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. asks to find the lattice point closestttoThe SVP is a hard compu-
1 Introduction tational problem closely related to the CVP. Given a lattice basis
B € Z™", the SVP asks to find the shortest non-zero lattice vector.

In 1997, Goldreich, Goldwasser and Halevil proposed a pUb_In Euclidean norm, it is shown to be NP-hard for randomized re-

lic key cryptosystem using the closest vector problem (CVP) [1]. ducti H lativelv sh is introduced i |
We call this cryptosystem the GGH cryptosystem. It is a notable uctions. However, a relatively short vector Is introduced in poly-

cryptosystem based on the complexity of lattices. However, itsnhomllaLILtm:e b_yhusmg thle lattice reduction algorithm, for exr?mp:]e
large key size is a bottleneck for practical use [2]. Then, severaln® algorithm [7]. In most cases, one cannot prove that the

cryptosystems have been proposed to reduce the key size of thlgttlce vectorv is an exact shortest vector. Thus, one guesses the

GGH cryptosystem. Micciancio introduced the Hermite normal _uclidean norm of the shortest vector by using Gaussian heuris-
form for the public key, and proposed a new encryption method intic [5] as follows:
2001 [3]. Paeng, Jung and Ha proposed a cryptosystem, we call it
the PJH cryptosystem, by introducing a representation of a poly- (L) ~ /l det(B)%.
nomial ring in 2003 [4]. Although the GGH cryptosystem requires 2re
the secret and public keys witb(n?) to encrypt a message with
O(n), the key sizes are onl@(n) in the PJH cryptosystem. Fur-
thermore, the processing speed of the PJH cryptosystem is quick
than that of the GGH cryptosystem. However, Han et al. propose ! . . .
a key recovery attack against the PJH cryptosystem using a specié?ducnon alg_orlthr_n, whergw | is th“e Euclidean r’10rm ofa vector
structure of a transformation matrix in the PJH cryptosystem [5]. ¥ We Ca”,th's rgtlw-(lj)/ v llan e>.<pected galpof the lattice
According to the Han’s attack, they succeeded to recover secref- ESpecially, if the expected gap is smaller thanvere, the
keys withn = 1001 on a single PC. As a result, the Han’s attack vectorv is not the shortest v_ector_by the Minkowski's theorem_.
ruins the practicality of the PJH cryptosystem. Hanawa, Kunihiro Thg Iattlcg reduction algorithm is useful to solve the CVP. Given
and Ohta improved the PJH cryptosystem by changing the gener@ attice basisB € Z™" anld altarget vectdre Z°, one generates a
ation of the transformation matrix without compromising the key NeWw lattice basid3’ € 2> as follows:
size withO(n) [6]. We call this cryptosystem the HKO cryptosys-
tem. However, since the Euclidean norm of the public key is very B = (B 0”)’
large, the total amount of memory required for storing the key is t 1
too large. Furthermore, it isfllicult to decrypt because of the large
Euclidean norm of the ciphertext. where0, is a column vector of dimensiomwhose entries are all

In this paper, we propose affiision matrix to be operated for 0. Then, a vector{z, 1)B’ = (t - =B, 1) is contained in(B’).
the transformation matrix in the PJH cryptosystem. The proposedlhe CVP asks to find the lattice vecteB closest to the target
diffusion matrix excludes the special structure of the transforma-. Then, ift — B is the shortest non-zero lattice vector in lattice
tion matrix, and hence, the Han'’s attack is not applicable in theL(B’), one can regard the CVP as the SVP and solve it by using
proposed cryptosystem. Moreover, the Euclidean norms of thethe lattice reduction algorithm.
public key and the ciphertext are about as large as that of the PJH
cryptosystem. The advantage of the proposed cryptosystemis dis3 GGH series
cussed under the consideration of possible lattice attacks. Then,

our proposed cryptosystem is useful in a practical environment. ~ GGH series are the variants of public key cryptosystems pro-
posed in [1] based on lattice problems; for example the SVP or the

2 Lattice CVP. In this section, we first describe the original GGH cryptosys-
tem, and its variants the PJH cryptosystem and the HKO cryptosys-
In this paper, we On|y care about integra| lattices of full rank. tem. Next, we describe their Euclidean norms of the pUb'lC key and
Let B = (by,...,by)" be anon-singulam x nintegral matrix. The  the ciphertext. Finally, we describe that the Euclidean norm of the
lattice £(B) spanned byB is defined as follows: ciphertext makes it dicult to decrypt in the HKO cryptosystem.
3.1 The GGH cryptosystem
} The GGH cryptosystem uses a non-singular makix Z™" as

