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Abstract

A subdivision of a rectangle into rectangular faces with horizontal and vertical line
segments is called a rectangular drawing or floorplan. Several encodings of rectangular
drawings have been published; however, most of them deal with rectangular drawings
without vertices of degree four. Recently, Saito and Nakano developed two compact
encoding for general rectangular drawings, that is, which allows vertices of degree four.
The two encodings respectively need 6f − 2n4 + 6 bits and 5f − 5 bits for rectangular
drawings with f inner faces and n4 degree four vertices. The best encoding of the two
depends on the number of vertices of degree four, that is, the former is the better if
2n4 > f + 11; otherwise the latter is the better.

In this paper, we propose a new encoding of general rectangular drawings with 5f −
n4 − 6 bits for f ≥ 2, which is the most compact regardless of n4.

1 Introduction

A rectangular drawing or floorplan is a subdivision of a rectangle with horizontal and vertical
line segments. Usually no two line segments are allowed to decussate, that is, an ordinary
rectangular drawing has no crisscross intersections of line segments (Figure 1 (a)–(c)). Two
rectangular drawings are equivalent if (i) they have the same adjacent relations between the
subdividing line segments and the rectangles and (ii) they have the same adjacent relations
between the rectangles. We consider the direction of rectangular drawing. Thus, the three
rectangular drawings in Figure 1 are all different.

For application in VLSI physical design, several encodings of rectangular drawings have
been published: For example, H-Sequence [1], EQ-Sequence [2], FT-Squeeze [4], and so on.

(a) (b) (c)

Figure 1: Three different ordinary rectangular drawings.
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(a) (b)

Figure 2: Rectangular drawings as graphs: (a) without vertices of degree four; (b) with a
vertex of degree four.

The bit length of codes is a mesure of encoding schemes [3]. Takahashi, Fujimaki, and Inoue
have given a (4f −4)-bit encoding of an ordinary rectangular drawing, where f is the number
of rectangles (inner faces) of a rectangular drawing[6].

Rectangular drawings can be seen as special planar drawings of graphs: The vertices
are the intersections of line segments and the edges are line segments between the vertices
(Figure 2(a)). From the viewpoint of graph drawing, encodings of rectangular drawings
with vertices of degree four are strongly desired (Figure 2(b)). In the following, we will
consider a rectangular drawing which might have vertices of degree four and call them general
rectangular drawings (Figure 3). Saito and Nakano developed two compact encodings of
general rectangular drawings[7]. The first encoding in [7] is called Code I, which is based on
depth-first search of on ordered tree. The bit length of the code I is 6f − 2n4 +6, where n4 is
the number of vertices of degree four. The second one is called code II, which is a pair of the
(4f − 4)-bit code of ordinary rectangular drawings [6] and information of vertices of degree
four. The bit length of the code II is 5f − 5.

If 2n4 > f + 11, code I is the better since 6f − 2n4 + 6 < 5f − 5; otherwise code II is.
That is, the best encoding of the two depends on the number of vertices of degree four.

In this paper, we propose a new encoding of general rectangular drawings with 5f −n4−6
bits for f ≥ 2, which is the most compact regardless of n4.

This paper is organized as follows: Section 2 introduces staircase and deletable rectangle,
which are variants those in [6]. Section 3 gives the encoding and an upper bound of the bit
lengths.

2 General Staircase and Deletable Rectangle

Staircase appeared in [5] for computing the number of rectangular drawings. In this section,
a variant is introduced.

2.1 Staircase

Consider a rectangular drawing R placed in xy-plane so that the bottom-left corner is located
at the origin. A general staircase for R is a configuration obtained from R by deleting
rectangles such that

• the border consists of two line segments on x-axis and y-axis and a monotonic decreasing
rectilinear path i.e., polygonal line of horizontal and vertical line segments, and
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Figure 3: A general rectangular drawing.

• the interior is subdivided into rectangles with horizontal and vertical line segments
(Figure 4).

In the following, ‘general’ is omitted for simplicity.
Horizontal line segments of the monotonic decreasing rectilinear path are called steps.

A rectangle is called a step rectangle if its top-right corner is at the right end of a step.
For example, the staircase in Figure 4 has three steps and rectangles 9, 10, and 11 are step
rectangles.

The number of inner rectangles of a staircase is also denoted f as in the case of a rectan-
gular drawing. Note that a rectangular drawing is also a staircase with one step.

