FIT2009 (55 8 EIBHRBIFRITI+r—3 L)

RC-004

ZWRILT VA T aty L AV 22872 3D-DCT SHEBEDORE
Effective 3D-DCT Calculation Based on a 3D Array Processor

A8 ERlY WA EAD BB BT Stanislav G. Sedukhint
Yuki Ikegaki Naoto Takeishi Toshiaki Miyazaki Stanislav G. Sedukhin

Abstract Video sequence

Traditional array processors randomly access to input/ — g;';;’gg —>| Quantization |—» F‘c'::i':;y —n
coefficient data stored in memory many times during the three
dimensional discrete cosine transform (3D-DCT) calculation. Com;;ressed
Hence, it becomes a bottleneck of fast calculation. In this paper, 3:21‘:312 video s;eq Henee
a three dimensional array processor dedicated to 3D-DCT is
proposed. The array processor tremendously reduces the data | goverse | +— [Dequantization | +— f;'o':}’i';yg —

swapping or replacement during the calculation. Thus, it
contributes to the performance improvement. The computational
complexity of the proposed array processor is O(N) for an
NxNxN input data cube while that of the 3D-DCT direct
calculation is O(NY). A specified /O architecture and 3D-DCT
throughput/cost-effective architectures are also discussed for Image sensor___ furray Processor Entropy cgdfr
practical implementation. Experimental results of an FPGA
(Field Programmable Gate Array) implementation show that our
architecture has enough performance for real-time 3D-DCT
calculation on its scalable architecture.

Figure 1: Block diagram of the 3D-DCT/IDCT video codec

Images

" AD converter ‘ Quan?iz_er— E)S) Memory
1. Introduction Figure 2: Array processor implementation image on a 3D-LSI

The advancement of digital imaging applications like -
high-definition television, teleconference, medical and space
exploration images compactions [1], and portable video player
accelerates the demands for effective image compression
techniques. Prospective systems such as portable video chatting
require high performance computing to realize video
compression, because the transmission bandwidth is often limited.
The 2D-DCT (two dimensional discrete cosine transform) is a
technique for spatial information compression, in 2D images [2].
The 3D-DCT extends the DCT energy compaction properties to
integral 3D images and to the spatio-temporal coding of 2D
video sequences [2, 3]. The image data could be compressed to
1/10 sizes by 3D-DCT transform without dropping of its image
quality [4]. This paper will discuss an array processor that
performs 3D-DCT effectively on the 3D-LSI. The block diagram
of the 3D-DCT/Inverse DCT (IDCT) video codec is
schematically shown in Figure 1.

Compared to motion-estimation/compensation based methods,
the 3D-DCT approach has three essential factors for portable
video compression systems:

B No motion estimation is needed, hence, it greatly decreases
the number of en/decoding operation per pixel compared to
a motion-estimation/compensation based approach.

® The encoder and decoder are composed of an equivalent
architecture; coefficient data stored in register are different.

There is no relationship between the complexity of the

implementation and the compression ratio. [5]
Direct calculation of 3D-DCT requires a long time so that a
real-time application cannot be used because we have to
randomly access coefficients and input data stored in memories
many times. Thus, researchers have proposed many algorithms
and hardware architectures for rapid calculation of 3D-DCT,
especially for the real-time applications. In [6] and [7], a parallel
algorithm for 3D-DCT computation based on butterfly
calculation is proposed. The butterfly calculation and recursive
addition is carried out in log N steps [7]. However, it is difficult
to design the 3D butterfly interconnection into hardware
architecture, because of its complex structure, when N is large. In
this research, a more practical array processor dedicated to
3D-LSI is proposed. As shown in Figure 2, by using the 3D-LSI,
we will be able to connect planes of image sensor array,
processors, memory module, and other devices. Our array
processor has NxNxN toroidal-cube-connected PEs (Processing
Elements). Each PE has a homogeneous structure: a MAC
(multiply-accumulation) unit, a register-file, and wires connected
to adjacent PEs. Compared to the other array processors, our
array processor can tremendously reduce the data swapping or
replacement during the 3D-DCT calculation by introducing a
smart data transfer scheme with a simple PE array structure. This
is a key to realize a high-speed 3D-DCT. In addition, the trend of
three-dimensional large scale integration (3D-LSI) technologies
[8] could support to realize our 3D array processor that can
directly handle cubical (3D) data streams.

