I-088

印字の輪郭を利用した印刷物の原本性証明

Authentication of original documents based on the edge of printed objects

栗田兼太郎

Kentaro Kurita

1. まえがき

近年、紙幣だけでなく、株主優待券や処方箋、クー ポン券を偽造する事件が発生している。

本研究は、安価に印刷物の真がんを判定する手法を 提示する。エッジが原本証明の特徴量として使えるこ とは、紙原本とその複製を拡大して見れば明白である。 そこで、いかにしてエッジから特徴を取り出すかが課 題となる。本稿では単に画像を切り取るだけでは不十 分であり、エッジ周辺の画素を使用すれば、より確実 に原本と複製の識別が可能であることを示す。この特 徴量を暗号化してバーコードなどで原本に埋め込んで おけば、復号して原本と比較することで、真がんの判 定が可能になると期待できる。

2. 原本性証明の原理

図1、図2に文書の拡大画像を示した。図1は原本、 図2はそれをコピー機で複写したものである。共に1600 × 512pixel であり、スケールの 1 目盛は $100\mu m$ であ る。2 枚の画像を比較すると、原本はエッジ部分が滑 らかなのに対して、複写は凸凹して明らかに異なって いる。このことからエッジが原本性証明の特徴量とし て使えることは明白である。そこで本稿では、テンプ レートを二値化してからエッジを取り出し、エッジ周 辺画素の相関係数を用いて、原本と複写を判定する方 法を考えた。全体として、以下のような処理の流れを 想定する。

原本の生成

- ① 明るさや幾何学的変化に対して不変な原本の特徴 をテンプレートとして抽出する。以下、テンプレー トを含む画像の範囲を認証範囲と呼ぶ。
- ② テンプレートを暗号化し、原本にバーコードなど で書き込む。

認証

- ① 対象の文書から、書き込まれた暗号を復号し、認 証範囲と比較する。
- ② 相関が高ければ原本、低ければ複写と判定する。

上の流れにおいて、原本の生成後、原本は公共のチャ ネルを流通すると仮定する。このチャネルでは、原本 の複写を防ぐことはできない。しかし、複写された文 書では、バーコードなどで書き込んだ部分は情報が変

伊藤 浩‡ Hiroshi Ito

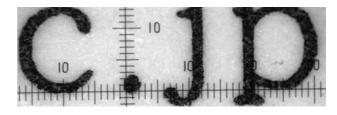


図1: 文書の拡大画像:原本

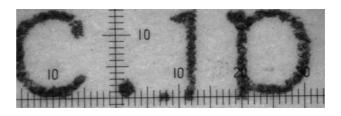


図 2: 文書の拡大画像: 複写

化しないが、認証範囲の画像は変化するため、対象の 文書が複写されたものかどうかの判定が可能になる。

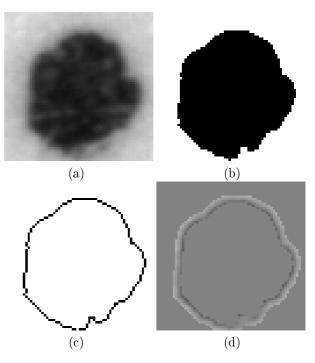


図 3: テンプレートの生成過程:(a) 認証範囲、(b)2 値 化画像、(c) エッジ、(d) テンプレート

3. テンプレートの生成と認証の方法 テンプレートは以下のように生成する。

[†]日本大学大学院生産工学研究科, Graduate school of industrial technology, nihon university

[‡]日本大学生産工学部,College of industrial technology,nihon university

- ① 原本の認証範囲を撮影する。得られた画像の輝度 信号を f(x,y) とする。
- ② f(x,y) を 2 値化する。
- ③ 2 値化した画像の白と黒の境界をエッジとして取り出し、エッジから距離 r の範囲にある点の集合を A とする。
- ⑤ 集合 A とそれに属する点の輝度値 $\{f(x,y)|(x,y)\in A\}$ をテンプレートとする。

図 3 に例を示す。同図 (a) は認証範囲の画像であり、ここでは、図 1 の文書の、"ac.jp" のドットの部分を取り出した。ただし、テンプレートの情報量を削減するため、解像度は 64×64 とした。(b) はこれを 2 値化したもの、(c) は抽出したエッジ、(d) は r=2 として生成したテンプレートを画像として表示したものである。テンプレートに含まれない部分はグレーで表示した。テンプレートの画素の数は |A|=592 である。認証は以下のように行う。

