FIT2010 (56 9 OIIBRBIERM I+ —3F L)

F-036

Online Rank Aggregation

Shota Yasutake! Kohei Hatano!

Eiji Takimoto!

Masayuki Takeda!

! Department of Informatics, Kyushu University

Abstract:

We consider an online learning framework where the task is to predict a permutation which

represents a ranking of n fixed objects. At each trial, the learner incurs a loss defined as the Kendall tau
distance between the predicted permutation and the true permutation given by the adversary. This setting
is quite patural in many situations such as information retrieval and recommendation tasks. We propose
algorithms for this problem and prove relative loss bounds with regret only depending on O(n 2). Further,
we also prove a matching lower bound of the regret, which shows our algorithms are almost optimal.

1 Introduction

The rank aggregation problem have gained much atten-
tion due to developments of information retrieval on the
Internet, online shopping stores, recommendation systems
and so on. The problem is, given m permutations of n
fixed elements, to find a permutation that minimizes the
sum of “distances” between itself and each given permu-
tation. Here, each permutation represents a ranking over
n elements. So, in other words, the ranking aggregation
problem is to find an “average” ranking which reflects the
characteristics of given rankings. In particular, the opti-
mal ranking is called Kemeny optimal [19, 20] when the
distance is defined as Kendall tau distance (which we will
define later). From now on, we only consider Kendall tau
distance as our distance measure.

The ranking aggregation problem is a classical problem
in social choice literature which deals with voting and so
on [6, 10]. These days, the rank aggregation problem also
arises in information retrieval tasks such as combining sev-
eral search results given by different search engines. The
rank aggregation problem is being studied extensively in
theoretical computer science [12, 14, 3]. It is known
that the rank aggregation problem is NP-hard [5], even
when m > 4 [12]. Some approximation algorithms are
known as well. For example, Ailon et al. proposeda 11/7-
approximation algorithm [2]. Further, Kenyon-Mathieu
and Schudy proposed a PTAS (polynomial time approxi-
mation scheme) which runs in doubly exponential in the
precision parameter £ > 0 [21]. Ailon also gives algo-
rithms for aggregation of partial rankings [1].

In this paper, we consider an online version of the rank-
ing aggregation problem, which we call “online rank ag-
gregation”. This problem is about online prediction of per-
mutations. Let S, be the set of all permutations of n fixed

441

elements. Then the online rank aggregation problem con-
sists of the following protocol for each trial ¢:

1. The learner predicts a permutation 6; € Sy,.

2. The adversary gives the learner the true permutation

ot € Sp.

3. The leamer receives the loss d(o,5%).

The goal of the learner is to minimize the cumulative regret

T T
;d(at,ﬁt) - min ; d(oy,0).

As there have been extensive researches on online learn-
ing with experts (e.g., Weighted Majority proposed by Lit-
tlestone and Warmuth [22] and Vovk’s Aggregating Algo-
rithm [23]), it is natural for us to apply existing algorithms
for the online rank aggregation problem.

First of all, a naive method would be to apply Hedge
Algorithm [15] with n! possible permutations as experts.
In this case, we can prove that the cumulative loss bound
is at most

for any ¢ > 0. The disadvantage of this approach is that
the running time at each trial is O(n!).

Next, let us consider PermELearn proposed by Helm-
bold and Warmuth [16]. Although this algorithm is not de-
signed to deal with Kendall tau distance, it can use Spear-
man’s footrule, another distance measure for permutations.
It is well known that the following relationship holds for
Kendall tau distance d and Spearman’s footrule d 7 [11]:
d(o,0") < dr(0,0") < 2d(o,0’). So, by using this re-
lationship, we can prove that the relative loss bound of

n3lnn

T
1 +e)51611£;d(0t,0) -I—O(

(% 251D

FIT2010 (25 9 @BHREIEHBT I+ —5 L)

PermELearn is at most

T 2
nlnn
2(1 i O .
40 g 3 dlow) +0 ()

Tts running time per trial is O(n8) .

In this paper, we propose new algorithms for online rank
aggregation. For the first algorithm which we call PermRank,
we prove its expected cumulative loss bound is at most

T 2
n
4(1 in S d(o,0) +0 (),
(+€)or‘g,15rit:1 (a-t U)+ (E)

and its running time per trial is O(n?). For the second
algorithm, PermRank2, we show that its expected cumula-
tive loss is at most

T 2
. n
(1+¢) min tE:I d(o¢,0) + O (?> .

