
than queries asked in the simulated Q¢-computation. For
example, assume that, for each input z of length n, QF (z)
always asks a query of length £o(n) to A. Then the
PSPACE-machine Mg simulating Q4 needs space more
than O(fo(n)). That is, so(n) cannot be O(€y(n)). Then
the length of the query (Mo, z,0%(™) made by the oracle
P-machine Q; is much larger than £o(n). That is, the ora~
cle P-machine is allowed to ask much longer queries than
those asked by the simulated machine Qg. Thus, this
type of simulation is slightly different from our intuitive
understanding of relativized arguments.

In this paper, we propose a relativized argument that
formulate our intuition more naturally, which is formally
stated as follows.

Definition 1 For any complezity classes C and D such
that C C D, and for any oracle set X, we say that C*
= D™ under stringent oracle access if for any D-machine
Qo whose query size is bounded by q, we can show some C-
machine Q1 such that for every input Z, Qix(x) =of (z),
and Q5 () uses only queries of length < q(|z]).

2 Main Technical Result

We show the following collapsing result. BPP¢ = NP is
its special case where d = 1.

Theorem 1 For any d > 1, we have some oracle C such
that BPPC = ES’C under stringent oracle access.

Consider any oracle Z5-machine Qp for a canonical
complete set for Ei’(). For the theorem, it suffices to
show some oracle set C and oracle BPP-machine @; that
simulates Qg under stringent oracle access.

Consider any input length n. We assume that the
length of query of Qg on any input of length 7 is bounded
by g(n) with some polynomial. For simplifying our nota~
tion, assume that g(n) also bounds the total computation
time of Qp. Below we explain how to define our set C so
that some simple BPP-machine QFf can simulate 9 for
every input z € {0, 1}". We design Q1 so that it asks only
queries in {0,1}9(") for such simulation. That is, the do-
main of inputs is {0,1}", and that of queries is {0,1}9(™).
(For simplifying our discussion, we assume that g(n) is
large enough, say, g(n) > n?.)

Let x be the characteristic function of C on {0,1}9();
that is, for any y € {0,1}9™ x(y) = 1ify € C, and 0
otherwise. Instead of C, we will argue by using this x.
Qur goal is to define x appropriately. Initially, we set
x(y) = * (i.e., undefined) for all y € {0,1}9™).

FIT (BHRMERTI+—35L5) 2002

For each input z € {0,1}", let Y be the set of query
strings y € {0,1}9(™ of the form y = zw (hence, jw| =
g(n)—n). Our idea is to encode the output Qf () by using
the value of x on y € Y;. For example, it would be nice if
we can set x(y) = 1 forally € Y, if and only if QF (z) = 1.
But the situation is not so easy because the oracle C itself
is determined by x. Thus, before encoding, we first fix
the output QF (z) for all inputs z € {0,1}™. It turned out
that we can fix OF (z) for all inputs = € {0, 1}™ by setting
the value of x only on a certain subset RUT of {0, 1}"("),
and there are still many elements in ¥; — (RUT). Note
that the outputs are already fixed, we may define x as we
like on the remaining strings y in Y, — (R U T); hence,
we set x(y) = QS (z) for all such y. Furthermore, it can
be shown that the value of x on the RUT part is mostly
random; thus, x(y) = QF (z) for more than 1/2 + 1/poly
of Y;. Therefore, by checking x(y) (or, the membership
of y to C) for enough number of randomly chosen y of Y,
we would get the information QF (z) with high confidence.
This is our BPP-machine Q;.

Now let us examine some of the technical points of
our argument in more detail.

Following the argument in [2], we can regard the com-
putation of Qg on any fixed input z with an undetermined
oracle X as a bounded depth Boolean circuit C, of the
following type: The inputs are 29(™ Boolean variables
zy, (y € {0,1}9"), representing membership of a string
y € {0,139 in the oracle X. The Boolean circuit Cs
starts with an OR gate at the top, and alternate with
AND’s and OR’s with depth d+1, where the bottom level
gates have bounded fan-in at most g(n), and all other
AND and OR gates are unbounded fan-in. The overall
circuit size is bounded by g(n)29(™).

Note that what is undetermined is the oracle X, and
C; is a circuit computing Q¥ () for a given oracle X. In
other words, when X is fixed, the value is assigned to each
input zy so that 2y is 1 if and only if y is in the oracle X;
then one can compute the value of the circuit C;.

