FIT2010 (58 9 BIREMFRIM I+ —35 L)

F-037

Sparse Substring Pattern Set Discovery using Linear
Programming Boosting

Kazuaki Kashihara ! Kohei Hatano!

1

Hideo Bannai Masayuki Takeda!

! Department of Informatics, Kyushu University

Abstract: In this paper, we consider finding a small set of substring patterns which classifies the given
documents well. We formulate the problem as 1 norm soft margin optimization problem where each di-
mension corresponds to a substring pattern. Then we solve this problem by using LPBoost and an optimal
substring discovery algorithm. Since the problem is a linear program, the resulting solution is likely to be
sparse, which is useful for feature selection. We evaluate the proposed method for real data such as movie

reviews.

1 Introduction

Text classification is an important problem in broad ar-
eas such as natural language processing, bioinformatics,

information retrieval, recommendation tasks. Machine Learn-

ing has been applied to text classification tasks in vari-
ous ways: SVMs and string kernels (n-gram kernels, sub-
sequence kernels [14], mismatch kernels [13]) Boosting
(e.g., Boostexter [20]).

In some applications regarding texts, not only classifica-
tion accuracy but also what makes classification accurate
is important. In other words, one might want to discover
some knowledge from an accurate text classifier as well.
For example, in classification task of biosequences, say,
DNA or RNA, biologists want to know patterns in the data
which make each sequence positive other than an accurate
classifier. Simply put, one may want an accurate classifier
associated with a set of patterns in the text. In particular,
for the purpose of feature selection, it is desirable that such
a set of patterns is small.

In this paper, we formulate the problem of finding a
small set of patterns which induces an accurate classifier
as 1-norm soft margin optimization over patterns. Roughly
speaking, this problem is finding a linear combination of
classifiers associated with patterns (or a hyperplane whose
each component corresponds to a pattern) which maxi-
mizes the margin w.r.t. the given labeled texts as well as
minimizing misclassification.

Our formulation has two advantages. The first advan-
tage is accuracy of the resulting classifier. The large mar-
gin theory guarantees that linear classifier with large mar-
gin is likely to have low generalization error with high
probability [19]. So, by choosing the class of patterns

449

appropriately, solving the problem would provide us an
enough accurate classifier. The second advantage is that
the resulting solution is often sparse since the 1-norm soft
margin optimization is a linear program. In other words,
many of patterns have zero weights in the obtained linear
combination. This would help us to choose a small subset
of patterns from the resulting classifier.

We solve the 1-norm soft margin optimization over pat-
terns by combining LPBoost [4] and our pattern discovery
algorithm. LPBoost is a boosting algorithm which prov-
ably solves the 1-norm soft margin optimization. Given a
weak learning algorithm which outputs a “weak hypothe-
sis”, LPBoost iteratively calls the weak learning algorithm
w.r.t. different distributions over training texts and get dif-
ferent weak hypotheses. Then it combines weak hypothe-
ses as a linear combination of them as the final classifier.
In this work, we use our pattern discovery algorithm as the
weak learning algorithm for LPBoost.

The pattern class we consider in this paper is that of all
the possible substrings over some alphabet X. For sub-
string patterns, we derive an efficient pattern discovery al-
gorithm. A naive algorithm enumerates all the possible
substrings appearing in the input texts and takes O(N?)
time, where N is the length of total texts. On the other
hand, ours runs in time O(N). Our approach can be fur-
ther extended by employing pattern discovery algorithms
for other rich classes such as subsequence patterns [6] or
VLDC patterns [8], which is our future work (See Shino-
hara’s survey [21] for pattern discovery algorithms).

In our preliminary experiments, we apply our method
for classification of movie reviews. In particular, for our
data Movie-A, there are about 6 x 10'3 possible substrings
patterns. Our method outputs a classifier associated with

(5 2 721

FIT2010 (35 9 EFEBMFEM T+ —3 L)

a small set of substrings whose size is only about 800.
Among such 800 patterns, we find interesting pattern can-
didates which explain positive and negative reviews.

Let us review some related researches. The bag of words
model (BOW) has been popular in information retrieval
and natural language processing. In this model, each text
is regarded as a set of words appearing in the text, or equiv-
alently, a weight vector where each component associates
with a word and the value of each component is deter-
mined by the statistics of the word (say, frequency of the
word in the text). The BOW model is often effective in
classification of natural documents. However, we need to
determine a possible set of words in advance, which is a
nontrivial task. SVMs with string kernels (e.g., [23, 22])
often provide us a state-of-the-art classification for texts.
However, the solutions of kernelized SVMs do not have
explicit forms of patterns.

