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Abstract:
Despite having many jobs waiting, a multi-GPU batch-queue node-sharing system normally holds noticeable number
of idle GPUs. In our previous work, we presented a scheduling algorithm called RQ that uses remote GPU execution
to get rid of the scattered idle-GPU problem, the main cause of the idle-GPU phenomenon, however the nature of
RQ creates performance problems for GPU jobs. We examine the severity of these performance problems in various
situations using simulation and statistical analysis, and propose MRQ scheduling algorithm, the improved version of
RQ that combines remote GPU migration to solve the performance problems caused by the nature of RQ. By ways of
simulation and statistical analysis, we found that MRQ outperforms RQ in every situation, and can further reduce a
job’s lifetime (waiting time + execution time) as well as can tolerate more GPU communication intensity as much as
five and ten folds respectively.

1. Introduction
Normally, there is a GPU job waiting to use a multi-GPU

batch-queue node-sharing system even though the idle resources
of that system are sufficient to serve the job. The scattered idle-
GPU problem is mainly responsible for this phenomenon. For
example, a system composed of two nodes, each has three GPUs,
cannot concurrently serve two jobs requesting two GPUs per node
when one job requests one node and the other requests two nodes.
Although there are adequate resources to serve both jobs, the
locations of the unoccupied GPUs make the system incapable of
fulfilling both jobs at the same time. Figure 1 depicts the problem
and our previous solution we are going to discuss in the following
paragraph.

In our previous work [1, 2], we proposed a solution to the
scattered idle-GPU problem. The main concept of our proposed
solution is using remote GPU execution to virtually move an
unoccupied GPU from one node to another node. By virtually
consolidating unoccupied GPUs into a node, that node could
become usable for serving a waiting job. Although this method
seems to be able to naturally solve the problem, the jobs using
remote GPU execution have to pay the price with extra execution
time, due to the overhead of remote GPU execution. Moreover,
other jobs in the system may suffer from the increasing in network
traffic produced by remote GPU communication. To reduce
this negative effect, we proposed a method for extending an
existing scheduling algorithm that minimizes the use of remote
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Fig. 1: An example of how to use remote GPU execution to solve
the scattered idle-GPU problem in a multi-GPU system. Without
using remote GPU execution to virtually move a GPU from Node
1 to Node 2 (by creating a proxy), the system cannot concurrently
serve Job 1 and Job 2.

GPU execution while solving the scattered idle-GPU problem.
Our implementation used rCUDA [3, 4], the state-of-the-art
remote GPU execution middleware, to create a GPU proxy
linking to an unoccupied GPU on another node; hence, the
number of unoccupied GPUs of a node can be virtually increased.
Additionally, we created RQ scheduling algorithm to show how
to extend the first-come-first-serve (FCFS) scheduling algorithm
to solve the scattered idle-GPU problem using our proposed
method. Figure 1 illustrates an example of our solution.

Although our proposed solution for solving the scattered idle-
GPU problem tries to minimize the negative effect of using
remote GPU execution, the solution is still not optimal in some
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situations. The overhead of remote GPU execution, especially
rCUDA, depends on GPU communication [1, 2]. High number
of GPU invocations and large GPU data transfer can increase
the job’s execution time more than five folds [5]. This implies
that using our solution may not produce good results (sometimes
worse than using the original scheduling algorithm) if the job
set composes mostly of GPU-communication-intensive jobs.
Furthermore, we found that even minority of jobs get their
execution time increased up to less than 2%, the gain from having
shorter waiting time could be cut down more than two folds as a
consequence of the domino effect – longer execution time of a
running job prevents a waiting job to start earlier, which in turn
causes another job to wait longer.

To improve the performance of our solution, we propose a new
solution that combines the use of remote GPU migration to our
previous solution. We also give a proof by ways of simulation
and statistical analysis that the new solution can effectively solve
the performance problems remote GPU execution causes, and can
largely lower the extra execution time. The contributions of this
work are as follows: 1) analysis regarding how the character-
istics of jobs affect the performance of our previous solution,
especially of RQ scheduling algorithm, 2) a way to combine
a remote GPU migration technique to the previous solution to
solve the performance problems, 3) MRQ scheduling algorithm,
a realization of the new solution which improves RQ scheduling
algorithm, and 4) the performance comparison of FCFS, RQ,
and MRQ on various job characteristics. Our simulation shows
that MRQ performs better and can tolerate more GPU communi-
cation intensity than RQ by 2.5 and 10 folds respectively for the
recorded job set from TSUBAME2.5’s G queue system.