T ABRFERFEa LY — BT 2R, Graduate
School of Computer Science of Engineering, University of Aizu
i B i@tk &4t, FUIITSU LIMITED

137
(& 151

FIT2009 (55 8 OMEHRMFEM T x —5 L)

Section 2 shows the definition formula of 3D-DCT. In Section
3 and 4, the array processor architecture and its I/O interfaces for
2D devices are proposed. Throughput/area improved
architectures are shown in Section 5 and 6. Some experimental
results and evaluations are presented in Section 7. Conclusions
are discussed in Section 8.

2. Definition formula of 3D-DCT

Let Xnxnxn= [X(ij,k)], 0 < ij,k < N-1, be an input data cube.
The 3D type-II discrete cosine transform of X(ij,k), and a data
cube YNxNxN=[¥(s,5,p)], 0 < s,p < N-1, can be defined as:

Y(s,r,p) = ®- Ifij_fAfX(i,j,k)xC(k,p)xC‘(J?")XC("’S)’
i=0 j=0 k=0
where]
(p:\/%.g(s)-g(r)-f:(p),
1
em=172" 7" "N metsnm,

1, Jor m>0;

pre-computed as

C(u,0) = !

and elements of the coefficient matrix Crun =[C(u,v)] are
1
—, C(u,v)=cos ”_(z_ﬂ A
V2 2N
uedl, jk}, (u,v) € {(i,5),(j,r), (k, p)}.

The 3D-DCT is a linear transformation that converts an
original 3D coordinate system (ij,k) into a new 3D system,
(s,r,p). Coefficient matrix C(k,p) = C(j,r) = C(i,s) = C(u,v) is used
for converting k-, j-, and i-axis into p-, r-, and s-axis.

3. Array Processor Architecture for 3D-DCT

3.1 Overview

The structure of PE used in our array processor is shown in
Figure 3. For NxN*N 3D-DCT, each PE is mainly composed of
three I/O selectors, a MAC unit, and 3N+4 registers. Each
selector is controlled by a state signal and synchronized with
clock signal. 3N registers are for coefficients, 4 registers are for
input data and calculation results,

Figure 4 overviews our array processor architecture. Each PE
is basically connected with adjacent PEs; the end PEs have torus
connections. The data transfer direction is shown in Figure 5. All
PE has homogencous structure and performs systolically. The
sequence to acquire the result of NxNxN 3D-DCT is as follows:
data input, stepl, 2, and 3 for 3D-DCT calculation, and data
output. On the traditional array processors, the data swapping or
replacement during the 3D-DCT calculation was performance
bottleneck, because of its high-speed operations and low-speed
memory data access. This proposed array processor keeps the
input data integrity and locality, and there is no data
re-arrangement during its 3D-DCT calculation. This is a
significant feature to improve the performance.

3.2 Data Input/Output

This array processor inputs NxN data simultaneously. The
input ports are arranged on k = N-/ plane; each PE transfers

138

- Register file MAC
jHl —— SW
i+1 —————»A/
L * +
e i z
e F' ;
A i
! !
i

state :
Figure 3: PE architecture for 3D-DCT array processor. Each
selector is controlled by szate signal and synchronized with clock
signal, 1) Receive data from adjacent PE and send it to
destination register, 2) Perform multiply-add operation, 3) Send
data stored in register to adjacent PE

J

k

T

sz}
o

“‘r'-—-----—-—--'7!"::

—

Figure 4: Overview of the array processor architecture for 4 x4 x4
3D-DCT (Control unit is not shown)

step 3:
Inverse i-axis

step 2:
Inverse j-axis

1/O, step 1:
Inverse k-axis

Figure 5: Direction of the data transfer

input data to -/ adjacent PE, along k-axis. N-time process needs
to input all of the NxNxN data. The output sequence is almost
the same as the input. The output data of PEs at £ = 0 plane are
fed to the corresponding PEs at £ = N-I plane using the torus
connections. The PEs at k = 0 plane also has output ports, and
final results are obtained using the output ports. The partial I/O
connections of this array processor are shown in Figure 6.