In particular, if we set its parameter appropriately, its ex-
pected cumulative loss is at most

T
min » d(os,0) + O(n*VT).

S,
gES, =1

We have not analyzed its efficiency so far, but, unfortu-
nately, the time complexity is unlikely to be polynomial.
This is because, as we will show later, within polynomial
number of iterations, this algorithm can solve an offiline
rank aggregation problem, which is NP-hard.

We further derive a lower bound of the cumulative loss
of any learning algorithm for online rank aggregation, which
matches our upper bound of PermuRank2. More precisely,
we show that there exists a probabilistic adversary such
that for any learning algorithm for online rank aggrega-
tion, the cumulative loss is at least

T
min Z d(o4,0) + Qn2VT).
=1

ocESn P

Therefore, our algorithm PermRank? is almost optimal 2.

!Main computation in PermELearn is normalization of probability
matrices called Sinkhorn balancing. For this procedure, there is an ap-
proximation algorithm running in time O(n In(n/¢)), where £ > 0 is
a precision parameter [4].

2We note that there exists another approach that achieves bounds sim-
ilar to ours. Kakade et al. proposed a general method to construct an on-
line approximation algorithm, given an offline approximation algorithm
as an oracle [18]. Their method is indeed applicable for online rank ag-
gregation as well. It can be shown that by using their method and Ailon et
al’s approximation algorithms {2], one can obtain approximation factors
2 and 11/7 instead of ours 1 and 4, while keeping the second additive
term in the same order. However, the time complexity of the conversion
method at each trial depends on T, the given horizon. Further, to obtain
the approximation factor 2, the space also needs 71" since the algorithm
needs to keep all the past given permutations. On the other hand, our
algorithms are more practical since time and space complexity are inde-
pendent of T'.

442

Finally, we show some experimental results on synthetic
data sets. In our experiments, our algorithm PermRank
performs much better than Hedge algorithm with permu-
tations as experts and PermELearn.

2 Preliminaries

Let n be a fixed integer s.t. n > 1. Let S, be the set
of permutations on {1, ...,n}. The Kendall tau distance
d(o1, 02) between permutations o1, oo € S, is defined as

n
d(o1,02) = Z I(o1(2) > a1(4) A 02(i) < a2(3)),
4,j=1

where I(-) is the indicator function, i.e., I(true) = 1 and
I(false) = 0. That is, Kendall tau distance between two
permutations is the total number of pairs of elements for
which the orders in two permutations disagree. By def-
inition, it holds that 0 < d(o1,02) < n(n — 1)/2, and
Kendall tau distance satisfies the conditions of metric.

There is another distance for permutations. The Spear-
man’s foot rule between two permutations o1, 09 € Sy, is
defined as dF(O'1, 02) = Z?:l |0’1(Z.)~02(’i)l. d(O’l, 02) <
dF(O'l,UQ) < 2d(0’1,0’2).

Let N = n(n—1)/2. A comparison vector q is a vector
in {0,1}". We define the following mapping ¢ : S, —
[0, 1]¥ which maps a permutation to a comparison vector:

a@ﬁ:{lo@<am,

0 otherwise.

where4,j € {1,...,n} and ¢ # j.

Then note that the Kendall tau distance between two
permutations is represented as 1-norm distance between
corresponding comparison vectors.

d(01,02) = ll$(01) — p(02)]l1,

where l-norm |z||1 = Zf’zl |z;]. For example, for a
permutation ¢ = (1, 3, 2), the corresponding comparison
vector is given as ¢(c) = (1,1,0). In general, for some
comparison vectors, there is no corresponding permuta-
tion. For example, the comparison vector (1,0, 1) repre-
sents that o(1) > ¢(2),0(2) > 0(3),0(3) > (1), for
which no permutation ¢ exists. In particular, if a compari-
son vector ¢ € {0,1}? has a corresponding permutation,
we say that g is consistent. We denote ¢(S,) as the set of
consistent comparison vectors in {0,1} V.

For p,q € [0,1], the binary relative entropy A2 (p,q)
between p and ¢ is defined as Aq(p, q) = plng +(1 -
p)ln i—:{;. Further, we extend the definition of the binary

(% 2 /7D

FIT2010 (55 9 @IRHMZFRIM T #—5 L)

Algorithm 1 PermRank

Algorithm 2 KWIKSORT (Ailon et al. [2])

1. Letp; = (3,...,3) € [0,1).
2. Fort=1,...,T
(a) Choose a comparison vector g, € {0,1}
randomly according to p,, ie., ¢;; = 1 with
probability py ;.