2. RQ Performance Problem Analysis
Knowledge of how our previous solution works is crucial for

understanding the performance problems we are trying to solve.
This section provides a review of remote GPU execution (the core
technique for eliminating the scattered idle-GPU problem used in
our previous solution), a summary of RQ scheduling algorithm
(an extension of FCFS scheduling algorithm that realizes our
previous solution), and comprehensive discussion on the perfor-
mance problems caused by the nature of our previous solution in
the context of RQ. Readers are encouraged to read our previous
work [1, 2] for more information.

2.1 Remote GPU Execution and RQ Scheduling Algorithm
Remote GPU execution is a technique for a process to execute

its GPU code in a GPU physically residing on another node.
Its general concept is capturing any GPU-related work (GPU
execution code, GPU communication commands, etc.) and
sending them to a daemon process to execute the captured
work on the remote node’s GPU. Figure 2 shows that concept.
There are many remote GPU execution implementations such as
rCUDA [3, 4], VOCL [6], GridCuda [7], etc. In our previous
work, we chose rCUDA because it had very low overhead
compared with many other implementations [8, 9] and supported
up-to-date GPU technologies especially CUDA.

Our previous solution uses the concept of remote GPU

Fig. 2: How remote GPU execution works

Fig. 3: How RQ scheduling algorithm assigns resources to serve
a waiting job

execution to solve the scattered idle-GPU problem. Consoli-
dating as small number of unoccupied GPUs as possible into
a node to make that node suitable to serve a waiting job is its
main concept. Because remote GPU execution changes the nature
of GPU communication from intra-node to inter-node commu-
nication and adds extra processing layers to any processes that
use it, the more processes use remote GPU execution the congest
the network becomes and more jobs get their execution time
increased. In other words, our previous solution suggests that
the system should use a based scheduling algorithm to schedule
as many waiting jobs as possible, and only use remote GPU
execution to virtually consolidate unoccupied GPUs to serve
more waiting jobs when the based scheduling algorithm cannot
find a way to do so. Figure 3 shows the overview of how RQ
scheduling algorithm, which extends FCFS scheduling algorithm,
works.

2.2 Remote GPU Execution Overhead Problem
In our previous work [1, 5], we thoroughly discussed about

the overhead of remote GPU execution, especially of rCUDA.
However, since the knowledge regarding this overhead is
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necessary for understanding the rest of the paper, we summarize
the important aspects and implications of our rCUDA overhead
analysis in this section.

The overhead of rCUDA follows the equation below:

timercuda = (rcuda lat + net lat)(gpu call count) +

gpusize
bweff

overheadrcuda
(1)

where timercuda is the time for communicating with a remote
GPU; rcuda lat is the additional latency for communicating with
the remote GPU per invocation; net lat is the latency of the
network; gpu call count is the number of GPU invocations;
gpusize is the amount of GPU data transfer; bweff is the effective
bandwidth the process gets, which will be discussed in Equation
(2) of Section 2.3; and overheadrcuda is the additional bandwidth
overhead when using the remote GPU. For rCUDA version 5.0,
the values of rcuda lat and overheadrcuda are 50.62 µs and 1.03
respectively. The equation predicts that a job which frequently
invokes a GPU or transfers large amount of GPU data, later refer
to as GPU-communication-intensive job, will get its execution
time increased largely when using a remote GPU. In our previous
work [5], we showed that LAMMPS [10, 11], an application
that has high number of GPU invocations, had the execution
time increased more than five times when using rCUDA, as the
equation predicts.

2.3 Congested Network Problem
Remote GPU execution does not only add extra execution time

to processes that use it, but also makes other processes running
in the same time period suffer from more congested network
traffic. Remote GPU execution changes GPU communication
of a process to network communication. Not only this means
the overhead of communicating with a remote GPU depends on
the quality of the network, as highlighted in Equation (1), but
also means the other processes sharing the same network have to
be suffered from more network traffic generated by the remote
GPU communication. Moreover, by nature our previous solution
enables more jobs to use the system concurrently. This implies
that communication intensive (both GPU and network) jobs are
likely to experience severely longer execution time when using
our previous solution.