3.3 3D-DCT Calculation

As shown in Section 2, 3D-DCT is a heavy task that requests
many MAC operations, and it is difficult to realize a hardware
circuit to perform the 3D-DCT directly. However, since 3D-DCT
is a separable transform, we can implement it as three 1D
transforms and reduce the hardware cost [9]. In our array
processor, there are three steps to obtain the 3D-DCT result. To
perform 3D-DCT with ordinary single or array processors,

(& 1 5D

FIT2009 (% 8 EIEREIZFERM I+ —5 L)

B the coefficients and input data stored in memory have to be
accessed many times, and/or
M some rearrangements of the partial results are required

whenever each 1D transform is finished.

These processes are significant performance bottlenecks for
the fast 3D-DCT calculation. By pre-storing the 3D-DCT
coefficients in each PE, and moving the partial calculation results
appropriately using the torus connections between PEs, our array
processor can completely eliminate the above mentioned data
rearrangement to obtain the 3D-DCT results. This is a key issue
why our array processor can perform 3D-DCT effectively.

In the first step, multiplication of X(ij,k) and C(kp) is
performed. Then, X(ij,k) is multiplied with C(j,7) at the second
step. Finally, multiplication of X(i,j,k) and C(i,s) is done at the
third step. Each step has N micro-steps. The processing sequence
of PE in every micro-step is as follows:

M First, receive data from adjacent PE and store it to a
register.

B Second, multiply received data with a coefficient which is
pre-stored in registers on each PE. Then, the calculation
result is accumulated into a register.

B Finally, transfer received data to adjacent PE.

Transferred data in each step is:

B input data, for the 1% step, or
B the calculation result of 1% step, for the o step, or
B the calculation result of 2™ step, for the 3™ step.

For each micro-step, the coefficient data used in PE(i,j,k) is

W C((k + microstepymod N, k) for the 1% step, or
B C((j + microstep)mod N, j) for the 2" step, or
B C((i + microstep)mod N,i) for the 3" step.

The coefficients are preset in each PE before processing. For
3D-IDCT, data of transposed coefficient matrix ‘C is used and the
matrix element is preset on each PE.

The total amount of calculation time-steps of the proposed
array processor is 3N for an NxNxN size input data cube. Thus,
its computational complexity becomes of O(N) while that of the
3D-DCT direct calculation is O(N*).

4. I/0 Interfaces

The 1/O interface can adapt any NxNxN array processor tuned
to 3D-DCT. The I/O parts are connected to a surface of k-axis of
PE array. I/O interfaces are provided to implement our array

processor on 2D devices. Figure 7 overviews this I/O architecture.

They consist of six parts: an input memory, input address
generator, input buffer, output buffer, output address generator,
and output memory. As shown in Figure 7, the input architecture
performs following operations in each clock cycle:

B Derive input memory address by using input address
generator.

B Get one pixel data from input memory and put it into
proper FIFO of the input buffer.