If the Euclidean norm of the given vector is less tha(xX), one
ay expect that this vector is the shortest vector. In practical, the
argera(L)/ || v || is, the easier one can findby using the lattice

n
L(B) = L((by.--- ,by)") = {Z xbl 1 x€Z a secret key. FirsiR is generated as follows:
i=1
_ - o R=k +R,

The non-singular matridB is called a lattice basis, and the deter-

minant of £(B) is invariable. Namely, if a lattice basB has the wherekI( k = Al ) is an orthogonal matrix and a matrig’
same determinant as the other basis Their lattices spanned by ¢ uniformly distributed in{—I, ..., 1}™". Next, a public keyB is
B ancnjf’ are the coincident with each ottler. Then there eX'Stsgenerated as follows:
T € Zz™" such thatdet(T'")] = 1 andT B = B'.

The CVP is a hard computational problem shown to be NP-hard.

Given a lattice basi3 € Z™" and a target vectdre Z", the CVP

B=TR,

whereT is a transformation matrix arjdlet(”)| = 1. In this case,
their lattices spanned by the secret kRyand the public keyB
+00000000D00000Graduate School of Engi- — are the coincident with each other. Micciancio proposed another
neering, Kobe University method of generating the public key from the Hermite normal form

2 1 1 Copyright © 2011 by Information Processing Society of Japan and
The Instiute of Electronics, Information and Communication Engineers

( ’é’é; 4 éj\ﬁ:ﬁ' ) All rights reserved.



FIT2011 (% 10 E1EHRBEREM 74— L)

of the secret key. Its public key size is smaller than that of the GGH
cryptosystem.

One chooses a lattice vector from B, where the vectomn is
chosen at random frof". The ciphertext € Z" is calculated by

c=mB+e,

wheree is an error vector and its cficients are contained in
{—o, o). In GGH series, there are two methods to encode a mes
sage. In a first method, a message is encoded wwhich is used
for choice of a lattice vector. On the other hand, another metho
encodes a messagedrwhich is used for an error vector.

The ciphertext is decrypted by using the Babai’s rounding algo-
rithm [8] as follows:

leRYT ! = |(mTR+e)RT?
=|mT +eRNT*
=m+|eR1T™

1)

From Eq. (1), it is noticed that the decryption works well only
when|eR™] = 0. This holds with high probability sinc&*
consists of very small values. An alternative to the Babai's round-
ing algorithm is the nearest plane algorithm [8]. This algorithm

whereP,, P,, P;, P, € R are represented by

Pi=fi-g+h-Q 2
P,=pfi+hi-gp (3)
Ps=hy-g+f2-Q (4)
Py =phy + f2- gp. (5)

The secret key of the PJH cryptosystem is the 4 polynomi-

c]aIs f1, f2, h1 and h,, and the public key is the 4 polynomials

P,, P,, P; and P,. Moreover, the 3 polynomialg, g, andQ are
secret parameters, but even if the positive intggés not a se-
cret parameter, it does not seem to be a critical parameter for the
security.

Let m = (m.,m,) € R? be a message. Then, the ciphertext
¢ = (e1, ¢) is calculated by

O(P) O(Ps)
O(P,) O(Ps)

=(m1-P1+m2-P2+el, m1~P3+m2-P4+ez),

] + (e1,e2)

(c1.¢2) = (my, mz)(

wheree = (e, e) is an error vector and its cfiicients are con-

solves the CVP by using the Gram-Schmidt basis of the secret keyained in{-1/2,1/2}. In the PJH cryptosystem, the decryption

and derives the lattice vecton B.
3.2 The PJH cryptosystem

works by the same reason as the GGH cryptosystem. It requires
the secret and public keys with onY(n) to encrypt a message

The PJH cryptosystem is a special case of the GGH cryptosysWith O(n). Furthermore, its processing speed is quicker than that

tem. It introduces a representation of a polynomial ring, and its

of the GGH cryptosystem.

key size is reduced from that of the GGH cryptosystem. They use Although the PJH cryptosystem improved the practicality of the

a polynomial ringR = Z[X]/(xN - 1). Note that the multiplication
f-g € Rof f andg is computed by the convolution product of
them, that is,

h = f ©(g).
where®(g) is an (N x N) circulant matrix of vectog € ZN. So

GGH cryptosystem, anfigcient key recovery attack has been pro-
posed by Han et al [5]. In the attack, they introduced the following
equation under a rin§§:

g - P=pfi-g+hi-gp-g
=pfi-g+hy-(1+pQ)

arithmetic operations of the PJH cryptosystem are defined under

this polynomial ring.