2.2 Deletable Rectangles

The deletable rectangle r of a staircase is the uppermost rectangle among the rectangles
satisfying the following four conditions:

1. The top side of r is wholly contained in the border of the staircase.

2. The right side of r is wholly contained in the border of the staircase.

3. The rightward ray from the bottom-right corner of r does not meet a top-left corner of
another rectangle.

4. The upward ray from the top-left corner of r does not meet a bottom right corner of
another rectangle except for at the initial point of the ray.

Note that the condition 4 has an exception. It is easy to see that the deletable rectangle is
uniquely defined for every staircase: Let the step rectangles be sr1, sr2, . . . , srm from the top.
The topmost step rectangle sr1 satisfies the conditions 1 and 4. If sr1 violates the conditions
2 or 3, sr2 satisfies the conditions 1 and 4. Similarly, if sr2 again violates the conditions 2 or
3, sr3 satisfies the conditions 1 and 4, and so on. On the other hand the bottommost step
rectangle srm satisfies the conditions 2 or 3.

See the staircase in Figure 4. Only rectangle 11 satisfies the above four conditions.
Rectangle 9 violates condition 3 since the rightward ray from its bottom-right corner meet
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Figure 4: A general staircase.

the top-left corner of rectangle 10. Rectangle 10 also violates condition 3 since the rightward
ray from its bottom-right corner meets the top-left corner of rectangle 11. However, rectangle
10 does not violate condition 4: The upward ray from its top-left corner meet the bottom
right corner of rectangle 9 at the initial point of the ray, which is a vertex of degree four.
Therefore, rectangle 11 is the deletable rectangle in the staircase.

Deletable rectangles are classified into the following six types as shown in Figure 5. Let
r be a deletable rectangle of a staircase.

• Group A: the bottom-right corner of r is located at the right end of a step in the
resultant staircase, that is, the staircase obtained by deleting r.

– Type a: The top side of r is strictly included in a step. The deletion of r increases
the number of the steps of the staircase by one.

– Type b : The top side of r coincides with a step and the degree of the top-left
corner of r is three. The deletion of r does not change the number of the steps of
the staircase.

– Type c : The top side of r coincides with a step and the degree of the top-left
corner of r is four. The deletion of r does not change the number of the steps of
the staircase.

• Group B: the bottom-right corner is not located at the right end of a step in the resultant
staircase.

– Type d: The top side of r is strictly included in a step. The deletion of r does not
change the number of the steps of the staircase.

– Type e : The top side of r coincides with a step and the degree of the top-left
corner of r is three. The deletion of r decreases the number of the steps of the
staircase by one.
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Figure 5: The six types of deletable rectangles.

– Type f : The top side of r coincides with a step and the degree of the top-left
corner of r is four. The deletion of r decreases the number of the steps of the
staircase by one.

3 A (5f −n4 − 6)-bit Representation of a General Rectangular
Drawing

In this section, we give a variant of the encoding for ordinary rectangular drawing in [6].

3.1 A String Representation and Encoding

First we give a representation of a rectangular drawing on alphabet {0, A,B} as in [6]. Let Sf

and rf be a rectangular drawing with f rectangles and its deletable rectangle, respectively.
The staircase obtained by deleting rf from Sf has f − 1 rectangles. Denote the staircase
and its deletable rectangle by Sf−1 and rf−1, respectively. Again deleting rf−1 from Sf−1,
we obtain staircase Sf−2 with deletable rectangle rf−2. In this way, we obtain a sequence of
staircases Sf , Sf−1, . . . , S1, where S1 is the staircase with f = 1, that is, a single rectangle.
Note that the sequence is uniquely determined since all the deletable rectangle ri is unique
for Si (i = f, . . . , 2).

For the representation, we define the candidate positions of staircase Si (i = 1, . . . , f −1).
Consider adding rectangle ri+1 to staircase Si and obtaining Si+1. According to the six types
of deletable rectangles, the position of the top-left corner of ri+1 must be one of the followings:

1. A point on y-axis above the top step of staircase Si: In Figure 6, the position indicated
by arrow 0.
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Figure 6: Candidate positions of a staircase.

2. The right end point of a step of Si: In Figure 6, the positions indicated by arrows 1
and 4.

3. A point on both the right side of a step rectangle and the border of Si: In Figure 6,
the positions indicated by arrows 2 and 5.

4. The bottom-right corner of a step rectangle on the border except on the x-axis: In
Figure 6, the positions indicated by arrows 3 and 6.