(b) Predict a permutation G =
KWIKSORT(q,).

(c) Get a true permutation o; and let y, = ¢(o¢).
(d) Update p;,, as

e ie_"?(l‘yt,i)
(1 —pss)eMei + p; e~ 1(1=ves)

Pt+1,z‘ =

relative entropy for vectors in [0,1]". That is, for any

Input: a N-dimensional {0, 1}-valued vector ¢, n
Output: a permutation

1. Let St and Sgr be empty sets, respectively.
2. Pick an integer i from {1, ...,n} randomly.
3. Foreach j € {1,...,n} suchthat j # 1

(@) Ifg;; =1(g;i = 1whenj < i),putjinSy.
(b) Otherwise, put j in Sg.

4. Let q;,qpr be the vector induced by S and Sg,
respectively.

5. Output (KWIKSORT(q;), i, KWIKSORT(g)).

3.1 Derivation of the update

D, q € [0,1]V, the binary relative entropy is givenas A5 (p, q) = In this subsection, we derive the update rule in PermRank.

Z.Iiil AZ(piv Qz)

3 Our Algorithm

In this section we propose our first algorithm PermRank.
Our idea behind PermRank consists of two parts. The first
idea is that we regard a permutationas a N(= n(n—1)/2)
dimensional comparison vector and deal with a problem of
predicting comparison vectors. More precisely, we con-
sider a Bernoulli trial model for each component 5 of a
comparison vector. In other words, for each component
ij, we assume a biased coin for which head appears with
probability p;;, and we estimate each parameter p;; in an
online fashion.

The second idea is how we generate a permutation from
the estimated comparison vector. As we mentioned earlier,
for a given comparison vector, there might not exists a cor-
responding permutation. To overcome this situation, we
use KWIKSORT algorithm proposed by Ailon et al. [2].
Originally, KWIKSORT is used to solve the rank aggre-
gation problem. The basic idea of KWIKSORT is to sort
elements in a brute-force way by looking at local pairwise
order only. We will show later that by using KWIKSORT
we can obtain a permutation whose corresponding com-
parison vector is close enough to the estimated comparison
vector.

We describe the details of our algorithm and KWIK-
SORT in Algorithm 1 and Algorithm 2, respectively.

The update is motivated by the following optimization prob-
lem:

ngnnlly —p'lli + Aa(p,p').

To solve this, we use the following relationship: For any
yi € {0,1} and p; € [0,1], |y; — pi| = pi(1 —wi) + (1 —
p:)y;. Then we define the Lagrangian as

L(p) = WZ lyi — pil + Z As(ps, p}),

where p’ is the probability vector before the update. By
taking the partial derivative of L and enforcing the deriva-
tive to be zero, we get the update:

p;e_n(l_yi)
1—phye—nv: + p;e—n(l—yi) ’

pi=(

3.2 Our Analysis
Then we show our relative loss bound of PermRank.

Lemma 1. For eacht = 1,...,T and any comparison
vector q,

Az(q,p;) — A2(q, Pry1)
>—nly; —aqlli + 1 —e)|y, — pll1-

(& 2 21D

FIT2010 (55 9 BIRHBFERMI #—5 L)

Proof.

Az(%pt,z’) - AZ((Ii,pt+1,i)
— DPt41,:

Dt+ 1
+(1—-¢;)In
Dt,i (Qz) 1- Dty

=—qn(1 —ys,i) — (1 — qa)nysi
—In ((1 —pl)e i 4 pée—n(l—yt,i))

= —lyss — @l — 1o ((1 —pie M+ péé‘"“’“'”) :

=¢iln

Since e =1 — (1 — e™ ")y, fory; € {0,1}, the terms
above becomes

Ao(gi, pei) — B2(gi, Pre1,i)
= NYt,i — Gil

—In(1— (1 —e (1~ pei)ye,i + Pe,i(l = Yei)))
> = Nyes — @l + (1 — e yes — Pyl

Finally, summing up the inequality for: = 1,..., N, we
complete the proof. O

Next, we derive an upper bound of the cumulative 1-
norm loss.