The secret key of the PJH cryptosystenifs, f2, hi, hy € R},

which have the following properties:

o f1(¥) = anat XN+ -+ ag and fo(X) = B XN+ -+ + B,
where|aigl, |Bjol = V2N for somei, jo and the other cd@-
cients are contained if+-1, 0, 1}.

e The codficients ofh, andh, are contained i1, 0, 1}.

Then, the secret basR is given as follows:
®(hy)

@(f1) ]
O(f2))

R =

((D(hl)
The public basisB is the product of the transformation matrix
T and the secret basR. To represent the public basB by a
circulant matrix, the transformation matrik is represented by a
circulant matrix as follows:

((D(g)
pI

(Q)
D(gp)

=p(fi-g+h1-Q)+h;
:pP1+h1.

Then, they generate the lattice spanned by the following lSis

|

where this basis ifN + 1) x (N + 1) matrix, and a short vector

v =(9,-P)B’ = (h1,-p)

is contained inf(B’). If they get this short vectas by executing
the lattice reduction algorithm again&’, they can recover the
transformation matrix and the secret key.
3.3 The HKO cryptosystem

Hanawa, Kunihiro and Ohta proposed a new method of gener-
ating the transformation matrix. The Han’s attack uses a special
structure of the transformation matrix in the PJH cryptosystem,

B = q)(PZ) 0n
Py 1

In order to generate the transformation matrix, one first choosedn particular the block matrpl. Instead of the transformation

g € R such that the cdicients ofg are contained in{p/2, p/2],
wherep is a random positive integer. Thegq,can be considered
as an element of a rinGy[x]/(x" - 1), and one takeg which is
invertible in this ring. Next, one calculatgg such thatg - g, =

1€ Z[X]/(xN - 1). Then, there exist® such thalg - g, — pQ =

1 e R. Finally, from det{") = det@(g - g, — pQ)) = det() = 1,

the determinant of this transformation matrix is 1. Therefore one
generates the public badi® as follows:

O(P) O(Ps)

BZTRZQGE O(Py)

matrix of the PJH cryptosystem, they generate the transformation
matrix from 4 polynomialgy;, g», gz andg, as follows:

TZﬁ@)@@j
lg) g0

In order to generate the transformation matrix, one first chooses
2 polynomialsa and b such that the cdécients ofa and b

are contained in—1,0,1}. Next, one calculates the determi-
nantsR, and R, for ®(a) and ®(b), respectively. Then, there
exist s, t,s’,t' € Z[X] such thata - s + (XN - 1)-t = R, and
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4300 ‘ ‘ ‘ ‘ 10-200. In the HKO cryptosystem witd = 100 and 200 dimen-
. ﬁgeHFfi(H) ggs:ggm —— sions, the EucIicjean norm ofLT becomes almostZ. Therefore,
250 | the error of the inverse matrix must be smaller thaH% because
rd the decryption fails ifimT R'] # 0. However, the calculation
00 o of the inverse matrix with high accuracy requires many computer
20 e ] resources. Moreover, the required precision is exponentially in-
g 0 X,,,»X"' creased with the dimension.
5 s
o | X/,x"” 5 The proposed method
/X/X' The HKO cryptosystem can immunize the Han's attack, but the
20t o : Euclidean norm of the ciphertext is much larger than that of the
e PJH cryptosystem. In this section, we proposeffugion matrix
Q0 L s s ‘ s ‘ ‘ ‘ which excludes the special structure of the transformation matrix
0 20 4 6 8 p 100 120 140 160 180 200 of the PJH cryptosystem. The proposed cryptosystem can immu-
Imension

nize the Han’s attack, and the Euclidean norms of the public key

Fig.1 Experimental results about the Euclidean normf. and the ciphertext are about as large as that of the PJH cryptosys-

tem.
5.1 The proposed transformation marix
b-s' +(X'-1)-t = R If gcd(Ra,Ry) = 1, the Extended To immunize the Han's attack, a transformation maffixis
Euclidean Algorithm returns, v € Z such thatR.u + Ryv = 1. given as follows:
Finally, one introducesug) - s + (vWb) - s’ = 1 € R, then let
g1 = Ua, g» = —Vb, gs = ¢’ andg. = s, respectively. T < ( @(g) (Q) ]
Although the determinant of this transformation matrix is 1, the O(p+A-g) Olgp+A-Q))

Euclidean norms of 4 polynomials are much larger than that of the
PJH cryptosystem because of the following reason. Eachicoe
cient of 4 polynomials is bounded by the determind®{andRs.

