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Recursive Incremental Computation for Efficient Window
Aggregate over Array Database
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Abstract: An array database is effective for managing and analyzing multi-dimensional scientific big data, and the
window aggregate is an important operator in array databases. This paper proposes an efficient method that exploits
the scheme of incremental computation and accelerates the execution of window aggregate considerably. Six types
of aggregates are improved using different design of buffer tools to eliminate redundant computation. Our proposed
recursive incremental computation method completely eliminates all redundant computation. Proposed method is fully
implemented in SciDB. Evaluation is conducted on real scientific data as NASA MODIS data. The proposed method
achieves performance improvements of 10x for the real application in earth science, comparing with SciDB’s built-in
window operator. The results align with our time-complexity analysis results.

1. Introduction
Nowadays, scientific fields are growing increasingly data-

intensive, efficient tool to manage and analyze big data is get-
ting more and more important. Generally, science data often
has multiple dimensions and does not fit into a traditional re-
lational data model easily. For example, spatio-temporal data
comes from satellite imagery is very common in several fields,
such as earth science, meteorology and geography. Also, tele-
scope images and array sensing data also have at least 3 dimen-
sions. To manage such array data, adoption of the relation data
model remains difficult. In theory, the relational database can
store multi-dimensional arrays with n-ary relations. However, it
incurs a high cost in analytical tasks and in data management on
account of impedance mismatching [1].

To efficiently store and analyze such multi-dimensional data,
array database systems, such as SciDB [2], [3], [4], SciQL
[5], [6], and RasDaMan [7], have been studied. These sys-
tems adopt an array model as the basic data model to over-
come the impedance mismatch problem. Array database systems
have been adopted in some scientific applications that process
multi-dimensional arrays, such as in cosmology [8], earth science
[9], [10] and experimental physics [11].

One of the important array-oriented queries in such array
database system is called window aggregate, which is the target
query we accelerate in this work. A window aggregate operator
executes aggregate functions over a sliding window. Here a win-
dow is like a sub-array of the input array with window area sizes
in each dimension specified by users. Every cell in the input ar-
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ray has a corresponding window that needs to be computed and
the aggregate results are stored in the result array which has the
same dimension sizes as the input array. Similar operator can be
found in other database systems, but window aggregate operator
in array databases has this important characteristic that it is array-
oriented, as the data is multi-dimensional and so are the windows
to compute in the query.

Window aggregate query has many applications in scientific
fields. It is widely used in the raw data cooking process and other
analysis tasks. In earth science field, it is often used in order to
achieve proper resolution of other analysis results for visualizing
purpose [9]. In the field of meteorology, certain analysis tasks
involve computation of window aggregate queries [12] in order
to forecast weather events. However, in current array databases,
straightforward method is used to compute this important oper-
ator, which is time-consuming because considerable amount of
redundant computation exists during the process.

In this paper, we address the acceleration of window aggre-
gates in array databases. We adopt the scheme of incremental
computation to reduce the unnecessary calculation exists in the
naive method. The central idea is to buffer the intermediate ag-
gregate results of previously calculated windows and reuse them
when computing a new window. We refer the proposed method
to as “recursive incremental computation”(RIC) method, which
improves the performance with a tradeoff on space for time and it
eliminates all redundant computation completely and thus greatly
reduce the time cost for the window aggregate tasks. We ex-
ploit the plugin mechanism of SciDB to implement the proposed
method into the system. The implementation of the recursive
IC method demonstrates better efficiency performance compared
with the built-in window aggregate operator in SciDB. Our source
code is available on GitHub [13], and, all SciDB users can em-
ploy it and the scientific community can use it for data processing
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tasks.
Several database studies are related to our work. Examples in-

clude temporal aggregates of interval data [14], [15], sliding win-
dow aggregates of stream data [16], [17], and efficient window
aggregate computation by reducing I/O cost [18]. Big differences
exist in the target data model between these works and mine,
therefore the techniques exploited are quite different. Moreover,
some graphic processing studies are related to our work, includ-
ing special shaped window aggregates [19], [20], and convolu-
tion filter processing [21]. Still, these graphic studies are limited
to 2-dimensional cases and only targeting average aggregate as
‘window smoothing’, while this work deals with data with any
number of dimensions and compute all fundamental aggregates.
Also data processing over complex shapes is not supported by all
conventional array databases and lack applications in scientific
fields. Therefore, they are beyond the scope of this paper.

The remainder of this thesis is organized as follows. Section 2
describes the background. Section 3 presents the proposal: recur-
sive incremental computation method. Section 4 desribes design
and implememtation. Section 5 explains the time and space com-
plexity. Section 6 describes the evaluation. Section 7 discusses
related work, and conclusions are provided in Section 8.

2. Background
2.1 Multi-dimensional Scientific Data

In many scientific fields, huge datasets with multiple dimen-
sions are generated rapidly, pushing urgent requirements on ef-
ficient systems that can storage, manage and analyze such data.
This paper proposes a efficient method to compute a particular
multi-dimensional data processing task, which has real applica-
tions in many scientific fields.

MODIS is short for the Moderate Resolution Imaging Spectro-
radiometer [22], which is a data product from NASA’s Earth Ob-
serving System program [23]. The MODIS data is gathered by
two NASA satellites: Terra and Aqua [24], [25]. MODIS collects
remote sensing data for earth science researches. The sensing
data includes 36 spectral bands and 3 spatial resolutions, while
being collected at rates up to 11 Mbps. Aqua and Terra both have
polar orbits that enable them to encircle the Earth approximately
every 90 minutes and view nearly the entire surface of the planet
every 1-2 days.