Theorem 1. For any comparison vector q € {0,1} ¥,

15T Ny — gl + 2% n2
1—e7)

T
Z ly: — Pellr <
t=1

Proof. By summing up the inequality in Lemma 1 for¢ =
1,...,T, we get that

N s — gl — Ao(g, pryy) + A2(a, py)
1—em)

Since Ax(g, pr+1) = 0and As(g, p) < In2, we complete
the proof. O

Then we have the following lemma which is proved by
Ailon et al.

Lemma 2 (Ailon et al.[2]). For each trial t, let q} be the
comparison vector corresponding to Gy. Then for any t =
1,...,T,

E —q;|l1] €3 min —ql1,
[lg; — azll1] < qe¢(Sn)”q"’ qll1

where the expectation is about the randomization in KWIK-
SORT.

This lemma states that, even if we apply KWIKSORT
for a vector q,, the resulting comparison vector g/ is still
close to g, in terms of 1-norm distance. By using this
lemma, we obtain the following useful lemma.

444

Lemma3. Foranyt=1,...,T, we have

Eld(0+,51)] < 4lly: — pella,

Where the expectation is defined with respect to the ran-
domization in KWIKSORT and PermRank, respectively.

Proof. By the triangle inequality and Lemma 2, we have

Ellly, - qg“l] <y — @l + EHIQQ — q,l1]

<y, - 3 mi —
<|ly; — @slls + g llg — a1
< Hyt - Qtnl + 3”'!/1& - qt”1

= 4|y, — a.lls,

where the randomization is about KWIKSORT. Then, for
any fixed y, ; € {0, 1}, the 1-norm distance ||y, — p|| is
linear in p. Thus, we have

E(d(0t,01)] = E[lly; — aill1] < 4E[|ly; — q;l1]
<Ay, — pl1
O

Now we are ready to prove the main theorem on PermRank.

Theorem 2. The expected cumulative loss bound of PermRank

is the following:

T
Z d(O’t, Et)}
i=1

< 4dnminges, Zz;l d(o¢,0) +2n(n—1)1n2
- l—em ’

E

Proof. By summing up the inequality in Lemma 3 for ¢t =
1,...,T, we obtain that

T
Z d(O’t, Et)
t=1

Then, by combining this inequality and Theorem 1, for
any comparison vector q € [0, 1]%,

z T any, -
zdw»] <y dal
t=1 t=1

Since q is arbitrary, this inequality holds when ¢ is a con-
sistent comparison vector that minimizes the cumulative
loss in hindsight. O

E

T
<43 lly, — pilla-
t=1

E

qlli +2n(n—1)In2
1—em)

In particular, when we set 7 = 21n(1 + ¢), by the fact
thatn < e? — e~ %, we get

n
1—e

1 (1+e)?

=1 d =
€ (1+¢), an 1—em 242’

respectively. Thus we have the following corollary.

(58 2 20D

FIT2010 (35 9 BIIFHRBZEM I+ —5 L)

Corollary 3. For anye > Oandn =2In(1+¢),

T
Z d(O’t, Et)]
t=1

T 2
<4(1+¢) min Y d(01,0) + O (”?) :
" t=1

E

4 Our second algorithm

In this section, we show our second algorithm PermRank?2.

The basic idea of PermRank? is similar to that of PermRank,
except that, in stead of applying KWIKSORT, the sec-
ond algorithm uses projection techniques which are now
standards in online learning researches (see, e.g.,[17, 16]).

More precisely, after the update (and before applying KWIK-

SORT) in PermRank , PermRank2 projects the updated
vector onto the convex hull of consistent permutations.

As a result, we obtain a stronger loss bound for on-
line rank aggregation. But, unfortunately, we have not
yet succeeded to prove the time and space complexity of
PermRank?2. A naive implementation of PermRank2 would
take more than exponential time and space. The details of
PermRank?2 are shown in Algorithm 3.

In order to prove the cumulative loss bound of PermRank?2,

we will use the Generalized Pythagorean Theorem for Breg-
man divergences [7] (For details of the definition of Breg-
man divergences, see, e.g., [9]). Since the binary relative
entropy is a Bregman divergence, so does our generalized
version A,. In the following, we show a version of the
Generalized Pythagorean Theorem adapted for the binary
relative entropy.