For better understanding and latter use, we also give a mathe-
matical model expressing the congested network problem in this
section. Assuming that each node has only one network interface
that has maximum bandwidth capacity bwmax and a node can
communicate to any other nodes such that the network topology is
not the main cause of network contention, if all running processes
continuously use the network and the system implements a fair-
shared policy, the effective bandwidth bweff each running process
gets is:

bweff =
bwmax

num processes
(2)

where num processes is the number of running processes sharing
the same node. According to the generic architecture of remote
GPU execution illustrated in Fig. 2, one daemon process is
needed to handle the communication with a remote GPU. Hence,

the number of remote GPUs also reduce the effective bandwidth,
in addition to the number of processes sharing the same nodes.
Although this model expresses the best case scenario as the
network topology is ignored, we can see that the expected
effective bandwidth of each job is likely to be lower when the
system uses RQ compared with FCFS.

2.4 Cross-Node Remote GPU Assignment Problem

Fig. 4: An example of the cross-node remote-GPU assignment
problem

GPU assignment conducted by RQ may end up in a subop-
timal state even though RQ makes optimal decisions for every
assignment. One weak point of the remote GPU execution
technology RQ uses (i.e. rCUDA) is it only allows static
assignment. Once a process is assigned with a remote GPU, the
process has to continue using that remote GPU until it finishes,
even if a local GPU becomes available while the process is
running. This technological limitation in RQ leads to suboptimal
assignment, which we call cross-node remote GPU assignment
problem. Figure 4 shows an example of this problem on a system
composing of two nodes, each has three GPUs. Job 1 requesting
two nodes, with two GPUs each, enters the system when there is
no job running. We can see that the best way to assign resources
to Job 1 is as shown in Fig. 4.A; letting Job 1 uses a remote
GPU at this point is not optimized since it will create unnecessary
network traffic and overhead as we have already explained. Then,
Job 2 requesting a node with two GPUs comes in while Job 1 is
still running. With RQ, Job 2 can concurrently use the system
with Job 1 by using remote GPU execution as shown in Fig. 4.A.
After that, Job 1 finishes and Job 3 requesting a node with three
GPUs comes in while Job 2 is still running. The only way to
let Job 3 concurrently uses the system with Job 2 is as shown in
Fig. 4.B. However, the optimal assignment should be as shown in
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Fig. 4.C. This tells us that optimal decisions may lead to a subop-
timal state.

The cross-node remote GPU assignment problem caused by
the nature of RQ could amplify the severity of the remote
GPU execution overhead and the congested network problems.
As discussed, too much use of remote GPUs could make all
jobs running in the system suffer from additional execution
time. Having suboptimal assignment means the severity of the
overhead and the congested network problems may be higher than
it should be. This implies that with the optimal assignment the
system could finish more jobs earlier. In the next section, we will
introduce remote GPU migration which could elegantly solve the
cross-node remote GPU assignment problem.

3. MRQ: Improving RQ with Remote GPU
Migration

3.1 Remote GPU Migration
Remote GPU migration is a technique for migrating execution

on a remote GPU to another GPU. Its general concept is making
the states and data on the destination GPU (the GPU to be
migrated to) the same as those on the source remote GPU. There
are many technologies that implement this technique, each has
different applications, for example mrCUDA [5], remote GPU
migration for VOCL [12], NVCR [13], etc. For improving
RQ scheduling algorithm, we choose mrCUDA because it
has low overhead, can completely cut off rCUDA’s overhead
after migration, and allows applications to seamlessly migrate
execution on a remote GPU to a local GPU on demand.

Node	1
void	main(){
//	code
cudaMemcpy…
//	code
cudaKernelCall…
//	code

}

rCUDA lib

Node	2

rCUDA server

GPU GPU GPU

Network

libcudart

GPU

sock

mrCUDA lib

GPUGPU

Migration
command

Migrate

Fig. 5: The architecture of mrCUDA

mrCUDA [5] is an extension of rCUDA we developed to
enable GPU execution migration from a remote GPU to a local
GPU at runtime. While a process is using a remote GPU,
mrCUDA records any CUDA commands that could affect the
remote GPU’s states and active memory regions. During the
migration, mrCUDA replays the recorded commands on the
selected local GPU to make that local GPU’s states the same
as those on the remote GPU, and copies data on the active
memory regions to the local GPU. After the migration completes,
successive CUDA commands are passed to the local GPU; thus,

the remote GPU can be released from its duty. mrCUDA supports
one-way one-time migration from a remote GPU to a local GPU,
not vice versa. This feather comes from the fact that using a
local GPU is always better than a remote GPU in term of perfor-
mance. The one-way one-time migration feather is a strong point
of mrCUDA because a process will suffer from migration at most
once, and then rCUDA’s overhead can be completely cut off.
Figure 5 shows the architecture of mrCUDA.