MODIS data has three dimensions, longitude, latitude and
time. It is provided to the scientific community free of charge,
which makes it a good choice to run evaluation of our experiment
on MODIS data. Furthermore, there are researches attempt to use
scientific databases to handle such data, such as MODBASE [9].
In MODBASE work, an earth science benchmark including sev-
eral analysis queries has been designed, among which our target
operator improved in this work is also involved. In the evaluation,
we execute experiments following this benchmark and check the
performance improvement of the proposed method.

2.2 Array Database - SciDB
To efficiently store and analyze big multi-dimensional data, ar-

ray database systems have been adopted in a variety of scientific
applications, including those in cosmology, geo-informatics, and

experimental physics. Array databases implement an array model
as their basic data model to overcome the impedance mismatch
problem incurred by the relational model.

Among current developed array database systems, SciDB is
one of the most advanced. SciDB is open source and has been
actively developed [2], [3]. It provides a parallel query process-
ing feature on a cluster system for high performance. Array data
is divided into small subsets, referred to as chunks, to deal with
a large size of data that does not fit in physical memory. During
query processing, only the necessary chunks are accessed from
storage, which effectively avoids memory overflow.

2.3 Window Aggregate Operator
The window aggregate query over multi-dimensional data is a

popular operator that is often used in the many scientific fields,
such as meteorology [12] and earth science [9], [10]. A window
aggregate operator calculates aggregate functions over a sliding
window. It takes arguments as: the source array; the window
sizes in each dimension that determine the window scope; the ag-
gregate function over a particular attribute to be compute. The re-
sult of a window aggregate operator is an array with the same size
and dimensions as the source array, while each output cell con-
tains the aggregate result calculated over the window around the
corresponding cell in the source array. An example of a window
aggregate query is shown in Query 1 and Figure 1. The Query 1
here follows the synopsis of SciDB. Here, arr is the name of the
input array, which have 2 dimensions and an attribute named ‘v’.
The aggregate function to compute is maximum.

Query 1 : window(arr, 0, 1, 0, 2, max(v))

Fig. 1: Window Aggregate Example

In figure 1, the source array is shown on the left; the array
on the right is the result. The dotted lines in the source array
illustrate how the window moves. Each cell in the result array
contains the maximum result of its corresponding window. Two
cells in the result array and their corresponding windows are re-
spectively marked with different shades of grey.

To process a window aggregate over multi-dimensional array
data, SciDB handles each window independently. It scans each
window, accumulates the values of all cells inside, and calculates
the aggregate result. We refer to this method as a naive method
because it is simple and straight forward.

This naive method involves a certain weakness in performance:
during computation, redundant steps exist that waste computa-
tional resources. If we observe the windows in a window aggre-
gate, it is easy to find that two neighbouring windows share a
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large portion of same area. In order to eliminate such redundant
calculation and improve the performance of window aggregate
tasks, we propose incremental computation method in this work.

3. Proposed Method
In this section, details of the proposed method are introduced.

First, the most simple case, the incremental computation of 1-
dimensional window aggregate is explained along with detailed
buffer tools designed for different aggregate functions. This 1-D
case is the fundamental of our proposal. Then an straight for-
ward attempt of applying the 1-D case to n-D case is simply ex-
plained, which has been evaluated and published in our previous
work [26]. However, this solution has certain defects and is not
good enough for n-dimensional cases. Finally, the proposal, re-
cursive incremental computation method is explained, which fur-
ther optimizes the calculation of n-D window aggregates. In the
rest of this paper, item ‘IC’ represents “incremental computation”
for short.

3.1 Incremental Computation on 1-D window aggregate
Incremental computation of 1-dimensional window aggregate

is the fundamental of this work. In order to reduce redundant
calculation, intermediate informations of calculated windows are
stored and reused when computing other windows with the help
of certain tools. In this work, we refer to such tools as “buffer
tools”.

Buffer tools are responsible for maintaining and reusing inter-
mediate results during the incremental computation process. A
buffer tool should has a data structure as the “buffer” to maintain
informations and provides interfaces that can update the buffer
and most importantly be able to fetch demanding aggregate result
using the information stored in the buffer.

The design of buffer tools is very important in this work. It
directly affects how good improvement incremental computation
can achieve comparing with naive method. Therefore in this sub-
section, detailed data structure design and how each type of buffer
tool works in 1-dimensional array scenario is introduced first.
3.1.1 Buffer Tool Design Requirements

Despite different aggregate functions served and different data
structures exploit as buffer, all types of buffer tools share the same
pattern in their regular behaviours. In other words, the design of
a buffer tool should meet several requirements so that it can help
achieve incremental computation in high performance.

Figure 2 shows how a buffer tool helps to achieve incremental
computation in 1-D window aggregate generally. It is obvious
that two requirements are necessary to design an effective buffer
tool.

The first one is efficient updating operators. As shown in Fig-
ure 2, when moving to a new window, the oldest cell a is no
longer in current window, and one new cell b comes into current
window. Of course, operators of insertion and deletion should
be supported in a buffer tool so that it can update buffered data
and maintain the correct values exactly representing the current
window.

The second one is fast aggregate result fetching based on
buffered data. A window aggregate operator is to compute aggre-

Fig. 2: Incremental Computation of 1-D Window Aggregate with Buffer Tool

gate value of every window. Therefore a buffer tool should sup-
port an operator of result fetch that returns the desired aggregate
value of the current window after updating(insertion, deletion)
is finished. This “result fetch” operator better works in constant
time so that no extra calculation is required.