B Update some control signals for the input buffer, address

generator, and array processor.
In addition, the input buffer sends sub-frame data structured by
NxN pixels to the array processor simultaneously when the array
processor requests data for the next calculation, and the input

139

input 00 input01 input02 input03

/

Input data
selector

state PE
clk
output00 output0l outputd2 output03
Figure 6: One of the i~k planes’ sliced view
Read
Original Address
Video Data Input Address
Generator
@ | jpu | Original Original NxN
Memory 1pixel data Input Buffer sub-frame data
Array
Processor
Compressed Comp d
! 1pixel data
Video Data Output Buffer
Compressed N XN
@ +— | Output Write sub-frame data
Memory Address Output Address
Generator

Figure 7: Block diagram of I/O interface architecture

Controller l l
_l—l— (RH/N-1)*N (RV/N-1)*N*RH
N-1 (N-1)*RH| | (N-1)*RH*RV (RH/N-2)*N| | (RV/N-2)*N*RH
N-2 (N-2)*RH| | (N-2)*RH*RV :
i : 2*N 2*N*RH
1 RH RH*RV N N*RH RH*RV*N
0 0 1] 0 [0
[T T T T T
Table for ~ Table for Table for Table for Table for Table for
MD, IIﬂ)y T}, BIIID, . BlM])y BTDl
| ADDER(*) }
Memory Address

Figure 8: Overview of address generator

memory gets N frames data from the host computer at
appropriate timing.

The input memory is used as a frame buffer for the input data.
This memory is connected to a host computer and the input
buffer. The video data from the host computer are stored in this
memory sequentially. On the other hand, output data of the input
memory is managed by input address generator to generate NXN

(% 1531

FIT2009 (55 8 [EMERMZRM T #—5 L)

pixels sub-frame data. Input memory has 8 bits data word and
enough capacity to contain Nx2 frames video data. The data sent
to array processor is overwritten by new input data. The array
processor is able to begin its operations after the first N-frame
video data arrived to input memory.

The input address generator produces memory address for the
input memory access in each clock cycle. It requests the
following four parameters to work: base address (BA), vertical
resolution of video data (RV), horizontal resolution of video data
(RH), and block size of sub-frame image data (N). As shown in
Figure 8, the address generator has six address tables for address
calculation and an adder. Contents of each address tables are
calculated by following expressions:

MD,[i] =i, forO<i<N

MD,[i] = RH%j, for 0 <i <N

MD,[i] = RHxRVxi, for0<i<N

BMD,[i] = Nxi, for 0 <i < RH/N

BMD,[i] = RHxNxi, for 0 <i < RV/N

BMD,[i] = RHxRVxNxj, for 0 <i<2
Here, MD,, MD,, and MD, are distances on each axis and used to
generate NXNxN data block for the array processor. BMD,,
BMD, and BMD, are distances of data block and used to control
data block flow.

The input address generator selects a proper value from these
tables to generate a memory address. Here, the memory address
is easily obtained by the following expression:

ADDR = BA+ MD, + MD, + MD, + BMD, + BMD, + BMD,
Here, ADDR is the target memory address for the input memory
access.

The input buffer is used for timing gap absorption between the
array processor and the input memory. Figure 9 shows the input
buffer in detail. It has NxN asynchronous FIFOs and a buffer
controller. The buffer controller has three control signals:
write-enable for each FIFO, full for the input address generator,
and read-request-enable for the array processor. The
write-enable signal controls writing in FIFOs to store NxN pixels
sub-frame data correctly. The full signal is asserted when all
FIFOs become full. The input address generator doesn’t update
the input memory address when full is asserted. The
read-request-enable signal is asserted when FIFOs have enough
data for the next 3D-DCT calculation. The array processor stops
input operations until read-request-enable is asserted. The input
buffer receives one pixel data from the input memory and put it
into proper FIFO to generate a set of the pixel data for one video
sub-frame containing NxN pixels. On the other hand, the input
buffer sends the sub-frame data for the next 3D-DCT calculation.
The read-request from the array processor is directly connected
to each FIFO to request the next data to the FIFO.

The data flow scheme of the output architecture is opposite to
that of the input architecture. The output buffer is used for timing
gap absorption between the output memory and the array
processor output. Figure 10 overviews the output buffer
architecture. The output buffer receives the data for one video
sub-frame from the output ports of the array processor
simultaneously and sends them to proper locations of the output
memory using a selector. As shown in Figure 10, the buffer
controller generates four control signals for the output buffer.