There are four types of overheads associated with mrCUDA:
record, replay, memsync, and mhelper. We thoroughly discussed
about these overheads in our previous paper [5], however we
restate them again in this section because they are important for
understanding the rest of this work and we are going to use them
later in Section 4.1. Equation (3) to Equation (7) express those
overheads and Table 1 contains the descriptions and constant
values of the variables in the equations.

timerecord = (recordcoef)(num record) + recordconst (3)

timemhelper = (mhelpercoefd)(data size) +

(mhelpercoefc)(num calls) + mhelperconst
(4)

timereplay = (replaycoef)(num record) + replayconst (5)

timememsync =

num region∑
i

(
data sizei

bw[data sizei]
+

memsynccoef × data sizei +

memsyncconst

)
+ timercuda

(6)

bw[data sizei] = min(data sizei × bwcoef , bwmax) (7)

mrCUDA’s overheads can be categorized into two categories:
migration overhead and operation overhead. Migration overhead
is the additional time the process suffers during the migration of
a remote GPU; hence, it happens at most once per remote GPU.
Replay and memsync overheads are in this category since they
are the overheads for copying the states and data from a remote
GPU to a local GPU respectively. Operation overhead, on the
other hand, prolongs the execution time while the process is using
mrCUDA. Record overhead is the additional time for recording
relevant CUDA commands before the migration; hence, it taxes
the process when the process is using a remote GPU. MHelper
overhead, however, taxes the process after the migration finishes,
given that the migrated GPU is not the first GPU being migrated
for this process. MHelper overhead comes purely from a
technical problem regarding the overlapped address spaces when
using multiple remote GPUs. In summary, the additional time
mrCUDA taxes a process is as expressed in Equation (8).

timemrcuda = timerecord+timereplay+timememsync+timemhelper (8)

According to the case study in our previous work [5], the
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Table 1: Description and constant value of each variable in the
mrCUDA overhead model equations

Variables Values Descriptions
bw[data sizei] - host-to-device memory copy

bandwidth
bwcoef 47.21 ms−1 GPU’s memory copy bandwidth

coefficient
bwmax 4.78 GB/s maximum host-to-device GPU’s

memory copy bandwidth
data size - GPU data transfer size
data sizei - GPU data size of the active memory

region i to be transferred
memsynccoef 0.057 s/GB mem-sync overhead’s coefficient
memsyncconst ∼ 0 s mem-sync overhead’s constant
mhelpercoefc 9.983 µs mhelper overhead’s GPU call coeffi-

cient
mhelpercoefd 0.687 s/GB mhelper overhead’s GPU data transfer

coefficient
mhelperconst 2.934 ms mhelper overhead’s constant
num region - number of active memory retions
num calls - number of CUDA-related calls that are

sent through mhelper processes
num record - number of calls recorded
recordcoef 0.2825 µs record overhead’s coefficient
recordconst 0.3437 ms record overhead’s constant
replaycoef 1.031 µs replay overhead’s coefficient
replayconst 1.243 s replay overhead’s constant
timememsync - mem-sync overhead
timemhelper - mhelper overhead
timercuda - rCUDA’s overhead
timerecord - record overhead
timereplay - replay overhead

migration and the operation overheads accounted for less than
5% and 0.01%, respectively, of LAMMPS’s total execution time,
while rCUDA’s overhead accounted for more than 80%. Readers
are encouraged to consult our previous paper [5] for detailed
explanation.

3.2 MRQ Scheduling Algorithm
As discussed in Section 2, there are three problems causing a

job’s execution time to increase originated by the nature of our
previous solution; all of them can be solved with remote GPU
migration. The remote GPU execution overhead problem occurs
because of communication between the process and a remote
GPU. Remote GPU migration technologies, especially mrCUDA,
can migrate all works on the remote GPU to a local GPU;
hence, there is no further communication after the migration. For
the congested network problem, remote GPU daemon processes
play a major role in decreasing the effective bandwidth of all
processes. After migration to a local GPU, the remote GPU
daemon process associated with the migrated remote GPU can be
terminated. This frees up the network resource, and all processes
in the system benefits from the migration. For cross-node remote
GPU assignment problem, remote GPU migration can improve
GPU assignment to the optimal state. For example, mrCUDA
can change the GPU assignment as shown in Fig. 4.B to Fig. 4.C
by migrating the remote GPU assignment of Job 2 to a local GPU
Job 1 releases when leaves the system, before assigning all GPUs
in Node 1 to Job 3.