To satisfy these two requirements, different data structures are
designed to achieve incremental computation for different aggre-
gate functions. In this paper, we improve six fundamental ag-
gregate functions widely used in data analyzing tasks, including
summation, average, minimum, maximum, variance and standard
deviation. In the rest of this paper, these aggregates are also ex-
pressed in short as sum, avg, min, max, var and stdev. They are
divided into 3 groups based on similarity in computation. Details
of the buffer tools designed for each group are introduced one by
one specifically in the rest of this subsection.

To be noticed that in this subsection, all the process are dis-
cussed under 1-D window aggregates case.
3.1.2 Summation & Average

Summation and average aggregate functions share almost the
same computing process. To compute average aggregate, simply
dividing the summation with number of cells in current window
and the average result is calculated. Thus this group is discussed
with sum as the represent.

A circle list-like structure is used to buffer data in the current
window, referred to as “sum list” and an extra SUM temporary
value is maintained to be the summation value of all elements in
the list at any moment. This value serves to execute result fetch
efficiently in O(1) time as it can be directly returned.

Fig. 3: Sum List Structure

As shown in the Figure 3 above, the buffer contains all cells’
values of the current window, therefore the buffer size is same as
the window size.

Let’s consider how to compute a new window with sum list

3ⓒ 2016 Information Processing Society of Japan

Vol.2016-OS-136 No.5
2016/2/29



IPSJ SIG Technical Report

Fig. 4: Updating Details of Sum Aggregate

maintained. As shown in Figure 4, the oldest cell a is no longer
in current window, it is removed from the buffer and subtracted
from the SUM value; meanwhile a new cell b comes into the win-
dow and it is inserted into the buffer(replace cell a) and it is added
to the SUM value. After these two updating operators, the SUM
value is exactly the aggregate result which can be achieved im-
mediately. As window moves on, the buffer list always contain
exactly all the cells in the current window and the SUM value is
always corresponding to the summation result. The arrows in the
figure show the head of the sum list.
3.1.3 Variance & Standard Deviation

Variance and standard deviation are important evaluations in
statistical analysis. They are supported in SciDB as aggregate
functions and the proposed method also works on them as well.
Standard deviation is the square root of variance, so we only dis-
cuss variance as the represent for this group.

Buffer tool is designed so that current window’s aggregate
result can be computed fast from the intermediate information
buffered. For variance aggregate, it is more difficult compared
with summation. Summation is a simple computation by adding
up all the elements. Therefore when update occurs, the SUM
value can be easily maintained by subtracting the deleted element,
or adding the inserted element, either costs only O(1).

When it comes to variance, a similar VAR value will not work
because the computation of variance is more complicated. Vari-
ance of a sample dataset X is computed as follows, with µ stand-
ing for the average value of the dataset, as µ = 1

n
∑

xi.

Var(X) =
1

n − 1

n∑
i=1

(xi − µ)2 (1)

To find a way of computing variance result efficiently, let’s de-
form the formula:(V is to represent variance value)

V =
1

n − 1

∑
(xi − µ)2

=
1

n − 1

∑
(x2

i − 2xiµ + µ2)

=
1

n − 1
(
∑

x2
i − nµ2)

(2)

Using S to represent
∑

xi and S S to represet
∑

x2
i , we can get:

V =
1

n − 1
(S S −

1
n

S 2) (3)

From this equation, we can compute the variance in constant
time during the window aggregate. The buffer tool is similar to
sum list, with same buffer structure of circle-list maintaining all

of current window’s cells. Besides, two values S and S S are
maintained. We call this buffer tool as “var list”.

When it comes to a new window, the buffer is updated in the
same way as sum list introduced in subsection 3.1.2. Along with
the updating, value S and S ∗ can also be renewed in constant
time. Considering insertion first, using v to represent the value of
the new coming cell, and S ∗ and S S ∗ to represent the new values
after updating. It’s obvious that

S ∗ = S + v

S S ∗ = S S + v2
(4)

Deletion is the same. After these two values are renewed, the
var result of current window can be directly computed according
to equation (3) in constant time. In this way, var and stdev can be
incrementally computed. Because var list is almost the same as
sum list except one more temporary value maintained, details of
the structures are omitted here.
3.1.4 Minimum & Maximum

Minimum and Maximum are obviously similar and share the
same buffer tool design. In the following discussion, we take
“min” aggregate as the represent of this group.

One problem is that if we simply buffer all current window’s
cell values, a scan of the buffer is still necessary to get the min-
imum result, which is slow and drags the performance of incre-
mental computation down to the naive method level. A temporary
value similar to the SUM value can not work here because when
removing an old cell, if it is the most smallest one, there is no way
to find the minimum one among the remaining cells to update the
min value in constant time.

We design a un-decreasing circle queue as the buffer tool to
achieve efficient IC for min aggregate. We name it “min queue”.
The structure is shown in Figure 5. Similar to sum list, it has a
head pointer and tail pointer for circling the queue to save mem-
ory consumed. In the queue, every element’s value is smaller than
previous elements, and each element is stored along with its posi-
tion in the original input array. This extra position record is used
in deletion for checking whether the element’s corresponding cell
is still in the current window or not.

Fig. 5: Min Queue Structure

When moving to a new window, updates need to be done. To
delete the oldest cell, it is required to check the queue’s head ele-
ment’s position. If the head’s cell is no longer in current window,
remove it by simply moving on the head pointer one step. Then
to insert the new cell, keep comparing the new value with the tail
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element in the queue. If the tail is larger, remove it by subtracting
the tail pointer and again repeat this process by comparing the
new tail element. When it stops, the tail element is deem to be
smaller than the new cell’s value, and we insert the new cell into
the buffer queue. By doing so, the elements inside the buffer are
assured to be increasing. For the result fetch operator, the head
element of the queue is the smallest one in the buffer, thus it is
the minimum result of current window as well.