Lemma 4 (Generalized Pythagorean Theorem[7]). Let S
be a convex set in [0, 1)V and p be a point in [0,1]" with
strictly positive entries. Let p' € S be the projection of p
onto S in terms of Ao, i.e, p' = argminges A2(q, p).
Then, for any q € [0,1]7,

Az(q,p) = A2(q,p") + Da2(p', p).

Inparticular, if S is affine, the inequality holds with equal-
ity.

Using Lemma 4, we prove the next lemma.

Lemma 5. For eacht = 1,...,T and any comparison
vector g,

Az(q,p;) — A2(q,Piyq)
> -1ly, —alli + (1 — e My, — pelr

445

Algorithm 3 PermRank2
1. Letp; = (3,...,3) € [0,1]V.

2. Fort=1,...,T

(a) Find coefficients o; such that p, =
2_ges(s,) @t,.q9> Where each g is a consistent
comparison vector in {0, 1}V,

(b) Choose a comparison vector q, € {0,1}V
randomly according to oy, i.e., ¢; = q with
probability o, q.

(c) Predict a permutation T} =
KWIKSORT(q,).

(d) Get a true permutation o and let y, = ¢(oy).
(e) Update p, +1as
Piyy = arg Hgnnllyt = pll1 + Az(p py)-
(f) Letp,,, bethe projectionof p, +1 onto the set
‘H of convex combination of consistent com-

parison vectors:

= in A :
Piy1 = arg i As(p pyy4)

Proof. By applying Lemma 4, we obtain
A2(q, py) — D2(q; Peya)
>22(a,py) — D2, Pey 1) + D2(Pry1; Peyt)
ZA2(q)pt) - A2(qapt+%)'
Further, by Lemma 1,
Aa(q,py) — A2(a, Py)
> —nlly: — gl + (L= e Yy, — psllns
which completes the proof. O

Again, by summing up the inequality in Lemma 5, we
have the cumulative loss bound of PermRank?2 as follows:

Theorem 4. For any np > 0, the expected cumulative loss
of PermRank2 is bounded as follows:

T
E {Z d(at,fr})}
t=1

<7 minges,, zf:l d(ot,0) + M—;M

1—e"

Specifically, by setting n = 2In(1 +¢) orn = In(1 +
+/1/T) (when T is known) we get the two corollaries.

(% 2 4D

FIT2010 (55 9 EBHREIERM I+ —5 L)

Corollary 5. For anye > 0 andn = 2In(1 + ¢),

T

Zd(otaat):|

t=1

E

T

2
(1 E) min d(o‘t,O') (

n

€) '
Corollary 6. Forn =In(1 + /1/T),
T
Z d(aty at):l
t=1

T
< mi d O
< 3 dono)+

E

(wvE).

Finally, we discuss the time complexity of PermRank2.
We will show that the time complexity is unlikely to be
polynomial time by showing that any online algorithm that
achieves the optimal cumulative loss bound can solve an
offline rank aggregation problem as well. Let us fix such
an online algorithm A. Given m fixed permutations, we
choose a permutation uniformly randomly among them
and let run A for it by O(n*) times repeatedly. Then the to-
tal rounds 7 is cn* for some constant c. For a sufficiently
large ¢ > 0, the average expected cumulative loss of A
is that of the best permutation plus 0.5. Note that, since
Kendall tau distance takes integers in [0, n(n — 1)/2], the
average expected cumulative loss of A is exactly the same
with that of the best permutation. Finally, by picking up a
permutation randomly from 71, . . ., G, expected average
loss of the chosen permutation is the same with that of the
best permutation. So the randomized online algorithm A
can probabilistically find an optimal solution of an offline
rank aggregation problem in polynomial time. Since rank
aggregation is NP-hard, this implies that NP C BPP,
which is widely believed to be false. Yet, there might ex-
ist a PRAS (polynomial-time randomized approximation
scheme) for online aggregation.

5 Lower bound

In this section, we derive a Q(nZ\/T) lower bound of
the regret for online rank aggregation, which shows the
regret bounds for PermRank and PermRank?2 are almost
tight. In particular, our lower bound is obtained when the
adversary is probabilistic.

Theorem 7. For any online prediction algorithms of per-
mutations and any integer T' > 1, there exists a sequence

446

O1,--.,0T such that

T

Z d(Utaat)

t=1

T

- pin Yo 0) = AVT)

Proof. The proof partly follows a well known technique
in [8, 9]. We consider the following strategy of the adver-
sary: At each trial ¢, give the learning algorithm either the
permutation o3 = o' = (1,..,n) or 6y = 0° = (n,n —
1,...,1) randomly with probability half. Note that the cor-
responding comparison vectors are ¢(c°) = (0, ...,0) and
(o) = (1, ..., 1), respectively.