Our new solution improves the previous solution with remote
GPU migration. The main concept of our new solution is the
same as that of the previous solution (stated in Section 2) with an

addition that a process should return a borrowed GPU as soon as a
local GPU becomes available – even before considering assigning
this GPU to a new job. There are two situations that lead to a local
GPU becomes available: a job leaves the system, and the process
that has borrowed it returns it back. In both cases, immedi-
ately migrating the execution on a remote GPU to the released
local GPU is always the best decision since all the performance
problems associated with using the remote GPU are solved as
soon as possible.

MRQ scheduling algorithm is a realization of our new solution.
It combines RQ scheduling algorithm with mrCUDA to solve the
performance problems caused by the nature of RQ. How MRQ
works is very similar to RQ except it uses mrCUDA instead of
rCUDA. Also, as soon as a GPU becomes available, MRQ takes
a look at that node to see whether there is a borrowing GPU from
another node or not. If there is a borrowing GPU, MRQ will
send a migration command to the associated mrCUDA socket to
migrate the execution on the remote GPU to the local GPU that
has just become available. This mechanism has higher priority
than assigning resources to a waiting job; in other words, MRQ
considers reassigning a GPU that has become available to a local
process before assigning it to a new job.

To get an impression on how MRQ may improve RQ, we show,
in Fig. 6, the GPU occupancy pattern of an example job set on a
system composing of ten three-GPU nodes when using RQ and
MRQ to schedule. This figure was created from our scheduler we
are going to explain in Section 4.1. However, since we use this
figure only for explanation not evaluation, we omit the details
regarding how we obtained the result. As shown in the figure,
most of the jobs have shorter execution time when using MRQ
compared with when using RQ. Moreover, the job placement is
more compact on MRQ. This is because when a job has shorter
execution time, more waiting jobs can use the system earlier. As
the result, MRQ can finish this job set earlier than RQ could.

4. Performance Comparison of FCFS, RQ,
and MRQ

To evaluate our new solution, we compared the performance
of RQ, and MRQ against FCFS on various job characteristics
on the same system. We used the simulation method we are
going to explain in Section 4.1 to obtain the performance of
each scheduling algorithm. Since RQ improves FCFS and MRQ
improves RQ, we compared the performance of RQ and MRQ
against FCFS in the lifetime decrease term. Lifetime of a job
is the job’s waiting time plus execution time, in other words, the
time the user has to wait since the submission until the job finishes
the execution. Because we expect a job running with RQ to has
shorter lifetime compared with running with FCFS, we define
lifetime decrease on RQ as the lifetime of a job running with
FCFS minus the lifetime of that job running with RQ. Similarly,
lifetime decrease on MRQ is defined as the lifetime of a job
running with FCFS minus the lifetime of that job running with
MRQ. We chose this term as the comparison metric because it
captures both the gain and the loss of a job when using RQ/MRQ
compared with FCFS.
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(a) GPU occupancy pattern when using RQ scheduling algorithm
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(b) GPU occupancy pattern when using MRQ scheduling algorithm
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(c) GPU occupancy pattern when using MRQ scheduling algorithm
colored only the GPUs involved in migration

Fig. 6: Comparison of GPU occupancy pattern of the same job
set when using RQ and MRQ

4.1 Simulation Method
We used our simulator written in Python2.7 for simulation.

The simulator used time-step-wise numerical method to simulate
scheduling patterns. This method concerned only the points in
time where there is a change in the system such as when a job
arrives to the system, or when a job finishes processing. There
was no actual job running in the simulator; instead, between
each time step, the simulator assumed consistent parameters (e.g.
effective network bandwidth for each job, etc.). By using these
parameters, the simulator computed the execution time of a job
as follow:

timeexec = timenet + max
0≤i≤#gpu

(timegpu comm i) + timeother (9)

timenet = (net lat)(net conn count)

+
net data size

bweff

(10)

timegpu comm i = timecuda + timercuda + timemrcuda (11)

timecuda = (gpu call count)(gpu lat)

+
gpusize
gpu bw

(12)

The variables in the above equations are as defined in Table 2.