Fig. 6: Updating Details of Min Aggregate

This design works because an element already in the queue
implies that it appears in earlier position than the new cell b, if it
is not smaller than b, it has no chance to be the minimum value
for any window after. Every following window certainly includes
b as well. Therefore, there is no meaning to remain a cell whose
value is larger then the tail in the buffer. Figure 6 shows a detailed
example of min window aggregate about how it works incremen-
tally with the assistance of the buffer tool, “min queue”.

In the example, after moving on to a new window, the head el-
ement ‘7’ is no longer in current window and it is deleted. Mean-
while, new cell’s value ‘15’ is to be inserted. At this point, the
tail element in the queue ‘21’ is bigger than 15 and it is obvious
that any later window would at least have min value as 15, so it
is meaningless to remain 21 in the queue. Therefore it is deleted.
Then the new tail ‘8’ is smaller than 15, so it can still be the min
value as long as it is still in the window. The checking stops and
15 is inserted. After updating, the head element 8 is the min ag-
gregate result of current window.

Maximum function is almost the same as minimum, except
buffer tool is un-increasing queue instead of un-decreasing and
opposite comparing operator is used during the process.

3.2 Incremental Computation Attempt on n-D scenario
As discussed in Subsection 3.1, the incremental computation

of 1-D window aggregate has been solved. Because the scien-
tific data we deal with has multiple dimensions, an efficient IC
solution for n-D window aggregate is required.

With 1-D solution of window aggregate on hand, a natural idea
is to divide the n-D task into multiple 1-D tasks. We can select
one dimension to be the IC dimension, which is corresponding
to the single dimension in 1-D case. Meanwhile, all the other
n − 1 dimensions are used to generate basic windows. Then for
each basic window, window moves along with the IC dimension
and the aggregate results of each window are calculated incre-
mentally, just like the process of 1-D case. This 1-D subtask is
the computation round of the corresponding basic window. This
n-D solution has already been implemented and evaluated in our
previous work [26].

3.2.1 Processing Details
From the description above, there are 3 important concepts

need to be explained first so that the n-D scenario can be de-
scribed in a clear and easy-understanding way. They are basic
window, computation round and window unit.

Fig. 7: Basic Window and Computation Round

As shown in Figure 7, a basic window is the start point of
its corresponding computation round. During this computation
round, window slides along with the IC dimension until all win-
dows derived from this basic window are computed. In an-
other description, an n-D dimensional source array has

∏n
i=1 Di

windows to be computed. All these windows are divided into∏n−1
i=1 Di groups. Each group of windows can be computed in-

crementally as a 1-D subtask. And the basic window is the first
window in each 1-D incremental computation subtask. Here Di

stands for the size of dimension i.
In Figure 7, dimension 2 is the IC dimension and dimension 1

is used to generate basic windows. Thus there are at total D1 basic
windows’ computation round to be processed. Each computation
round is a 1-D subtask and the windows’ aggregate results are
computed incrementally with the help of buffer tools.

Recall the updating situation of 1-D case shown in Figure 2,
when moving to a new window, only two cells are required to
be updated (one to delete and one to insert). When it comes to
a computation round in n-dimension case, multiple cells are re-
quired to be updated. Still these cells have a certain positional
pattern and we use item “window unit” to describe such group of
cells to be inserted/deleted.

Fig. 8: Window Units to be Updated During a Computation Round

A window unit is a subset of window. It is named so because
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window units are the smallest computing units in the process of
multi-dimensional window aggregate incremental computation,
just like cells are the smallest computing units in 1-D case. An
n-D window is divided into multiple window units along the IC
dimension. Each window unit is a slice of the original window.

Figure 8 shows the window units to be updated during a com-
putation round. It is clear that window units have same be-
haviours as the single cells during the 1-D incremental compu-
tation process. Therefore the 1-D IC technique using buffer tools
introduced before can be applied to the multi-dimensional case as
well. Each basic window’s computation round can be treated as
one single 1-D window aggregate process. The only difference is
that the values to update in buffer tools are the aggregate values
of window units instead of values of single cells.

In this way, the n-dimensional window aggregate is executed
along the IC dimension incrementally. It successfully reduce the
redundant calculation exist in the IC dimension.
3.2.2 Defect: Redundant Calculation Still Exists

The weakness of this solution is that it only adopts the IC
scheme in one dimension despite the fact that redundant work
exists in all dimensions.

Fig. 9: Remaining Redundant Calculation in Basic IC

When computing the aggregate value of the new window unit,
every cell inside it needs to be scanned. Considering two neigh-
bouring basic windows and their computation rounds. Overlap-
ping areas are processed multiple times as shown in Figure 9,
with a 2-D example. In this figure, basic window a and basic
window b are two adjacent basic windows. It is obvious that a
certain area to compute in computation round of b has been al-
ready processed in the computation round of basic window a. To
address this problem more clear, let us focus on position i in the
IC dimension, and compare the new window units in these two
computation rounds. Apparently, these two window units only
have 2 different cells and the remaining cells are all the same.

3.3 Proposal: Recursive Incremental Computation Method
Recursive IC method is the proposal of this work. It manages

to achieve incremental computation in all dimensions and com-
pletely eliminates redundant calculation. This is a solution de-
signed targeting the multi-dimensional window aggregate.
3.3.1 Recursive Dimensionality Reduction

In order to remove the repeated work exist in scanning the win-
dow units, our solution is to execute the window aggregate recur-

sively and somehow achieve IC in every dimension.
We design the recursive IC method to work in multiple levels.