Among related researches, the work of Okanohara and
Tsujii [16] would be most related to ours. They consider
a similar problem over substring patterns, they deal with
logistic regression with 1-norm regularization. As we will
show later, in our experiments, our method gains higher
accuracy than they reported. Other related researches in-
clude the work of Saigo et al [18]. They consider 1-norm
soft margin optimization over graph patterns and use LP-
Boost. Our framework is close to theirs, but we use differ-
ent techniques for pattern discovery of substrings.

2 Preliminaries

2.1 1-norm soft margin optimization

Let X be the set of instances. We are given a set S of
labeled instances S = ((x1,y1),--., (Xm,¥m)), where each
instance x belongs to X and each label y; is —1 or +1,
and a set # of n hypotheses, i.e., a set of functions from
X to [—1,+1]. The final classifier is a linear combina-
tion of hypotheses in #, ¥, 4r Ok + b, where b is a con-
stant called bias. Given an instance x, the prediction is
sign(¥ycqr Onh(x) + b), where sign(a) is +1 if a > 0 and
—1, otherwise. Let P* be the probability simplex, i.e.,
Pk = {p € [0,1]%, X% , p; = 1}. For a weighting o € P"
over hypotheses in # and a bias b, its margin w.r.t. a la-
beled instance (x,y) is defined as y(¥ e Onh(x) +b). If
the margin of o0 w.r.t. a labeled instance is positive, the
prediction is correct, that is, y = sign(¥c 4 0sh(x) +b).

The edge of a hypothesis & € # for a distribution d €

450

P™ over S is defined as
m
Edge;(h) =) yidih(x;).
i=1

The edge of & can be viewed as accuracy w.r.t. the distri-
bution d. In fact, if the output of 4 is binary-valued (41
or —1), Edge;(h) = 1 — 2Errorg(h), where Errory(h)is
Y.;diI(h(x;) = y;), where I(-) is the indicator function such
that I(true) = 1 and I(false) = 0.

The 1 norm soft margin optimization problem is formu-
lated as follows (see, e.g., [4, 24]):

1
max p——

1)
poEb Vi

m

&
=1
sub.to

Vi (Zajhj(Xi)+b> >p-&(i=1,...,m),
j

acP E>0.

That is, the problem is to find a weighting o over hypothe-
ses and a bias b which maximize the margin among given
labeled instances as well as minimizing the sum of quan-
tities (losses) by which the weighting misclassifies. Here,
the parameter v takes values in {1,...,m} and it is fixed
in advance. This parameter controls the tradeoff between
maximization of the margin and minimization of losses.

By using Lagrangian duality (see, e.g., [3]), we can de-
rive the dual problem as follows.

2

min
Y.d v

sub.to
Edged(hl) = Zdlylh](xl) <y (.] = Ia e 7n)7
i

dg\—l’l,defl"",
d-y=0.

The dual problem is to find a distribution over instances
for which the edges of hypotheses are minimized. In other
words, the problem is to find the most difficult distribution
for the hypotheses in #.

It is well known that if the primal and dual problems are
linear programs, they are equivalent to each other, i.e., if
one solves one problem, one have also solved the other and
vice versa. More precisely, let (p*,0*,&",b*) be an opti-
mizer of the primal problem (1) and let (y*,d*) be an op-
timizer of the dual problem (2), respectively. Then, by the

(% 2 4D

FIT2010 (56 9 BIFHRBIFRM I+ —5 L)

duality of the linear program, p* — ‘17 & =v. KKT
conditions (see, e.g., [3]) implies that an optimal solution
has the following property.

o Ify; ():ja;fhj(xi)+b*) > p*, then df = 0.
o If0<df < 1/v, then }’i():ja;hj(xi) +b%) =p*.
o If&F >0, thend} = 1/v.

That is, only such a labeled instance (x;,y;) that have
margin no larger than p* can have a positive weight d} > 0.
Further, note that the number of inseparable examples (for
which & > 0) is at most v. This property shows the spar-
sity of a dual solution. The primal solution has sparsity as
well:

o IfEdgey (h;) <V, o} =0.

Similarly, only such a hypothesis k; that Edgez: (k;) = v*
can have a positive coefficient o > 0.

2.2 LPBoost

We review LPBoost [4] for solving the problem (2).
Roughly speaking, LPBoost iteratively solves restricted
dual problems to obtain a final solution.