The size ofR, andR, areO(|| a |N) andO(|| b ||N), respectively.
Then, the public key size of the HKO cryptosystem is much larger
than that of the PJH cryptosystem. For example, in the PJH cryp
tosystem withN = 100 (this dimension is 200), the public key
size is about @5K B, on the other hand, in the HKO cryptosystem di d after the ab tioned i
with N = 100 (this dimension is 200), that is KB. Moreover, ISused aiter the abovementioned operations. .

in the PJH and HKO cryptosystem, the ciphertext size almost be- The determinant of the proposed transformation matrix is 1 be-
comes equal with the public key size. The ciphertext size of the®ause

HKO cryptosystem is serious problem, because it exponentially ( D(g) d(Q) )_[ I 0) ((D(g) @(Q)]

increased with the dimension. O(p+A-g) D(gp+A-Q)) \o) I)\ pI (g
= A'Tpj,

where A’ is a lower triangular matrix whose determinant is 1 and

In Sect. 3.1, there are two methods to encode a message; OriE,;, is a transformation matrix of the PJH cryptosystem. We call
encodes it inm and the other ire. In both methods, all opera- this operation the diusion of the transformation matrix and tHé
tions are mathematically defined under a riRg However, in a s the difusion matrix. A public basi® is calculated as follows:
real environment, it is diicult for a computer to simulate opera-
tions because of the limitation of its precision. A rounding error at B=TR-= (‘D(Pl) q)(P3)]
an operation may critically changes the results of decryption. For O(P) O(P))
example, if the decryption is executed by using the Babai's round-
ing algorithm, the inverse matrix of the secret baRits calculated wherePy, Py, Ps, Py € R are expressed as

In order to generate the transformation matrix, the 3 polynomials
g.gp, andQ and a positive integep is generated similar to that
of the PJH cryptosystem. However, the fimgents ofg are con-
tained in F¢,¢] not (-p/2,p/2] (¢ < |Lp/2]), and the reason is
discussed later. Next, a polynomidlis generated at random in a
ring R. Finally, p+ A -g € Randg, + A - Q € R are generated

to immunize the Han's attack, and is secret parameter and is

4 Difficulty of decryption

and may have a tiny errdR’ as follows: P, = Py,
RxR'=I+R. P = Popjp + A - Prpjy
If the Euclid f the ciph is| dthei o= Poon
the Euclidean norm of the ciphertext is large and the inverse ma- Py Pot A P
trix has a tiny erroi®’, the decryption in Eq. (1) must be replaced 4= Fapin * i
as follows: where{ Py, Popjn, Papjn, Papjn} is the public key of the PJH cryp-
I U tosystem. It is noticed from the above public baBighat the Eu-
leRT™ =|(mTR+e)R T clidean norm of the ciphertext is almost equal to that of the PJH
=|mT +mTR +eRT™ (6)  Cryptosystem. o _
, I The Han’s attack decreases the dimension of the lattice prob-
=m+|mTR +eR T lem by using the block matripI. However, the proposed method

covers the block matriypI with A - g. Then, the Han’s attack is

From Eg. (6), it is noticed that the decryption fails if the Euclidean .
expressed as follows:

norm of mT is larger than expected, where the Euclidean norm

of mT is the maximum Euclidean norm of the column vectors of g P, =g (Pypjn+ A- Pipjpn)

mT. . . = pPypjn+h1 +g- A - Py
Figure 1 shows experimental results about the Euclidean norm

of mT in the PJH and the HKO cryptosystems with dimensions =(p+g-A)-Pi+hy
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Table 1 The experimental result of expected gap

{=p/2 t=p/ VN ¢=p/N
dimension | target lattice| expected gap succesérial | expected gap succes#rial | expected gap succes#rial
(P12, v2) 2.020990949 9/10 0.427815336 0/10 0.073482035 0/10
100 (P34, v4) 1.783193973 9/10 0.40692057 0/10 0.066239996 0/10
(P12, v2) 2.612034438 1010 0.608524053 0/10 0.069415363 0/10
140 (P34, v4) 2.172856764 10/10 0.54451621 0/10 0.061149658 0/10
(P12, v2) 3.183394326 1010 0.671688273 0/10 0.070966117 0/10
180 (P34, v4) 3.118077292 1010 0.6032438 0/10 0.066959833 0/10
(P12, v2) 4.056582215 1010 0.758704508 0/10 0.067518278 0/10
220 (P34, v4) 3.890429631 1010 0.717111322 0/10 0.064699121 0/10

wherep + g - A is a vector under a rin® not a positive integer.  the shortest non-zero lattice vectors in lattid&d;,) and L(Pss)

Then, an adversary cannot decrease the dimension of the latticom the Minkowski's theorem. In the proposed cryptosystem, co-

problem by the Han’s attack. efficients ofg takes are smaller than that of the PJH cryptosystem

5.2 Lattice attacks against the proposed cryptosystem on average. This information may be helpful to attack. However,
The proposed cryptosystem can immunize the Han’s attackif p takes a large positive integer, this problem can be disregarded.