For a n-D window aggregate task, it is solved in n levels. The first
level handles the n-D problem. One dimension is selected as the
IC dimension in this level. In each moving step on this IC dimen-
sion, the calculation of new window units is equal to a window
aggregate task with 1 less number of dimensions in next level.
And in the last level, there are the 1-D window aggregate tasks.
Because the results of window aggregate in next level is equiva-
lent to the aggregate values of window units in current level, once
the later level’s IC process is finished, required window units’ ag-
gregate value in the current level can be immediately achieved
and there is no need to scan them.

Therefore, the window aggregate can be done recursively. Ev-
ery level has its unique incremental computation dimension and
specifically focuses on the incremental improvement in that di-
mension. A n dimensional window aggregate’s incremental com-
putation is achieved with the help of multiple n − 1 dimensional
window aggregates. And these n − 1 dimensional window ag-
gregates are again incrementally solved exploiting the results of
smaller n − 2 dimensional window aggregates in next level. This
process keeps going on until the dimension number is reduced to
1.

It should be noted that recursive IC method needs to maintain
one buffer tool for each basic window. In a particular level, all
basic windows’ computation rounds must move together because
their new window units are calculated together in the same com-
putation round in next level. Therefore, in all levels, every basic
window’ round should maintain its own buffer tool.
3.3.2 Processing Details

Fig. 10: Recursive IC of a 2-D Array

Figure 10 shows how recursive IC works with a 2-D window
aggregate task. In the figure, Di stands for the dimension size
and wi stands for the window size in each dimension. In the level
1, dimension 2 is selected as the IC dimension, thus there are
D1 basic windows in this level. All these basic windows’ com-
putation rounds are processing together, each one maintains one
buffer tool. When it moves to position i in dimension 2, the new
window units’ aggregate values are required to update the buffer
tools. The new window unit corresponds to the first basic win-
dow’s round is marked with dotted background and every com-
putation round has one new window unit to handle. Recursive
IC method pushes this computation task of window units to level
2. In level 2, the task is a window aggregate on 1-D array which
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is a slice from the original array and is mark in grey. This slice
contains all the window units required in level 1 and they can be
treated as 1-D windows in level 2. With dimension 1 as the IC
dimension in level 2, they can be computed incrementally and re-
sults returned to level 1 to update the corresponding buffer tools.

For every moving step in level 1 on dimension 2, a complete
incremental computation process in level 2 on dimension 1 is pro-
cessed. In this way, level 1 and level 2 each accomplishes incre-
mental computation on one dimension respectively. The whole
process does not involve any redundant calculation at all.

Here is another 3-D example of how a multi-dimension win-
dow aggregate task is processed incrementally in all dimensions
recursively.

Fig. 11: Recursive IC of a 3-D Array

In level 1, a window has three dimensions and its correspond-
ing window units can be treated as 2-dimensional windows. In
each moving step along the IC dimension, new window units’ ag-
gregate values are required to update buffer tools and compute
current windows’ results. Again, a 2-D slice contains all these
window units can be cut out and a 2-D window aggregate can ex-
actly compute these window units. In the figure, one new window
unit is marked with dotted background and the dimensionality re-
duced slice is marked in grey colour. 2-D window aggregate over
this slice is processed in level 2. Again, as shown above, comput-
ing the new window units in this 2-D window aggregate can be
further broken down into 1-D window aggregates and handled in
level 3.

In brief, the 3-D window aggregate task is broken down into D3

2-D window aggregate tasks. Each 2-D window aggregate task is
further broken down into D2 1-D window aggregate tasks. The
recursive dimensionality reduction finishes at this point because
incremental computation of 1-D window aggregate is perfectly
solved in subsection 3.2, as window units of 1-D window are just
single cells, whose values can be accessed directly as aggregate
values.

For window aggregate with more number of dimensions, the
process is similar. Any number of dimensions can be recursively
broken down and eventually reduced to window aggregate tasks
with one single dimension. To be noticed that the selection of
IC dimension in each level has no specific order. In the exam-
ple above, level 1 can also choose dimension 1 as IC dimension,
level 2 moving on dimension 2 and level 3 moving on dimension
3. Any order works as long as each dimension is selected once
and only once during the whole process.

Although recursive incremental computation method improves

the performance greatly, it is obvious that it consumes much more
memory. This is a tradeoff by consuming more space to obtain
time efficiency. However, the extra space cost is actually accept-
able since the SciDB’s chunking storage mechanism.

4. Design and Implementation
This section introduces more design details of our proposed

method when implementing it into SciDB. As the system to im-
plement and evaluate the proposal, several issues of SciDB, such
as its storage management and plugin mechanism are also intro-
duced as they are involved to detailed design and implementation.

4.1 Plugin Mechanism of SciDB
To evaluate the performances of the recursive IC method

against the naive method, we implement it on SciDB. A straight-
forward method to implement a new operator with high efficiency
is to add a new built-in operator in SciDB system. This requires
an immense effort for both the implementation and maintenance.

To avoid the overhead, we employ the plugin mechanism sup-
ported by SciDB. It supports implementation of a user-defined
operator(UDO). Users can implement their own operators that re-
alize any data processing tasks using the C++ language through
the plugin mechanisms. It is determined that the implemented
plugin operators are registered in the SciDB library system. Fol-
lowing this mechanism, once the plugin library is loaded into the
system, the operator can work exactly the same way as the built-in
operators of SciDB for data accessing, processing and operator-
result fetching. Therefore, the usage of plugin does not sacrifice
performance and provides excellent maintainability.