140

Data to array processor

Data from memory
b———
EFEOQND i
EIRON1 5 &
Tl ———
T

FIFO00 i
FIFQ10
FIFO20
FIFO30

] 4

read-request from
array processor

write-enable

Buffer Read-request-enable
Jull Controller to array processor

Figure 9: Overview of input buffer

Data from array processor
e
e
Data to output memory LIRON1
] FIFO00
FIFO10
FIFO20 :
FIFO30 d
write-request from
read-enable array processor
select Buffer >
empty Controller | Write-request-enable
P to array processor

Figure 10: Overview of output buffer

The select and read-enable signals are used to control output data
of FIFO. The write-request-enable signal is asserted when each
FIFO have enough capacity to receive N frames data from the
array processor. The array processor is able to send data only
when this signal is asserted. The empty signal is asserted when all
FIFOs become empty, and connected to write-enable port of the
output memory and the output address generator. The data in the
output memory and the output memory address are updated only
when empty is negated.

The output address generator generates the memory address
for the output memory access. The processing sequence of the
output address generator is the same as input address generator.

The output memory stores the output data from the array
processor. The data allocations in the output memory are the
same as those of the input memory. The data from the output
buffer is stored to the proper locations of the output memory
generated by the output address generator. Moreover, the output
memory sends N-frame data to the host computer simultaneously
at a proper timing. :

By using this proposed I/O interfaces, an effective I/O data
management is realized without any data stream modifications in
the host computer.

5. Throughput Improvement

To improve the throughput of the array processor shown in the
previous section, two pipelined architectures featuring data
pipelining mechanisms are newly proposed. Although the
improved architectures request more hardware resources
compared to the original one, their performance improvement is

(38 1 53D

FIT2009 (3 8 BIIEHRIZERMI+—3 L)

significantly expected.

The first version of the pipelined architecture requires the
following hardware resources: -
] X2 MACs
B Input ports are arranged on / = N-/ plane; each PE transfers

input data to i-/ adjacent PE, along i-axis

The pipeline scheme is shown in Figure 11. Second version of
pipelined architecture requires the below items:

B J/O specified wires among PEs

B 1/O operations are separated from calculation
B X3 MAGCs

M 3N+4-3 registers

The pipeline scheme is shown in Figure 12. Pipelined ver.1
architecture performs 3D-DCT calculation X 2.5 faster than
sequential architecture, theoretically. Pipelined ver.2 architecture
performs X 5.0 faster than sequential architecture, however, it
costs much larger than ver.1. In addition, its structure becomes
more complex, especially for wiring.

Stage A | Input | 1%step | 22 step | 3 step [Output Input | 1¥step | 2" step
Direction i k j i k i k 3
Stage B Input | 1%step ond step 3¢ step | Output Input
Direction i k j i k i
Stage C Input | 1¥step | 2" step | 3 step [Output
Direction i k j i k

Figure 11: Pipeline scheme for pipelined ver.1
top: process in each stage / bottom: data transfer direction

Stage A 1¥step | 2% step | 3 step | 1% step | 2™ step | 3™ step | 1¥step | 2" step
Direction k j i k i i k j
Stage B 15step | 2™ step | 3 step | 1%tstep | 2™ step | 3 step | 1% step
Direction K i i k j i k
Stage C 1% step | 2™ step | 3¢ step | 1% step | 2™ step | 3" step
Direction k j i k j i
Input | Stage A | Stage B | Stage C | Stage A | Stage B | Stage C | Stage A | Stage B | Stage C
Output Stage A | Stage B | Stage C | Stage A | Stage B

Figure 12: Pipeline scheme for pipelined ver.2
top: process in each stage / bottom: data transfer direction; input:
input data for Stage X, Output: output data of Stage X

6. Area Improvement

Since our array processor needs O(N°) hardware resources,
decreasing them, especially multiplier, is significant issue for
implementation. Figure 13 shows the number of register and
operator in our sequential/pipelined architecture in the case of N
=2, 4, and 8. If we could perform N® size 3D-DCT by (N/2)° size
architecture, the number of operator decreases exponentially.