The details of LPBoost is given in Algorithm 1. Given
the initial distribution d;, LPBoost works in iterations. At
each iteration ¢, LPBoost chooses a hypothesis A, maxi-
mizing the edge w.r.t. d;, and add a new constraint Edge,
(h) <v. problem and solve the linear program and get
d; 1 and Yy41.

In fact, given a precision parameter € > 0, LPBoost out-
puts an €-approximation.

Theorem 1 (Demiriz et al. [4]). LPBoost outputs a solu-
tion whose objective is an €-approximation of an optimum.

2.3 Strings

Let ¥ be a finite alphabet of size 6. An element of £*
is called a string. Strings x, y and z are said to be a pre-
fix, substring, and suffix of the string u = xyz. The length
of any string u is denoted by |u|. Let € denote the empty
string, that is, |€| = 0. Let £+ = X* — {¢}. The i-th char-
acter of a string u is denoted by u(i} for 1 <i < |u|, and
the substring of u that begins at position i and ends at po-
sition j is denoted by ufi: j] for 1 < i < j < |u|. For a set
of strings S, let ||S|| = Z Is]-

seS

451

Algorithm 1 LPBoost(S,€)

1. Let dq be the distribution over S such thatd; -y =0
and d; is uniform w.rt. positive or negative in-
stances only. Lety; = —1.

2. Fort=1,...,

(@) Let hy = argmax;,c 4 Edge, (h).
(b) If Edgey, (h;) <7 +¢€, let T =¢—1 and break.
(c) Otherwise, solve the soft margin optimization

problem (2) w.r.t. the restricted hypothesis set
{h1,...,h}. Thatis,

di1) = i
(tr+1,di41) = arg min y

sub. to
Ya(hj) <Y (J=1,...,1)
1
<-1d-y=0.
d< vl,d y=0
3. Output f(x) =):,Tzloc,ht(x), where each o, (t =

1,...,T)is a Lagrange dual of the soft margin opti-
mization problem (2).

2.4 Our problem

‘We consider the 1 norm soft margin optimization prob-
lem for string data sets, where each hypothesis corresponds
to a string pattern. That is, we are given a set of labeled
documents (strings), and each substring p € * corresponds
to a hypothesis k, € H, and hp(X) for x € £* is defined as
follows:

hp(X) = {

Thus, our “weak” learner will solve the following prob-
lem. Given aset of labeled strings S = ((X1,Ym), ---, (Xm>Ym))
C Z* x {—1,+1}, and a distribution d € P™ over S, find a
string p € £* such that

1
-1

p is a substring of ¥

p is not a substring of X)

m
p= argl;é%)*(Edge;(q9) = zyidihq(xi) 3

i=1
To solve this problem optimally and efficiently, we make
use of the suffix array data structure [15] as well as other
related data structures described in the next section.

(% 2 4D

FIT2010 (55 9 EIEHMFRIT T —5 L)

3 Algorithms
3.1 Data Structures

Below, we describe the data structures used in our algo-
rithm.

The suffix tree of a string T is a compacted trie of all
suffixes of 7. For any node v in the suffix tree, let path(v)
denote the string corresponding to the path from the root
to node v. We assume that the string ends with a unique
character ‘$’ not appearing elsewhere in the string, thus
ensuring that the tree contains |T'| leaves, each correspond-
ing to a suffix of 7. The suffix tree and generalized suffix
tree are very useful data structures for algorithms that con-
sider the substrings of a given string or set of strings. Each
node v in the suffix tree corresponds to a substring of the
input strings, and the leaves represent occurrences of the
substring path(v) in the string.

The generalized suffix tree for a set of strings (71, ...,
Tm), can be defined as the suffix tree for the string 7' =
Ti$:1 - - Tu$m, where each $; (1 < i < m) is a unique char-
acter not appearing elsewhere in the strings, and each edge
is terminated with the first appearance of any $;. We as-
sume that the leaves of the generalized suffix tree are la-
beled with the document index i.