For implementing a UDO with the plugin mechanism, two
types of program files are necessary. They can be denoted as
“LogicalMyOperator.cpp” and “PhysicalMyOperator.cpp” . In
the file name, “MyOperator” stands for the name of the new op-
erator. The “Logical” file is a sort of metadata that merely de-
scribes the input and output array schemas of the new operator.
The “Physical” file describes data processing details that gener-
ates the result of the operator. Moreover, file “plugin.h” provided
by SciDB should be included when building the UDO to notify
the system that the code is user-defined-operator.

4.2 Window Aggregate : Iterative Pipeline Operator
When implementing UDO plugin into SciDB, one rule from

SciDB is that if an operator’s output array is possible to be large,
this operator should work as an iterative pipeline. Because arrays
in SciDB are generally huge. With such huge array as input, the
result array returned by UDO is often huge as well. Therefore,
it is hard to maintain the result array all in memory during the
computation. To solve this issue, SciDB demands that such UDO
should work as iterative pipeline. To execute such UDO, SciDB
iterate every cell in the result array. When iterating to a new cell,
a method about how to compute this new cell’s result should have
been implemented. The whole process is like a pipeline and re-
sults are computed online and returned (output to the screen/ save
to a file/ save to array in storage) cell by cell.

Window aggregate is exactly such an operator. The result ar-
ray has the same size as the source array, which is reasonable
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to be huge. Because this special requirement from SciDB, when
implementing the recursive IC method into SciDB, the order of
how the result cells in the output array are computed should be
reorganized.

4.3 Details in Implementation
As introduced in background, SciDB divides huge arrays into

small chunks and distributes them within a cluster. Operators can
be efficiently executed chunk by chunk without extra disk I/O.
When processing a chunk, window aggregate operator works as
an iterative pipeline. Therefore, how to compute the result of cur-
rent cell when iterating the chunks in the result array is the most
important part of the implementation. The method is referred to
as “calculateNextValue()”. When iterating to a new cell in the
result chunk, SciDB calculates the value for the cell using this
method. We show the implementation in the form of pseudo-code
for both the naive method and the proposed recursive IC method.

In all the pseudocode, cellPos contains the multi-dimensional
coordinators of the current cell to compute in the result array.
Items winFirst and winLast contains the window area parameters.

Algorithm 1 calculateNextValue() in naive method
1: for each i ∈ [1,numDim] do
2: firstWinPos[i]← cellPos[i] - winFirst[i]
3: lastWinPos[i]← cellPos[i] + winLast[i]
4: end for
5: aggregateor.clear()
6: for all cell c ∈ window(firstWinPos, lastWinPos) do
7: aggregator.insert(inputChunk.access(c))
8: end for
9: nextValue← aggregator.accumulate()

Pseudocode above describes SciDB’s built-in implementation
of the naive method. In the code, “aggregator” is a class already
implemented by SciDB that computes the aggregate value of a
set of data. It supports “insert”, which is used to feed one new
element into the set, and “accumulate”, which returns the aggre-
gate result of the current dataset, including all elements inserted
so far. In addition, “inputChunk” is also a built-in class provided
by SciDB. It manages the chunks that are processed by current
executing operator. The chunk data required for data processing
is automatically fetched into the memory. Therefore, users are
not required to explicitly focus on storage access. It supports the
“access()” method to obtain the data in a specific cell based on its
multi-dimensional coordinates.

Each time the result array iterates to a new cell, the method
“calculateNextValue()” shown in Algorithm 1 is invoked to com-
pute the aggregate result of the window corresponding to the cell.
The scope of the window corresponding to the current cell is com-
puted first (line 1-4). Then all of the cells inside this window are
scanned and inserted into a aggregator(line 5-8). They are finally
accumulated into the aggregate result of the current window.

Algorithm 2 shows how recursive IC method works. In the
code, “bufSet” stands for the set of all the buffer tools maintained
in the recursive IC process. For a n-D task, there are n levels
and in each level, every basic window have one buffer tool. Thus
bufSet support “getBuf” method that returns the corresponding

Algorithm 2 calculateNextValue() in recursive IC method
1: for i = 1→ numDim do
2: firstWinPos[i]← cellPos[i] - winFirst[i]
3: lastWinPos[i]← cellPos[i] + winLast[i]
4: end for
5: startLvl← numDim
6: while startLvl > 0 & cellPos[startLvl] = firstPos[startLvl] do
7: startLvl← startLvl - 1
8: end while
9: for i = startLvl+1→ numDim do

10: recursivePrepare(i, firstWinPos[i], lastWinPos[i]-1)
11: end for
12: cellValue← inputChunk.access(lastWinPos)
13: nextValue← recursiveUpdate(cellValue)

Algorithm 3 recursiveUpdate(curValue) in recursive IC method
1: curLvl←numDim
2: offset←0
3: while curLvl > 0 do
4: curBuf←bufSet.getBuf(curLvl,offset)
5: fullWin←firstPos[curLvl] + winLast[curLvl]
6: if lastWinPos[curLvl] > fullWin then
7: curBuf.delete()
8: end if
9: curBuf.insert(curValue)

10: curValue←curBuf.resultFetch()
11: offset ←offset to locate corresponding buffer to update in

higher level
12: curLvl←curLvl - 1
13: end while
14: res = curValue

buffer tool according to two given arguments: the level number
and the desired buffer tool’s offset value in that level.