Assume N=8, 4x4x4 array processor architecture performing
8x8x8 3D-DCT is shown in Figure 14. The features of this
architecture are as follows:

B 8X8X8 3D-DCT calculation is divided into 8 4 X4 X
4-sized 3D-DCT calculation.

B 4x4 FIFO are inserted into each toroidal-connection of i-,
J-, and k-axis; each FIFO stores 4 data.

B 3 X8 time-steps is needed for 4 X4 X4-sized 3D-DCT
calculation.

B Number of operator is 4 X4 X4 (1/8).

141

20000 1800
18000 = Total number of register 7] {1600
16000 ~+ Total number of MAC / 1400
5 140 M
f%l 00 1200 §
& 12000 /)
b 1000 S
5 10000 2
2 800 E
£ 8000 z
Z
600
6000 /

4000 / 400
2000 1200
T

— il 0
Seq. Pl. P2, Seq Pl. P2 Seq Pl. P2

N=2 N=2 N=2 N=4 N=4 N=4 N=8 N=§ N=8
Figure 13: Number of registers and MAC
Seq: Sequential, P1: Pipelined ver.1, P2: Pipelined ver.2

M ;

Figure 14: 8x8x8 3D-DCT calculation by using 4x4x4 array

processor

M Number of coefficient registers for each PE is same as 8 X 8
X 8 array processor architecture.

B Number of VO data is 4°X 4 to derive 4 X4 X 4-sized

3D-DCT calculation result.
Compared with the architectures proposed in Section 3, the
number of multiplier/adder is exponentially reduced. Thus, it
makes easy to implement into area-limited hardware such as
FPGAs (Field Programmable Gate Arrays).

7. Experimental Results

7.1 Array Processor

First, we evaluate the theoretical minimum operating
frequencies to perform real-time 3D-DCT/IDCT analytically. We
assumed N = 8, one micro-step operates in 2 clocks, and input
video data is single color. For fps (frame per second) = 32 and 60,
the minimum operating frequencies of proposed architectures are
shown in Table 1.

(% 151D

FIT2009 (55 8 [MEHMFEM T+ —3 L)

For the VGA-size input video data, the minimum operating

frequency of:

B sequential architecture is less than 200/360 KHz,

B pipelined version 1 architecture is less than 80/150 KHz,

® pipelined version 2 is less than 40/75 KHz, when fps =
32/60; this is considered one of the frequently-used video
data formats. The shown frequency values are very low,
thus, it affords low-power consumption.

For the UXGA-size input video data, the minimum operating
frequency of:

B sequential architecture is less than 2.3 MHz,

B pipelined version 1 architecture is less than 1.0 MHz,

B pipelined version 2 is less than 0.5 MHz, when fps = 60;
this is considered one of the high-quality video formats.
The frequency values above are only a few MHz. Playing
high-quality video on the portable devices is one of the
upcoming demands, so this architecture will be useful in
such applications.

To perform 3D-DCT/IDCT for RGB-color video, three times
of shown operating frequency is required. 4x4x4 array processor
architecture performing 8x8x8 3D-DCT proposed in Section 5
needs 8 times the frequency.

To estimate and evaluate the actual hardware cost of our
architecture, it is implemented to a Xilinx FPGA; we used
"Xilinx ISE 9.2i" as a logic synthesis tool and “Virtex-5 1.X330”
FPGA as an implementation target for this purpose. The device
utilizations are shown in Table 2. Here, we used the embedded
multipliers on the Virtex-5 FPGA to realize the multiplications
for 3D-DCT. Because the number of embedded multipliers is
limited on the FPGA, the sequential architecture for N = 4 is only
examined. As shown in Table 2, our architecture does not require
large hardware resources. We can easily estimate the logic
utilization for larger N, because it will increase almost
sequentially: for 2 times of N, logic increases 8 times.

7.2 1I/O Interfaces

In this section, we evaluate performance of the I/O architecture.