It is well known that suffix trees can be constructed in
linear time [25]. In practice, it is more efficient to use a
data structure called suffix arrays which require less mem-
ory. The suffix array of string 7 is a permutation of all suf-
fixes of T so that the suffixes are lexicographically sorted.
More precisely, the suffix array of 7 is an array SA[1,...,
|T|] containing a permutation of {1,...|T|}, such that 7'[SA
[{]:|T|] X T[SA[i +1]:|T|], for all 1 < i < s, where <
denotes the lexicographic ordering on strings. It is well
known that the suffix array for a given string can be built
in time linear of its length [9, 11, 12]. Another important
array often used together with the suffix array is the height
array. Let LCP[i] = lcp(T[SA[i]: |T|],T[SA[i+1:|T|]]) be
the height array LCP(1,|T] of T, where Lep(Tsafy), Tsajir1))
is the length of the longest common prefix between T [SA[i:
IT|]] and T[SA[i+1:|T|]]. The height array can also be
constructed in linear time [10]. Also, by using the suffix
array and height arrays we can simulate a bottom-up post-
order traversal on the suffix tree [10]. Most other algo-
rithms on suffix trees can be efficiently implemented using
the suffix and height arrays [1].

Figure 1 shows an example of a suffix array and suffix
tree for the string BANANA.

452

Suffix Tree

A$

ANAS

ANANAS

BANANAS

NAS$

NANAS$

Figure 1: Suffix array (left) and suffix tree (right) for string
T = BANANAS. The column SA shows the suffix array,
the column LCP shows the height array, the column ‘suf-
fix’ shows the suffixes starting at position i.

3.2 Finding the Optimal Pattern

We briefly describe how we can find the substring p €
X* to maximize Equation (3) in linear time.

First, we note that it is sufficient to consider strings which
correspond to nodes in the generalized suffix tree of the in-
put strings. This is because for any string corresponding
to a path that ends in the middle of an edge of the suffix
tree, the string which corresponds to the path extended to
the next node will occur in the same set of documents and,
hence, its edge score would be the same. Figure 2 shows
an example.

Also, notice that for any substring p € I*, we have

m
Edged(p) = yid,-hp (xi)
=1
= yid; — yid;
{ithy ()=1} {ithp (x;)=—1}
m
= yidi— | Yydi— Y, v
{i:hp (x:)=1} i=1 {ithp (x)=1}
m
=2 yidi =Y yid;.
{izhp (x;)=1} i=1

Since Y ; vid; can be easily computed, we need only to
compute):{i:hp(x,-)=1} yid; for each p to compute its edge
score.

This value can be computed for each string path(v) cor-
responding to a node v in the generalized suffix tree, basi-
cally using the linear time algorithm for solving a gener-
alized version of the color set size problem [7, 2]. When

(5 2 531D

FIT2010 (55 9 EEHRBFRMI+—3 L)

each document is assigned arbitrary numeric weights, the
algorithm computes for each node v of the generalized suf-
fix tree, the sum of weights of the documents that contain
path(v) as a substring. For our problem, we need only to
assign the weight y;d; to each document.

The main algorithm and optimal pattern discovery algo-
rithms are summarized in Algorithm 2 and Algorithm 3. It
is easy to see that FindOptimalSubstringPattern(...) runs in
linear time: The algorithm of [2] runs in linear time. Also,
since the number of nodes in a generalized suffix tree is
linear in the total length of the strings, line 3 can also be
computed in linear time.

T;=abab, T)=abbb, T;=baba, T,~aaaa
NNIEL AL, =L AT =1
T=1$,T,8,T$;T,5,

Figure 2: Finding the substring that gives the maximum
edge on four documents T, 75, T3, and Ty, with labels
y=(1,-1,1,—1) and weights d = (0.3,0.1,0.2,0.4). The
generalized suffix tree is depicted on the right, and corre-
sponding suffix arrays and height arrays are depicted on
the left. D holds the document index assigned to each leaf.
For example, Edge,(path(v1)) = 0.3 %1 x(—1)+0.1 %
(=1)*(=1)+02%1%(—1)+0.4%(—1)*1 = —0.8. The
optimal patterns are path(vs) = ‘aba’ and path(vg) = ‘bab’
giving an edge of 1.

Algorithm 2 Compute 1 norm soft margin optimal prob-
lem for string

1: Input: Data S = ((T1,31),---» (Tm,Ym)), Parameter €.
2: Construct suffix array SA and LCP array for string
T =Ti$1-- TnSm-

Run Algorithm 1 (LPBoost(S,€)) using FindOptimal-
SubstringPattern(SA, LCP, y, d) for line 2(a).

453

4 Experiments

We conducted sentiment classification experiments for
a data set called MOVIE-A, provided by Bo Pang and Lil-
lian Lee [17]!. The data consists of reviews of various
movies, with 1000 positive reviews, and 1000 negative re-
views. Table 1 shows simple statistics of the data.