Also, in our implementation, the incremental computation di-
mension of level i is set to be dimension i. Level 1 is the highest
level which has the most basic windows with number

∏n
i=2 Di,

while level n is the lowest level which has only one basic window
and of course one single buffer tool as well. The higher level’s in-
cremental computation depends on the results of one lower level’s
results as lower level’s windows are the desired window units in
higher level. Therefore, when moving to a new cell, the multi-
level buffer tools are updated from the lowest level to the highest
level. In the lowest level n, the new window unit is the new cell
itself. After the level n’s buffer tool is updated, its resultFetch
method returns the aggregate result of current window in level n,
which is also the new window unit in level n-1. Thus this new
value can be directly used to update corresponding buffer tool in
level n-1. This process keeps going on until the highest level’s
corresponding buffer tool is updated. This buffer tool’s corre-
sponding basic window’s computation round is exactly at the po-
sition of current window needs to be computed in the result array.
Then the result of resultFetch can be output to the pipeline.

First of all, current cell’s corresponding window scope is com-
puted and stored into firstWinPos and lastWinPos. Because the
window aggregate operator works as an iterative pipeline, when
the result array iterates to a new cell, only the last one cell in
the corresponding window needs to be processed, while all other
cells have already been done and related information stored in
buffer tools. Line 12-13 access the value of this last cell and
invoke method “recursiveUpdate” to recursively update all the
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buffer tools in every level involved with this new cell. The re-
cursive update is illustrated in Algorithm 3.

5. Time & Space Analysis
In this section, time and space complexities are analyzed for

both methods of window aggregate introduced in this paper. For
the preparation to describe the analysis, some parameters in win-
dow aggregates need to be defined first so that the description is
consistent and clear.

For a n-dimensional array, its dimension sizes are defined as
D1,D2, ...,Dn. Meanwhile, for a window aggregate query over
such array, the window sizes in each dimension are specified as
W1,W2, ...,Wn. According to this definition, the total number of
cells in this array is

∏n
i=1 Di, while total number of cells within a

normal complete window is
∏n

i=1 Wi.

5.1 Naive Method
The naive method is the method used by most array databases

currently to compute window aggregate. This method is straight
forward and the time complexity is easy to analyze. Every win-
dow is processed independently, therefore each one can be con-
sidered separately. Focusing on one single window, all cells in-
sides it need to be scanned and accumulated into the aggregate
result. For example, if the aggregate function is maximum, all
cells’ values are compared to the max result and update the max
value if current cell’s value is larger. Because there are

∏n
i=1 Wi

cells within a window, the scan and update process of one single
window obviously costs O(

∏n
i=1 Wi). Also, because the windows

are one to one mapping with the cells in the source array, there are
at total

∏n
i=1 Di windows to be executed. Multiply them together

and the total time complexity of naive method is

O(
n∏

i=1

Di

n∏
i=1

Wi)

About space cost, because the naive method does not buffer any
extra information and only process on original data from the
source array, it has no extra space cost.

5.2 Buffer Tool Analysis
Because buffer tool is the common module used in the recur-

sive IC methods, the complexities of buffer tools designed for all
three aggregate groups are discussed here before analyzing the
proposed method.

A buffer tool supports 3 methods, which are insertion, deletion
and resultFetch. To be noticed that one buffer tool is correspond-
ing to one basic window’s computation round. During the com-
putation round, the buffer tool is updated with new window units
and returns current window’s result in that computation round.
Thus all the analysis of buffer tool below targets on such scenario
with given IC dimension and given basic window, to discuss how
buffer tool performs during the computation round.

First let us consider the time complexity. According to the
details of buffer tools introduced in Subsection 3.1, method re-
sultFetch’s time cost of three groups are all the same as O(1). For
the update methods, as insertion and deletion, group sum/avg cost
O(1) because in each update method, only simple value set oper-

ators are invoked, once in the buffer and once on the temporary
SUM value. Group var/std also cost O(1) as the only difference
is that this group has more temporary values to maintain but still
it only requires simple value set operations.

However, min/max is a bit complicated. The deletion method
also costs O(1) but in the insertion process, there are several cells
to be removed from the tail and the number of such cells to re-
move is not fixed. To consider the whole computing round to-
gether is a better strategy. During the whole computation round,
at most D cells are removed when insertions take place. Here D
is the size of IC dimension. Meanwhile, at total D insertions are
executed during the computation round. Therefore, one single
insertion costs constant time O(1) in amortized analysis.

Then considering the extra space complexity of one single
buffer tool. For group sum/avg, circle list is used and in every
window move step, one cell is removed and one cell is inserted,
therefore the total size of the list remains the same in most times.
The only special situation is for the first Wm moves because there
are only insertions and for the last Wm moves as there are only
deletions. So the space required is O(Wm), here Wm is the win-
dow size in the incremental computation dimension.

For group min/max, in every move step, if the first cell is no
longer in current window, it is removed. Therefore, at any mo-
ment, the queue always only contains cells within the current win-
dow. So the number of elements in the queue during the process
is at most Wm. Of course space cost is O(Wm) as well.

For group std/var, similar circle list as sum/avg is used, thus
buffer size is still Wm. Only difference is that more temporary
values are maintained beside sum value, such as the count and
the sum square value. However, the dominant cost still lays in the
buffer and space cost is still O(Wm).

Table 1: Complexity Analysis of Buffer Tools

Aggregate Function sum/avg var/std min/max

Time
Insert O(1) O(1) O(1)∗

Delete O(1) O(1) O(1)
ResultFetch O(1) O(1) O(1)

Space O(Wm) O(Wm) O(Wm)

Table 1 summarizes the analysis result of all buffer tools in-
volved in this paper. In the table, the insert of min/max group is
shown with an superscript ‘*’ meaning it is a result of amortized
time analysis.