Table 2: Simulation Parameter Definition
Parameter Definition
timeexec a job’s execution time
timenet the time the job spends on network
timegpu comm i the time the job spends on the ith-GPU communi-

cation
timeother the time the job spends doing other work except what

stated above, such as GPU/CPU computation, local
disk access, etc.

#gpu the number of GPUs the job uses
net lat the latency of the network
net conn count the number of network connection the job makes
net data size the amount of data the job transfers through the

network
timecuda the time the job spends on local GPU communication;

0 if this is not a remote GPU
timercuda defined in Equation (1); 0 if rCUDA is not used for

this GPU
timemrcuda defined in Equation (8); 0 if mrCUDA is not used for

this GPU
gpu call count the number of GPU invocations
gpu lat the latency of GPU communication
gpu data size the amount of GPU data transfer
gpu bw the bandwidth for transferring GPU data

Table 3: Characteristics of each simulated node
Field Name Value Description
cpus 8 Number of CPUs
gpus 3 Number of GPUs
memory 22 GB Amount of memory
net bw 7 GB/s Network bandwidth
net lat 1.2 µs Network latency
gpu bw 7 GB/s GPU communication bandwidth
gpu lat 10 µs CUDA call’s latency

Our simulated nodes’ characteristics always followed the
characteristics of the nodes in TSUBAME2.5’s G queue system.
Table 3 shows the characteristics of the simulated nodes. We used
100 simulated nodes for all experiments. For the interconnection
network, we assumed that any packets originated from a node
could reach any other nodes with the same network bandwidth
and the same network latency. Hence, we can view the network
congestion as it virtually happens at the network interface of each
node, as we discussed in Section 2.3.

The job sets we used in each experiment had common charac-
teristics as described in Table 4, each job set contained exactly
10,000 jobs. We used probability models to generate the job
characteristics to see the effect of each job characteristic on the
performance of RQ and MRQ compared with FCFS. For number
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Table 4: Characteristics of each simulated job
Variable Default Value Description

nodect Gauss(30, 30) nodes Number of
requested nodes

interarrival time Expo(1) seconds Interarrival time
timeother Gauss(103, 102) seconds Walltime when

running alone on
the system

gpu call count Gauss(106, 105) Number of GPU
invocations

gpusize Gauss(μ, μ − 1) B Amount of GPU
data; always
varied from
log(μ) = 9 to 12

ngpus P[1] = P[3] = 0.1; P[2] = 0.8 Number of
requested GPUs

ncpus Equal to ngpus Number of
requested CPUs

net conn count Gauss(104, 103) Number of
network invoca-
tions

netsize Gauss(4, 1) GB Number of
requested CPUs

mem Gauss(8, 1) GB Amount of
requested
memory

* Gauss(μ, σ) refers to a Gaussian random variable whose expected value
and variance are μ and σ2 respectively. Expo(β) refers to an Exponential
random variable whose expected value is β.

of requested GPUs per node (ngpus), we let jobs requesting two
GPUs per node be the majority by default because this situation
is likely to create the scattered idle-GPU problem than letting
jobs requesting one or three GPUs per node dominate the system;
hence, we can easily see how MRQ performs compared with RQ
when facing with a severe scattered idle-GPU problem.

4.2 The Effect of GPU Communication Intensity

Fig. 7: Lifetime decrease of RQ and MRQ when varying the GPU
communication intensity characteristics

There are many job characteristics that may affect the perfor-
mance of RQ and MRQ. In this subsection, we show how
GPU communication intensity, i.e. number of GPU invocations
(gpu call count) and amount of transferred GPU data (gpusize),
affect the jobs’ lifetime when running with FCFS, RQ, and MRQ.
We modeled both gpu call count and gpusize with Gaussian
random function Gauss(μ, μ− 1), while the others followed what
stated in Table 4. Figure 7 shows the result of the experiment.
The x-axis represents the logarithm of the expected value of

gpu call count, while the y-axis shows the median of lifetime
decrease on RQ/MRQ; we use median instead of mean because
it has higher tolerance to outlier values. The result of the
experiment tells us that the jobs’ lifetime tended to decrease as
GPU communication intensity increased. At some points, FCFS
performed better than both RQ and MRQ; this was because the
loss from the increasing of execution time outweighed the gain
from the decreasing of waiting time, as we intensively discussed
in Section 2. However, the graph tells us that MRQ was able to
handle GPU communication intensity and performed better than
or equal to RQ, thank to the migration ability of mrCUDA and
how MRQ prioritizes GPU migration over assigning a GPU to a
new job.