‘We examined the performance of our approach using 10
cross validations. More precisely, at each trial, we split the
whole data randomly into training data and test data with
probability 0.8 and 0.2, respectively. Then we train our
method for the training data and measure the accuracy of
the obtained classifier over the test data. We average the
accuracy over 10 trials. The parameter v for our method
is set as v = 0.1 x m = 0.0001, which, roughly speaking,
means that we estimate the level of noise in the data as
10%.

Table 2 shows the results of our method, as well as sev-
eral other methods. “SVM + Ngram” denotes the support
vector machine using an ngram kernel, and “normalized
SVM +Ngram” denotes a version which uses normaliza-
tion (normalized SVM + Ngram). The score shown for
these methods are for ngrams of length n = 7, which gave
the best score. The score for “OT [16]” is the score taken
directly from their paper.

Table 3 shows substrings with top 10 largest weights in
the final weighting . It also shows number of documents
in which the pattern occurs. Our method found some in-
teresting patterns, such as est movie, or best, s very e, and
s perfect. Table 4 shows some of the context of the occur-
rence of these patterns.

Table 1: Detail of the data set

| Corpus l # of docs I total length |
[MOVIE-A | 2000 | 7786004 |

Table 2: Percentage of correct classifications in classifica-
tion task.

Method MOVIE-A
LPSSD 91.25%
SVM+Ngram 85.75%
normalized SVM+Ngram 89.25%
OT [16] 86.50%

Thttp://www.cs.cornell.edu/People/pabo/
movie-review-data/, polarity dataset v2.0

(& 231D

FIT2010 (28 9 EIEHRAIERMT I+ —S L)

Algorithm 3 FindOptimalSubstringPattern(SA, LCP, y, d)

1: wtot := Y yid;;

2: Calculate w, = Z{izhpm =1} yid; for each node v of
the generalized suffix tree, using SA, LCP and algo-
rithm of [2];

3: vmax := argmax, Edge;(path(v)) = argmax, (2w, —
wrot);
4: return path(vmax);

Table 3: Top 10 substrings with largest weight (o).

pattern o #occ in pos | #occ in ne{]
iase 0.01102 13 1
ronicle 0.00778 21 4
sverye 0.00776 15 2
entsr 0.00659 9 1
or best 0.00642 21 5
e of yours | 0.00633 8 0
Sfinest 0.00615 44 5
ennes 0.00575 28 8
unm 0.00567 13 1
s insid 0.00564 14 5

Table 4: Context of some substrings in top 100 largest
weightings (o).

Pattern || est movie s perfect ‘
Context best movie is perfect
funnest movie this perfectly
greatest movie | seems perfectly

Pattern || or best S very ;I
Context actor best | is very effective
aword for best | is very entertain
nominated for best | is very enjoyable

Pattern || fun I o entertain |
Context fun So entertaining
funny to entertain
Jfunniest to entertaining
funnest | to entertainment

Pattern much like t | sa ﬁncﬂ
Context much like the is a fine
much like their delivers a fine
much like tis does a fine
much like titanic | contributs a fine

5 Conclusion and Future Work

We considered 1-norm soft margin optimization over
substring patterns. We solve this problem by using a com-
bination of LPBoost and an optimal substring pattern dis-
covery algorithm. In our preliminary experiments on a
data set concerning movie reviews, our method actually
found some interesting pattern candidates. Also, the ex-
perimental results showed that our method achieves higher
accuracy than other previous methods.

There is much room for improvements and future work.
First, our method might become more scalable by em-
ploying faster solvers for 1-norm soft margin optimization,
e.g., Sparse LPBoost [5]. Second, extending the pattern
class to more richer ones such as VLDC patterns [8] would
be interesting. Finally, applying our method to DNA or
RNA data would be promising. An advantage of our method
is that, unlike the bag of words models, we do not need to
enumerate all possible candidates of patterns explicitly.

References

[1] Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replac-
ing suffix trees with enhanced suffix arrays. Journal
of Discrete Algorithms 2(1), 53-86 (2004)

[2] Bannai, H., Hyyr6, H., Shinohara, A., Takeda, M.,
Nakai, K., Miyano, S.: An O(Nz) algorithm for dis-
covering optimal Boolean pattern pairs. IEEE/ACM
Transactions on Computational Biology and Bioin-
formatics 1(4), 159-170 (2004)

[3] Boyd, S., Vandenberghe, L.: Convex Optimization.
Cambridge University Press (2004)

[4] Demiriz, A., Bennett, K.P.,, Shawe-Taylor, J.: Lin-
ear programming boosting via column generation.
Mach. Learn. 46(1-3), 225-254 (2002)