Then, for any ¢ > 1 and any permutation o4, E[d(o; —
o¢)] = (5)/2. This implies that the expected cumulative

loss of any learning algorithm is exactly @T, because of
the linearity of the expectation.

Next, we consider the expected cumulative loss of the
best of 0 and o1, that is, E [mini=g,1 ZtT=1 d(oy — at)].
By our construction of the adversary, this expectation is
reduced to

E

T
i — gP
iy 2 dlow =0 >}

T
n .
=(2) | D [pril%)r,ll ; D — e [})

where y1, . . ., yr are independent random {0, 1}-variables.
The above expectation can be further written as

T
n .
(2)Eyl,...,w L"—%’fﬁ ; lp - ytl}

2 9 yr [|(# of Os) - (# of 1s)]].

,,,,,

Then the second term in the last equality is bounded as
—(3)T). Finally, we have

E

T
;d(ot,?f}) - ;2}){11 ;d(at,a”)} > Q(n*VT).

So, there exists a sequence oy, ..., or such that

T
; d(os,a1) > pr_r__l(i)r’ll ; d(at,0F) + Q(n*VT)
T

> min d(os,0) + Qn2VT).
a&on t=1

O

Note that, by Corollary 6, the cumulative loss of PermRank?2

matches our lower bound.

(& 2 5

FIT2010 (55 9 BIBHRIFEM I+ —35.L)

6 Experiments

We show preliminary experimental results for artificial
data. The algorithms we examine are Hedge Algorithm,
PermELearn and PermRank.

For our artificial data, we specify the following way of
generating permutations. First we fix a base permutation
in S™. Then, at each trial, pick up a pair over n elements
randomly and reverse the order of the pair in the fixed per-
mutation. After repeating this procedure s times, give each
learning algorithm the resulting permutation. In our exper-
iments, we fix n = 9,s = 0, 5,10, and T = 600, respec-
tively.

We run Hedge algorithm with n! permutations as ex-
perts and PermRank. For these algorithms, the parameter
7 is specified as 7 = 2In(1 + €), where ¢ = 0.01. We
also compare them with the predictor that always predicts
the base permutation. We regard this predictor as the best
permutation. Note that each learning algorithm is proba-
bilistic. So we repeat running each algorithm 5 times for
the fixed sequence of permutations, and compute the aver-
age of cumulative losses.

We the results in Figure 1. As can bee seen in Figure 1,
the cumulative losses of PermRank are smaller than those
of Hedge algorithm and PermELearn for each choice of s.
Also, PermRank is competitive with the best permutation
especially for s = 5, 10.

7 Conclusions and Future Work

In this paper, we consider online rank aggregation, the
online version of the rank aggregation problem. We pro-

posed two online learning algorithms PermRank and PermRank2

for online rank aggregation and prove their cumulative loss
bounds. Then we prove a lower bound for online rank ag-
gregation which matches the upper bound of PermRank2.
Finally, our experimental results show that PermRank per-
forms much better than the naive implementation of Hedge
algorithm with n! permutations as experts.

There are some open questions.

1. Does there exist a polynomial time prediction algo-
rithm for online rank aggregation with (1 + ¢) ap-
proximation factor?

2. Can we generalize our results for partial rankings
such as top k lists?

Especially, the second problem is important in practice
(see, e.g., [1, 13] for researches on partial ranking).

447

2500

He&ge Algorit'hm s
PermRank -+«

PermELearn

2000 Best Permutati

1500

1000

Cumulative loss

500
0 . A 2 " i A
0 100 200 300 400 500 600
t
12000 y v .
Hedge Algorithm wesssses
PPenEnFank @ o2
0000 ermELeam isssazie
10000 gest Pemutation -
w8000 f
E-]
3
2
£ 6000 p
3
€
5
o 4000 f
2000 r
0 N a N a a
0 100 200 300 400 500 600
t
12000 r v .
Hedge Algorithm s
PermRank 2
10000 | PermELeamn
Best Permutation =
2 8000
o
°
€ 6000 e
3 SO
€ ‘%g«*
3 {»\
Qo 4000 P e
&
2000 b @@gt‘
o
o L M 2 A 2 M
0 100 200 300 400 500 600

Figure 1: Cumulative losses of Hedge, PermELearn,
PermRank, and the best permutation for s = 0 (upper left),
s = 5 (upper right), and s = 10 (lower).