The above positions whose y-coordinate is equal to or more than that of ri are called
candidate positions. Candidate positions are numbered 0, 1, . . . beginning at the top (Figure
6). Rectangle ri+1 must be added one of the candidate positions of Si. (In Figure 6, bold
arrows 0,1,2,and 3 indicate the candidate positions. The deletable rectangle is shaded. Thus,
for example, position 4 cannot be a candidate: If ri+1 were added to position 4, it would not
be the deletable rectangle in the resultant staircase Si+1.)

Now we are ready to describe how to reconstruct the sequence of staircases S1, S2, . . . , Sf

by consecutively adding rectangles r2, r3, . . . , rf .
First compute the following parameters by consecutively deleting rectangles rf , . . . , r2.

• ci: the candidate position in Si−1 at which ri is added to;

• di: the lowest candidate position of Si.

• Ti: the type of ri;

• δi = di−1 − ci.

For the example in Figure 3, the result is as follow.
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i 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ci 1 1 1 4 5 3 0 1 5 7 4 3 0 0 −
di 3 3 3 7 6 5 3 3 7 8 7 5 3 3 2
δi 2 2 6 2 0 0 3 6 3 0 1 0 3 2 −
Ti A A A B B B A A A B A B A B −

The location and the type of rectangle ri are determined by Si−1, ci, and Ti. Since di−1

is an invariant of Si−1, the location and the type are also determined by Si−1, δi, and Ti.
Let string si (i = 2, . . . , f) be the unary representation of δi followed by Ti. For the

exmaple, s2 = 00B, s3 = 000A, s4 = B . . . , s15 = 00A. The string representation of Sf on
alphabet{0, A,B} is the concatenation s2s3 · · · sf . Finally replace A and B in the representa-
tion by 10 and 11 to obtain the code, i.e., bit representation of Sf . The code for our example
is the following 58-bit code:

0011000101101011000100000001000010111100110000001000100010.

It is easy to construct linear time encoding and decoding algorithms, however we do not
show due to space limitation. (See [6] for linear time algorithms for ordinary rectangular
drawings. They can easily be modified for general rectangular drawings.)

Note: In fact, that symbol 0 arise most frequently in a representation on alphabet
{0, A,B}. This means that the code can be more compact by using standard data compression
techniques rather than simply replacing A and B by 10 and 11, respectively. (See [6] for a
similar argument.)

3.2 The upper bound (5f − n4 − 6) of the bit length

In this subsection, we give a proof of the upper bound 5f −n4 −6 of the bit length for f ≥ 2.
Consider a string representation w = {0, A,B}∗ of a rectangular drawing Sf .

Symbols A and B collectively appear exactly f − 1 times in w corresponding to f − 1
rectangles r2, . . . , rn. They contribute exactly 2(f − 1) to the bit length of the corresponding
code.

The number of 0’s in w is equal to the sum
∑f

i=2 δi. Now consider adding rectangular ri

to Si−1 at the candidate position ci. The lowest candidate di of the resultant staircase Si is
at most ci + 3. Precisely, it depends on the type of ri as follows:

Type of rectangle ri di

Type a ci + 2
Type b ci + 3
Type c ci + 2
Type d ci + 1 if ri lies on the x-axis; otherwise ci + 2
Type e ci + 2 if ri lies on the x-axis; otherwise ci + 3
Type f ci + 1 if ri lies on the x-axis; otherwise ci + 2

Note that di = ci + 2 if the top-left corner of ri is a vertex of degree four since the type
of ri is c or f . Then,

f∑
i=2

δi =
f∑

i=2

(di−1 − ci)
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= d1 − cf +
f−1∑
i=2

(di − ci)

≤ 2 +
f−1∑
i=2

(di − ci) (d1 = 2; cf = 0 or 1)

≤ 2 + 3(f − 2) − n4 = 3f − n4 − 4

Therefore, the total bit length of w is at most 2(f − 1) + (3f − n4 − 4) = 5f − n4 − 6.
Now we summarize the above argument as follows.

Theorem 1 There exists an encoding of general rectangular drawings with f(≥ 2) rectangles
and n4 vertices of degree four in at most 5f − n4 − 6 bits.

4 Concluding Remarks

In this paper, a (5f −n4 − 6)-bit representation of a gemeral rectangular drawing with f ≥ 2
is introduced. The length of a code is at most 5f−n4−6, which is the most compact encoding
ever known.
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