4.3 The Effect of Job Length

Fig. 8: Lifetime decrease of RQ and MRQ when varying job
length for various GPU communication intensity

In this experiment, we varied the length of the jobs in each
job set to see the effect of job length on the performance of
FCFS, RQ, and MRQ. According to Equation (9), there are three
parameters that contribute to a job’s execution time: timenet,
timegpu comm i, and timeother. Since RQ and MRQ affect the first
two parameters, we varied timeother to make the job ran shorter
or longer; we modeled timeother with Gaussian random function
Gauss(μ, μ − 1). The result of this experiment is shown in Fig. 8.
The figure tells us that RQ and MRQ are not good at handling
short jobs. This is because timenet and timegpu comm i can easily
outweigh timeother for such jobs. However, MRQ showed much
higher degree of tolerance than RQ; this also thank to GPU
migration.

4.4 The Effect of Job Size

The amount of requested resources usually differs for each job.
We can see this characteristic as the size of each job. In this
experiment, we varied the number of requested nodes (nodect)
of each job, again with Gauss(μ, μ − 1), to see how good RQ and
MRQ can manage jobs on each size. Figure 9 shows the result of
this experiment. According to the graph, both RQ and MRQ are
better at handling large jobs. This is because as nodect increases,
FCFS finds it harder to let multiple jobs use the system. In this
respect, RQ and MRQ are better since remote GPU execution
enables more compact resource assignment. However, the more
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Fig. 9: Lifetime decrease of RQ and MRQ when varying job size
for various GPU communication intensity

compact the resource assignment is, the more severe the perfor-
mance problems, as we discussed in Section 2. As the result,
MRQ performed better than RQ because it can solve those perfor-
mance problems.

4.5 The Effect of Number of Requested GPUs

Fig. 10: Lifetime decrease of RQ and MRQ when varying number
of requested GPUs for various GPU communication intensity

The number of requested GPUs per node is a major factor that
decides how severe the scattered idle-GPU problem is. For a
system which has three GPUs per node, such as our simulated
system, the severity of the scattered idle-GPU problem is likely
to be higher if jobs requesting two GPUs per node dominate the
system; since a node having at least one unoccupied GPU can
be directly assigned to a job requesting one GPU per node and a
job requesting three GPUs per node usually occupied the entire
nodes, the severity of the scattered idle-GPU problem is likely to
be low if these two types of jobs dominate the system. In this
experiment, we varied the probability of the number of requested
GPUs per node for each job set to see how well RQ and MRQ can
handle those job sets compared with FCFS. Figure 10 shows the
result of this experiment. On the legend, x-GPU majority refers
to the probability P[ngpus = x] = 0.8, ∀x � y, P[ngpus = y] =
0.1, x, y ∈ {1, 2, 3}. According to the figure, the lifetime decrease
was much higher (more than three times) when jobs requesting
two GPUs per node dominated the system. This result aligns
with our hypothesis regarding how the number of requested GPUs

affect the severity of the scattered idle-GPU problem. Similar
to the other experiments, MRQ performed better than RQ in all
cases.

4.6 The Effect of Waiting Queue Length

Fig. 11: Lifetime decrease of RQ and MRQ when varying wating
queue length for various GPU communication intensity

Unlike the previous experiments which we assumed the system
were busy by modeling interarrival time = Expo(1) s, in this
experiment we show how well RQ and MRQ perform compared
with FCFS on various waiting queue length. To simulate
various waiting queue length, we varied the interarrival time with
interarrival time = Expo(μ) while fixing other parameters. We
also varied gpusize to show the effect of waiting queue length and
GPU communication intensity together. From the result shown
in Fig. 11, we can see that MRQ performed better than RQ and
FCFS in all cases, while RQ performed better than FCFS when
the GPU communication intensity was not high. The graph also
tells us that when the system is not busy (E[interarrival time] ≥
3), the performance of FCFS, RQ, and MRQ are the same. This is
because RQ and MRQ avoid assigning jobs with remote GPUs;
hence, they are reduced to FCFS when the scattered idle-GPU
problem does not exist.