[5] Hatano, K., Takimoto, E.: Linear programming
boosting by column and row generation. In: Proceed-
ings of the 12th International Conference on Dicov-
ery Science (DS 2009). pp. 401408 (2009)

[6] Hirao, M., Hoshino, H., Shinohara, A., Takeda, M.,
Arikawa, S.: A practical algorithm to find the best
subsequence patterns. Theoretical Computer Science
292(2), 465-479 (2003)

[7] Hui, L.: Color set size problem with applications to
string matching. In: Proceedings of the Third An-
nual Symposium on Combinatorial Pattern Matching

454

(% 2 53fih

FIT2010 (35 9 BIEERRBIZERM I+ —5 L)

(8]

[9]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(CPM 92). LNCS, vol. 644, pp. 230-243. Springer-
Verlag (1992)

Inenaga, S., Bannai, H., Shinohara, A., Takeda, M.,
Arikawa, S.: S.: Discovering best variable-length-
don’t-care patterns. In: In: Proceedings of the 5th
International Conference on Discovery Science. Vol-
ume 2534 of LNAI, Springer-Verlag. pp. 86-97.
Springer-Verlag (2002)

Kirkkiinen, J., Sanders, P.: Simple linear work suf-
fix array construction. In: Proc. ICALP’03. LNCS,
vol. 2719, pp. 943-955 (2003)

Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park,
K.: Linear-time longest-common-prefix computa-
tion in suffix arrays and its applications. In: CPM
’01: Proceedings of the 12th Annual Symposium
on Combinatorial Pattern Matching. pp. 181-192.
Springer-Verlag, London, UK (2001)

Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-
time construction of suffix arrays. In: Proc. CPM’03.
LNCS, vol. 2676, pp. 186-199 (2003)

Ko, P.,, Aluru, S.: Space efficient linear time con-
struction of suffix arrays. In: Proc. CPM’03. LNCS,
vol. 2676, pp. 200-210 (2003)

Leslie, C.S., Eskin, E., Weston, J., Noble, W.S.: Mis-
match string kernels for svm protein classification.
In: Advances in Neural Information Processing Sys-
tems 15 (NIPS °02). pp. 1417-1424 (2002)

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristian-
ini, N., Watkins, C.J.C.H.: Text classification us-
ing string kernels. Journal of Machine Learning Re-
search 2, 419444 (2002)

Manber, U., Myers, G.: Suffix arrays: a new method
for on-line string searches. SIAM J. Computing
22(5), 935-948 (1993)

Okanohara, D., Tsujii, J.: Text categorization with
all substring features. In: Proc. 9th SIAM Interna-
tional Conference on Data Mining (SDM). pp. 838-
846 (2009)

Pang, B., Lee, L.: A sentimental education: Sen-
timent analysis using subjectivity summarization
based on minimum cuts. In: Proceedings of the ACL
(2004)

465

(18]

(19]

[20]

[21]

(22}

(23]

[24]

[25]

(% 2 531

Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T.,
Tsuda, K.: gboost: a mathematical programming ap-

proach to graph classification and regression. Ma-
chine Learning 75(1), 69-89 (2009)

Schapire, R.E., Freund, Y., Bartlett, P, Lee, W.S.:
Boosting the margin: a new explanation for the effec-
tiveness of voting methods. The Annals of Statistics
26(5), 1651-1686 (1998)

Schapire, R.E., Singer, Y.: Boostexter: A boosting-
based system for text categorization. Machine Learn-
ing 39, 135-168 (2000)

Shinohara, A.: String pattern discovery. In: Proceed-
ings of the 15th International Conference on Algo-
rithmic Learning Theory (ALT"04). pp. 1-13 (2004)

Teo, C.H., Vishwanathan, S.V.N.: Fast and space ef-
ficient string kernels using suffix arrays. In: ICML.
pp- 929-936 (2006)

Vishwanathan, S.V.N., Smola, A.J.: Fast kernels for
string and tree matching. In: NIPS. pp. 569-576
(2002)

‘Warmuth, M.K., Glocer, K.A., Vishwanathan, S.V.:
Entropy regularized Ipboost. In: ALT ’08: Proceed-
ings of the 19th international conference on Algorith-
mic Learning Theory. pp. 256-271. Springer-Verlag,
Berlin, Heidelberg (2008)

Weiner, P.: Linear pattern-matching algorithms. In:
Proc. of 14th IEEE Ann. Symp. on Switching and
Automata Theory. pp. 1-11 (1973)