We selected 4x4x4 sequential version array processor and 60 fps
video data as a target, because this combination demands one of
the highest operating frequencies to 1/0 architecture. The
required operating frequencies and simulated operating
frequencies are shown in Table 3: first row shows size of video
data, and first column shows description of each row. The
implementation target is also “Virtex-5 FPGA”, and logic
synthesis tool is “Xilinx ISE 9.2i”. As shown in Table 3,
operating frequencies are much higher than required operating
frequencies, so it has enough performance for real-time 3D-DCT
transform; although it requires higher operating frequency than
array processor’s operating frequencies, because of the
Von-Neumann bottleneck. In other words, if a 3D-LSI device is
our implementation target, its performance becomes dramatically
increase.

Next, we evaluate logic utilization of I/O architecture. Figure
15 shows logic utilizations and required memory capacitances for
each resolution size. As shown in this figure, only 1.2 % registers
and 2.5 % LUTs are required at a maximum. Thus, this I/O
architecture is cost-effective for registers and LUTs. However,
required memory capacity severely increases when resolution
size becomes large. Thus, some external memory modules will
be needed if the implementation target does not have enough
memories.

8. Conclusions

This paper proposed a three dimensional array processor

142

Table 1 — Minimum operating frequency for real-time
en/decoding; N=8, Seq: Sequential, P1: Pipelined ver.1, P2:
Pipelined ver.2

Min, freq. for real- | Min. freq. for real- | Min. freq. for real-
fps =32 Size time en/decoding time en/decoding | time en/decoding
(Seq) (P1) (P2)
QVGA| 320x240 48.0 [KHz] 19.3 [KHz] 9.7 [KHz]
VGA| 640x480 192.0 [KHz] 76.9 [KHz] 38.5 [KHz]
SVGA 800x600 300.0 [KHz] 120.1 [KHz]} 60.1 [KHz]
XGA| 1024x768 491.6 [KHz] 196.7 [KHZ] 98.4 [KHz]
SXGA| 1280x1024 819.2 [KHz] 327.7 [KHz) 163.9 [KHz]
UXGA| 1600x1200 1,200.0 [MHz] 480.1 [KHz] 240.1 [KHz]
Min. freq. for real— Min. freq. for real- | Min. freq. for reai—
fps = 60 Size time en/decoding time en/decoding | time en/decoding
(Seq) (P1) (P2)
QVGA| 320x240 90.0 [KHz] 36.1 [KHz] 18.1 [KHz]
VGA| 640x480 360.0 [KHz] 144.1 [KHz] 72.1 [KHz]
SVGA 800x600 562.5 [KHz] 225.1 [KHz] 112.6 [KHz]
XGA| 1024x768 921.6 [KHz] 368.7 [KHz] 184.4 [KHz]
SXGA| 1280x1024 1,536.0 [KHz] 614.5 [KHz] 307.3 [KHZ]
UXGA| 1600x1200 2,250.0 [KHz] 900.1 [KHz] 450.1 [KHz]

Table 2 — Device utilization summary (estimated values) of
sequential architecture, for N = 4; Target FPGA: Virtex-5 LX330,
Logic synthesis tool: Xilinx ISE 9.2i

Logic utilization Used | Available | Utilization
Number of slice registers 5,618] 207,360 2%
Number of slice LUTs 10,132| 207,360 4%
Number of fully used bit slices 5,027 10,723 46%
Number of bonded IOBs 293 1,200 24%
Number of DSP48Es 64 192 33%

Table 3 — Required operating frequencies for §x8x8-size
sequential array processor and operating frequencies