We want to fix the value of the circuit by fixing the
value of relatively small number of variables z,. Our idea
is to use random restrictions. We use Z to denote the
set of all variables 2z, of C;. A restriction is a mapping
from Z to {0,1, *}, which we use to determine the value
of each variable z, € Z. For any restriction p, let Cyz|p
be a circuit obtained by assigning p(z,) to each variable
zy of Cz. That is, 2y becomes a constant O (resp., 1)
if p(zy) = 0 (resp., p(zy) = 1), while 2, remains as a
variable if p(zy) = *. A random restriction is to define
each p(z,) independently at random with Pr{p(zy) = *}
= p, and Pr{p(z,) = 0} = Pr{p(z,) = 0} = (1 - p)/2,
for some parameter p. It has been known (see, e.g., [2])
that a constant depth circuit can be greatly simplified by
a random restriction with some suitably chosen p. We will
use this result.

Results of this type are generally known as Switching
Lemma. For our purpose, however, a slightly different
version of Switching Lemma is helpful. We claim that by
a random restriction, C|p gets simplified so that it can be
computed by a small depth decision tree. An important

feature of small, say, depth t decision tree is that we can
determine its value by fixing values of some t variables.
The following decision tree version of Switching Lemma
is due to Cai [1].

Lemma 1 For any depth d + 1 Boolean circuit C of
size £ 8, and for any t that bounds bottom fan-in,
by a random restriction p with p = (10t)™%, we have
Pr{ DC(Clp) > t} < 8/2¢, where DC(C|p) is the smallest
depth of a a decision tree computing C|p.

Let us apply this lemma to our circuit C;. Recall
that s, the circuit size bound, is ¢(n)29™. Though the
bottom fan-in is bounded by g(n), we set t = 2¢(n) so that
s/2¢ = g(n)/29™ For this t, we call a restriction p bad if
DC(Cz|p) > t. Then, from the lemma, the probability of
having a bad restriction is less than g(n)/29™. That is,
with negligible probability, Cy|p is expressed as a decision
tree of depth < t, and the value of C;|p is determined by
assigning values to less than ¢ variables.

So far, we have argued by considering any fixed input
z and the corresponding circuit C;. Let us now consider
the set of circuits C; for all z € {0,1}". Although there
are 2" circuits, since ¢(n)/29(™ is much smaller, the prob-
ability that we have a restriction that is bad for some « is
still exponentially small. Thus, after applying any “typ-
ical” random restriction p to C,, we need at most 2"
additional assignments, which we call decision tree assign-
ments, to determine the value of all circuits C;. That is,
by the corresponding partially defined set €, the output
OF (z) is fixed for all z € {0,1}™.

Consider any z € {0,1}" again, and we analyze the
number of strings y in Y, for which the value x(y) is
already fixed by a random restriction and decision tree
assignments. Consider any typical random restriction p.
Let R (resp., T') be the set of query strings y such that
the corresponding z, is assigned 0 or 1 by p (resp., by the
decision tree assignments). Since ||Yz| = 29(™~" and
since Pr{p(zy) = *} = p = (20¢(n))~¢, we should have
Yz —R|| > 22(™="/2(20¢(n))? for a “typical” p. Then we
have ||Y; — (RUT)|| > 290"~" /4(20¢(n))?, because ||T||
< 2" = g(n)2"! << 29" /4(20¢(n))?. Thus, there
are still a good number of strings y in Y; — (RUT) for
which x is not fixed. Furthermore, since x(y) is set 0 or
1 randomly on R, and ||T|| is negligible compared with
1Yz — (RUT)||, we may assume that x(y) is set 0 and 1
almost equally on Y; N (RUT). This is what we wanted
to construct the oracle set C' and the BPP-machine Q;.

References

(1] J-Y. Cai, With probability one, a random oracle sep-
arates PSPACE from the polynomial-time hierarchy,
in Proc. 18th ACM Sympos. on Theory of Comput.,
21-29, 1986.

[2] M. Furst, J. Saxe, and M. Sipser, Parity, circuits,
and the polynomial time hierarchy, in Proc. 22nd

IEEE Sympos. on Foundations of Comp. Sci., 260—
270, 1981.