(58 2 731D

FIT2010 (55 9 EIRERMFRIM I+ —3 L)

References

[1]

[2]

[3]

[4]

[6]

[7]

(8]

[9]

[10]

[11]

N. Ailon. Aggregation of partial rankings, p-ratings
and top-m lists. Algorithmica, 57(2):284-300,2008.

N. Ailon, M. Charikar, and A. Newman. Aggregat-
ing inconsistent information: Ranking and cluster-
ing. Journal of the ACM, 55(5),2008.

A. Andoni, R. Fagin, R. Kumar, M. Patrascu, and
D. Sivakumar. Corrigendum to “efficient similar-
ity search and classification via rank aggregation” by
ronald fagin, ravi kumar and d. sivakumar (proc. sig-
mod’03). In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pages
1375-1376,2008.

H. Balakrishnan, I. Hwang, and C. J. Tomlin. Poly-
nomial approximation algorithms for belief matrix
maintenance in identity management. In 43rd IEEE
Conference on Decision and Control, pages 4874—
4879, 2004,

J. Bartholdi, C. A. Tovey,v and M. A. Trick. Voting
schemes for which it can be difficult to tell who won
the election. Social Choice ad Welfare, 6:157-165,
1989.

J. C. Borda. Mémoire sur les élections au scrutin.
Histoire de I’Académie Royale des Sciences, 1781.

L. M. Bregman. The relaxation method of find-
ing the common point of convex sets and its appli-
cation to the solution of problems in convex pro-
gramming. USSR Computational Mathematics and
Physics, 7:200-217, 1967.

N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helm-
bold, R. E. Schapire, and M. K. Warmuth. How to
use expert advice. Journal of the Association for
Computing Machinery, 44(3):427-485, 1997.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learn-
ing, and Games. Cambridge University Press, 2006.

M. J. Condorcet. Essai sur I’application de I’analyse
a la probabilité des décisions rendues & la pluralité
des voix, 1785.

P. Diaconis and R. L. Graham. Spearman’s footrule
as a measure of disarray. Journal of the Royal Statis-
tical Society. Series B (Methodological), 39(2):262—
268, 1977.

448

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

8 2 2

C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In Proceed-
ings of the Tenth International World Wide Web Con-
Sference (WWW’01), pages 613—-622,2001.

R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and
E. Vee. Comparing partial rankings. SIAM Journal
on Discrete Mathematics, 20(3).628-648,2006.

R. Fagin, R. Kumar, and D. Sivakumar. Efficient sim-
ilarity search and classification via rank aggregation.
In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 301-312,
2003.

Y. Freund and R. E. Schapire. A decision-theoretic
generalization of on-line learning and an application
to boosting. Journal of Computer and System Sci-
ences, 55(1):119-139, 1997.

D. P. Helmbold and M. K. Warmuth. Learning per-
mutations with exponential weights. Journal of Ma-
chine Learning Research, 10:1705-1736, 2009.

M. Herbster and M. Warmuth. Tracking the best
linear predictor. Journal of Machine Learning Re-
search, 1:281-309, 2001.

S. Kakade, A. T. Kalai, and L. Ligett. Playing games
with approximation algorithms. In Proceedings of
the 39th annual ACM symposium on Theory of Com-
puting (STOC’07), pages 546-555,2007.

J. G. Kemeny. Mathematics without numbers.
Daedalus, 88:571-591, 1959.

J. G. Kemeny and J. Snell. Mathematical Models in
the Social Sciences. Blaisdell, 1962. (Reprinted by
MIT Press, Cambridge, 1972.).

C. Kenyon-Mathieu and W. Schudy. How to rank
with few errors. In Proceedings of the 39th An-

nual ACM Symposium on Theory of Computing
(STOC’07), pages 95-103, 2007.

N. Littlestone and M. K. Warmuth. The weighted
majority algorithm. Information and Computation,
108(2):212-261, 1994,

V. Vovk. Aggregating strategies. In Proceedings of
the 3rd Annual Workshop on Computational Learn-
ing Theory, pages 371-386, 1990.