5. Case Study: Performance Comparison

using TSUBAME2.5’s G Queue’s Recorded

Job Set

Real job characteristics usually do not follow any statistical
models; hence, there might be some problems that are not covered
in the previous experiments. In this case study, we simulated the
job set using the job characteristics recorded in TSUBAME2.5’s
G queue’s scheduler log from Aug, 01 - 15, 2015 (a busy period)
in order to see how RQ and MRQ perform compared with FCFS
on a real-world situation. Even though the log recorded many
important job characteristics such as arrival time, execution time,
amount of requested resources, etc., some were not available. To
complete all necessary job characteristics for simulation, we set
net conn count and netsize to the values shown in Table 4, and
set gpusize = Gauss(109, 108). We varied gpu call count =
Gauss(μ, μ − 1) to see the performance of RQ and MRQ on
various GPU communication intensity, which was not recorded
in the log.
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Fig. 12: Lifetime decrease of RQ and MRQ on the job set whose
characteristics came from TSUBAME2.5’s G queue’s scheduler
log on various GPU communication intensity

Figure 12 shows the result of this case study. The result
shows that MRQ was able to reduce the lifetime about 2.5
times more than RQ on average. Moreover, MRQ were able
to handle GPU communication intensity about 10 times better.
This finding aligns with the results from the previous experi-
ments. However, this result also shows that there were a lot
fewer sacrificed jobs (the jobs that have longer lifetime when
using RQ/MRQ compared with FCFS) when using MRQ. This
confirms our hypothesis in Section 3 that the new solution can
efficiently solve the performance problems, which caused by the
nature of our previous solution.

One remark regarding the result is the percent lifetime decrease
was not as high as what we have shown in Section 4. This
mismatch might come from many factors, however we believe
that the number of requested GPUs per node was mainly respon-
sible for this phenomenon. Unlike our assumption in Section
4, the recorded job set had P[1] = 0.025, P[2] = 0.124, and
P[3] = 0.851 for ngpus, which means that the severity of the
scattered idle-GPU problem was much lower in the recorded job
set than in our experiments in Section 4. Despite that, using MRQ
is still preferred over FCFS as many jobs are still benefit from
having shorter lifetime.

6. Related Work

VT. Ravi et al. [14] proposed a scheduling algorithm that
can be used to increase overall resource utilization in node-
sharing heterogeneous systems. They assumed that jobs using
the systems could be switched between CPU-only implemen-
tation and GPU implementation. For example, LAMMPS [10]
allows users to run on CPU only or use GPUs to accelerate the
code. With this assumption, it is possible to let jobs run on only
CPUs when there are not enough GPUs available. Despite their
method has been proven to produce high resource utilization, in
our opinion, there are still a lot of jobs that cannot be switched
from GPU implementation to CPU-only implementation. This
limits the situation where one can use this technique.

S. Soner et al. [15] proposed a scheduling algorithm that
uses a mathematical optimization method to schedule hetero-
geneous jobs in node-sharing systems. They viewed heteroge-
neous job scheduling problem as an online scheduling problem
and implemented a scheduling algorithm that uses the Integer

Programming optimization method to schedule jobs. Since this
method can guarantee optimal scheduling from the viewpoint
of online scheduling, it can make the best use of all available
resources at each time period. In our opinion, one might be able
to increase more resource utilization by combining our work,
which addresses the scattered idle-GPU problem, to their work
as doing so enables the use of Integer Programming optimization
to optimally select which jobs should use which remote GPUs as
well as when to migrate to local GPUs.

7. Conclusion and Future Work

Our previous solution, which makes the best out of remote
GPU execution to solve the scattered idle-GPU problem, enables
more GPU jobs to start executing earlier (have shorter waiting
time) while having their execution time increases as the trade
off. However, in some situations the increasing in their execution
time outweighs the benefit of having shorter waiting time. Our
new solution combines a remote GPU migration technique to
the previous solution to solve the extra execution time problem.
By prioritizing migrating execution on a remote GPU to a local
GPU that becomes available over assigning that local GPU
to a new job, the new solution is proven to outperform the
previous solution in every situation. According to our experi-
ments, the new solution can decrease a job’s lifetime (waiting
time + execution time) as much as five times than the previous
solution could. This confirms that remote GPU migration could
efficiently solve the performance problem created by remote GPU
execution, and suggests that the new solution is preferred over the
previous one.

Despite all improvement, the new solution is sill not suitable
for short jobs. For future work, we plan to study the scattered
idle-GPU problem on a multi-GPU batch-queue node-sharing
system usually being occupied with short jobs. We also plan
to extend our solution to cover various network topologies and
consider using remote-to-remote GPU migration to dynamically
optimize remote GPU assignment.
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