Size Req. freq. Op. freq. (in) |Op. freq. (out)
QVGA 320 %240 5.78 [MHz] | 284.20 [MHz] | 284.20 [MHz]
VGA 640 x 480 23.01 [MHz] | 279.67 [MHz] | 279.67 [MHz]
SVGA 800 % 600 57.25 [MHz] | 280.15 [MHz] | 280.15 [MHz]
XGA | 1024 %768 93.48 [MHz] | 287.38 [MHz] | 287.38 [MHz]
SXGA | 1280x 1024 | 157.13 [MHz] | 288.75 [MHz] | 279.52 [MHz]
UXGA | 1600 % 1200 | 223.78 [MHz] | 280.15 [MHz] | 280.15 [MHz]
1.200 35
L0000 e o e 130 g
=\°
% 0.800 || 4 Regites Ustiation o /s
= ~—e&— LUTs Utilization [%] 19 §
;E 0.600 — g Memory Capacitance [MB] §
5 415 8
‘gb 0400 | #E j//;,,/ ey & " E
— B =
>
0.200 / 45 =
0.000 J ! | J l 0

QVGA VGA SVGA XGA SXGA UXGA
Resolution size
Figure 15: Logic utilizations and required memory capacitance

(% 1 5

FIT2009 (55 8 MEHRFFRIMTI #—F L)

dedicated to 3D-DCT. The array processor tremendously reduces

the data swapping or replacement during the 3D-DCT calculation.

Thus, it must contribute to the performance improvement. The
computational complexity of the proposed array processor is
O(N) for an NxNxN input data cube while that of the 3D-DCT
direct calculation is O(N*). In addition, more advanced
architecture featuring data pipelining technique was proposed to
improve throughput or hardware implementation costs. The
pipelined architecture performs 3D-DCT calculation x2.5 or
x 5.0 faster than the basic architecture based on a sequential data
handling. The 4x4x4 array processor architecture performing
8% 8x 8 3D-DCT reduces its operators to 1/8 of original 8x 8x 8
architecture. Furthermore, the proposed architecture was
implemented with its specified I/O architecture that could adapt
this three dimensional array processor to two dimensional
devices and realized on an FPGA. The evaluation result shows
that our architecture has enough performance for real-time
applications.

9. References

[1] X. Li and B. Furht, “An approach to Image Compression
Using Three-Dimensional DCT,” Proc of the Visual 2003
Conference, Miami, Florida, 2003

[2] S. Saponara, L. Fanucci, and P. Terreni, “LOW-POWER
VLSI ARCHITECTURES FOR 3D DISCRETE COSINE
TRANSFORM (DCT),” Proc of the 46th IEEE International
Midwest Symposium on Circuits and Systems (MWSCAS'03),
Cairo, Egypt, vol. 3, pp. 1567-1570, 2003.

[3] T. Tsuchiya, K. Kirisawa, and H. Wakui, “A study of color
motion picture coding using 3D-DCT,” Proc of the IEICE
General Conference 1996, pp. 35, 1996.

[4] H. Morishita and Y. Ohno, “Volume Data Compression Using
Three-Dimensional Discrete Cosine Transform,” IPSJ SIG
Notes 95 (63), pp. 9-16, 1995

[5] A. Burg, R. Keller, J. Wassner, N. Felber, W.Fichtner “A
3D-DCT Real-Time Video Compression System for Low
Complexity Single-Chip VLSI Implementation”, Proc of the
MoMuC2000, pp. 1B-5-1, 2000.

[6] O. Alshibami, and S. Boussakta, “Fast Algorithm for the 3-D
DCT,” Proc of the IEEE International Conference on Acoustics,
Speech, and Signal Processing 2001, pp. 1945-1948, 2001.

[71 M. Modarressi, and H. Sarbazi-Azad, “Parallel 3-
Dimensional DCT Computation on k-Ary n-Cubes,” Proc of the
8th International Conference on High Performance Computing
in Asia Pacific Region (HPC Asia 2005), pp. 91-97, 2005.

[8] M. Motoyoshi and M. Koyanagi, “3D-LSI technology for
image sensor,” The Pixel 2008 Workshop, JINST 4 P03009,
2009.

143

[9] M. Servais and G. D. Jager, “Video Compression Using the
Three Dimensional Discrete Cosine Transform (3D-DCT),” Proc
of COMSIG °97, South Afvican, pp. 27-32, 1996.

(% 1M