- ① 認証対象の文書の認証範囲を含む領域を撮影する。 この部分の輝度信号を g(x,y) とする。
- ② g(x,y) に対して、f(x,y) を平行移動しながら、重なった部分の相関係数を次式により計算する。

$$\rho = \frac{\sum (f(x,y) - \overline{f})(g(x,y) - \overline{g})}{\sqrt{\sum (f(x,y) - \overline{f})^2} \sqrt{\sum (g(x,y) - \overline{g})^2}}$$
(1)

ただし、 \sum は $(x,y) \in A$ である点に関する総和である。また、 \overline{h} は h(x,y) の平均値である。

③ 領域内の ρ の最大値を ρ_{\max} とし、 $\rho_{\max} > T$ ならば、対象の文書は原本、そうでなければ複写と判定する。ここで、T は適当な閾値である。

4. 実験

図 3(a) の画像からテンプレートを生成し、認証性能の評価を行った。

まず、rによって、性能は大きく異なることが予想されるので、テンプレートの生成においては、rを $1\sim4$ の範囲で変化させた。また、原本を認証するとき、生成時と全く同じ条件で、認証範囲が撮影されることは期待できない。すなわち、同じ文書であっても、g(x,y)と f(x,y) の間には、回転、拡大・縮小、平行移動などの幾何学的変化や照明の違いによる明るさ、コントラストなどの変化が生じる。そこで、今回は、明るさの変化だけを取り上げ、認証時に異なる明るさで撮影された場合の相関の低下を評価した。

図 4 に実験結果を示す。図は、異なる r に対する ρ_{\max} の値をいくつかの場合について、プロットしたものである。original は g(x,y) として原本を用いたときのグラフであり、撮影条件がまったく変化しない場合を想定している。当然、r によらず常に $\rho_{\max}=1$ である。

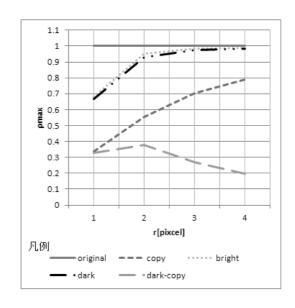


図 4: 実験結果

copy は原本をコピー機で複写したものから g(x,y) を求めたときのグラフである。r=4 では 0.8 程度の大きな相関値が出ているが、r を小さくするにしたがって、 ρ_{\max} は減少し、r=1 では、 $\rho_{\max}=0.33$ となった。bright と dark はどちらも g(x,y) を原本から求めたものであるが、生成時よりも明るさを変えて認証範囲を撮影した。明るさの変化により、r の低下にともなって相関係数が減少していることがわかる。特に、r=1 のとき $\rho_{\max}=0.66$ であり、相関の低下が著しい。

原本と複写の識別は ρ_{\max} の値によって行われるから、識別性能の向上のためには、原本の ρ_{\max} が大きく、複写の ρ_{\max} が小さいことが望ましい。実験結果から、複写においては、r が小さいほど相関も小さくなる。これは、相関の計算範囲をエッジの近傍に限るほど、複写によるエッジの劣化が識別しやすいことを示している。しかし、r を小さくすると、同じ理由により、異なる条件下で撮影された原本に対しても、相関が低下する。よって、r としては、原本に対する相関が低下が極端でなく、複写に対する相関が十分低下する値を用いるのが適当であろう。図の最下のラインは、原本から得られた ρ_{\max} の最小値 (dark に対するもの)から複写の ρ_{\max} を減算した値をプロットしたものである。このグラフから、実験の条件下では、 $\rho_{\max}=2$ 程度が適当であることがわかる。

5. まとめ

印字の輪郭を利用した印刷物の原本性証明の方法を 提案した。エッジ拡大範囲は広すぎても、狭すぎても 認証に適さないことが明らかになった。今後の課題と して、複写の条件を増やすこと、スケールの変化や回 転など幾何学的変化に対する耐性を評価すること、質 の異なる紙を原本として用いた場合の性能を評価する ことなどが挙げられる。