However if an adversary can recover the public key of the PJH

cryptosystem from that of the proposed cryptosystem, one canexg  Conclusion

ecute the Han's attack after the recovery of the public key of the

PJH cryptosystem. Then, we consider the method to recover the In this paper, we improved the PJH cryptosystem kjuding

public key of the PJH cryptosystem from that of the proposed cryp-the transformation matrix, and it can immunize the Han’s attack.

tosystem. Moreover, the Euclidean norm of the ciphertext is about as large
In order to recover the public key of the PJH cryptosystem, oneas that of the PJH cryptosystem. We showed that if théficents
must calculate the following equation, of g is selected appropriately, it wadiiitult to recover the public
key of the PJH cryptosystem from that of the proposed cryptosys-
1 0)(®(P1) @(Ps)) (P(Pipjp) D(Pspjn) tem. On the other hand, we experimentally derive thefuments
o(-A) IJ(O(P) ©(Py)) (O(Popip) O(Pupjn))’ of g in this paper. The theoretical analysis about the appropriate

codficients ofg is left for our future work.
then, The security of the proposed cryptosystem is not proved. How-
ever, the security of the proposed cryptosystem may be an equal to
—AD(PL) + P, = Pypjn ™ that of the PJH cryptosystem secure against the Han’s attack.
—A®(P3) + Py = Papj, (8)

where an adversary can know onRy, P,, P; and P,. If A'is Reference
derived from Eq. (7) and Eq. (8), the public key of the PJH cryp- [1] 0. Goldreich, S. Goldwasser, and S. Halevi, “Public-Key

tosystem is recovered. However, it idfuiult to solve these equa- Cryptosystems from Lattice Reduction Problems,” CRYPTO,
tions. Assuming that these problems are the SVP of the following | NCS, vol.1294, pp.112-131, 1997.

lattice bases, [2] P.Q. Nguyen, “Cryptanalysis of the Goldreich-Goldwasser-
Halevi Cryptosystem from Crypto '97,” CRYPTO, LNCS,
Plzz((D(P 1) 0”) or p34=(®(P s) 0“), vol.1666, pp.288—304, 1999.
P, 1 P, 1 [3] D. Micciancio, “Improving Lattice based cryptosystems us-

ing the Hermite Normal Form,” CaLC 2001, LNCS, vol.2146,
pp.126-145, 2001.

[4] S.H. Paeng, B.E. Jung, and K.C. Ha, “A Lattice Based Public

Key Cryptosystem Using Polynomial Representations,” Public

Key Cryptography, LNCS, vol.2567, pp.292-308, 2003.

D. Han, M.H. Kim, and Y. Yeom, “Cryptanalysis of the Paeng-

Jung-Ha cryptosystem from PKC 2003,” Public Key Cryptog-
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where these bases afd ¢ 1) x (N + 1) matrix, and lattice vec-
tors v, = (Papjn, 1) andvs = (Papjn, 1) are contained inC(P12)
and L(Ps4), respectively. If the lattice reduction algorithm derives
v, Or vy, the proposed cryptosystem is not secure. To confirm it,
we implemented this lattice attack using the NTL library [9], and
evaluated the resistance to this lattice attack from the perspectivés]
of the expected gap. We used the BIRP function whose block
size is 15 in the NTL library.

We experimented by 3 parametefs= p/2, ¢ = p/ VN and
¢ = p/N. Generally, the smaller cfiicients ofg are, the smaller
that of P; and P; becomes from Eq. (2) and Eq. (4), but that of
Pypjn and Py, do not become small from Eqg. (3) and Eq. (5).
Then, the smaller théis, the more diicult these lattice problems
become because the determinants of these lattices grow smalle[%]
In the experimentp takes a random 10-bit integer. Table 1 shows
these experimental results.

We can recover all the public keys of the PJH cryptosystem from
that of the proposed cryptosystem wher= p/2. However we
cannot recover all those f < p/ VN. Moreover, from the ex-
pected gaps whefi = p/N, the lattice vectorse, andv, are not
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