5.3 Recursive IC method
For a n-dimensional window aggregate, recursive incremental

computation method executes in n levels. In the first level, with
dimension 1 selected as the IC dimension, all the basic windows
move on their own computation rounds. For each position in di-
mension 1, the windows require to get new coming window units’
aggregate values so that each round’s buffer tool can be updated
and aggregate results of new windows can be calculated incre-
mentally. To compute the window units’ aggregate value, a n-1
dimensional window aggregate task in level 2 is invoked. Thus
at total there are D1 n-1 dimensional window aggregate tasks to
process in level 2. Similarly, each task in level 2 invokes D2 n-
2 dimensional window aggregate tasks in level 3 and so on in a

9ⓒ 2016 Information Processing Society of Japan

Vol.2016-OS-136 No.5
2016/2/29



IPSJ SIG Technical Report

recursive way.
Finally it comes to the 1-dimensional window aggregate in the

lowest level with IC dimension as the nth dimension. The time
complexity of 1-D IC process is O(Dn). Then the aggregate re-
sults of windows in this task help compute the higher level’s win-
dow aggregate invoked it as these windows are the window units
required in that 2-dimensional task. Again this is a recursive up-
dating process from level n to level 1, costing O(1) in every level
with updating and result fetching methods of the buffer tools. For
each window in level n, it recursively updates one correspond-
ing buffer tool in every level, thus the time cost for this recursive
update process is O(n).

From the analysis above, there are at total
∏n−1

i=1 Di 1-D window
aggregate tasks in the level n, each such task has Dn windows
whose results need to be updated recursively through all the n
levels. Therefore the time complexity for recursive incremental
computation method is

O(n
n∏

i=1

Di)

Then let us consider the extra space cost in recursive incremen-
tal computation method for the buffer tools. In level 1, there are∏n

i=2 Di basic windows and during each basic window’s compu-
tation round, one buffer tool with size O(W1) is used to maintain
and reuse intermediate data. Then in level 2, there are

∏n
i=3 Di ba-

sic windows and each maintains one buffer tool with size O(W2).
And in the last dimension, there is one basic window which main-
tains one buffer tool with size O(Wn). Therefore, the total space
cost is computed as follows.

W1

n∏
i=2

Di + ... + Wn <

n∏
i=1

Di + ... + D1 = O(
n∏

i=1

Di) (5)

5.4 Overall Comparison

Table 2: Time & Space Complexity Analysis Summary

Time Complexity Space Complexity

Naive method O(
n∏

i=1

Di

n∏
i=1

Wi) none

Basic IC method O(
n∏

i=1

Di

n−1∏
i=1

Wi) O(Wn)

Recursive IC method O(n
n∏

i=1

Di) O(
n∏

i=1

Di)

We summarize of the time and space complexity analysis in
Table 2. “Basic IC method” refers to a simple incremental
method we proposed in previous work[26]. From the analysis,
it is obviously that in theory, the recursive incremental compu-
tation method is the fastest and the naive method is the most
time-consuming one. While considering the space cost aspect,
the basic incremental computation costs a bit more space than
the naive method, and recursive incremental computation method
costs considerable large extra space for the buffer tools. It is a
tradeoff from space to time. The more information buffered, the
more redundant calculation is avoided, and faster the method per-
forms.

On the other hand, the extra space cost of recursive IC method
seems to be a too heavy cost. However, with SciDB’s chunk-
ing storage mechanism, this cost is acceptable. SciDB divides a
huge array into small chunks that can be treated as sub-array of
the original array with sizes can be fit in the memory. Therefore,
when executing a query, it is processed in unit of chunk instead
of the whole array data. Every time a chunk is loaded into the
main-memory and the required data-processing tasks on this part
of data are executed. In this way SciDB reduce the I/O cost. Win-
dow aggregate can also benefit from this mechanism. Every time
only a chunk’s window aggregate is to be calculated, therefore the
extra space is also based on the chunk size instead of the whole
array size. As one chunk can fit in main-memory, the space re-
quired for the buffer tools in recursive IC method also can easily
fit in main-memory.

6. Evaluation
We evaluate the proposed recursive IC method against the

naive method in SciDB. Another method, “basic IC method” [26]
we proposed previously is also evaluated to show how recursive
IC method further improve the efficiency. Two series of experi-
ments are conducted, testing over real earth science data and syn-
thetic data respectively.

6.1 Experiment Cluster Specifications
We build a SciDB cluster consist of 4 nodes to perform all the

experiments in this work. Table 3 shows the cluster specifications
and all the servers share the same machine configurations.

Table 3: Experiment Configurations

SciDB Version 14.12
Operating System CentOS 6.5
Processors Intel(R)Xeon(R)E56202.4GHz
RAM 24GB

6.2 Earth Science Benchmark
First series of experiment follows an earth science benchmark

with real scientific application. A related work MODBASE [9],
attempts to exploit SciDB to manage the earth science data and
process analyzing tasks. In the earth science benchmark [27] pro-
posed in MODBASE work, window aggregate operator is fre-
quently used, especially executed over the result arrays of other
analyzing tasks in order to produce arrays with lower resolution
on purpose of visualization, comparison and further analysis. For
experiment, we upload MODIS data into SciDB, following the
MODBASE benchmark workflow and execute “Gridding Data”
task from the benchmark which is exactly a window aggregate
query.
6.2.1 Data Preprocess and Upload

45 MODIS files are downloaded with area of interest to be the
US west coast, with collecting time during the year 2012. All
these settings follow the data used in the MODBASE benchmark.
Each MODIS file is about 160MB size. These files are in HDF
format and the sensing data is stored in the satellite scanning or-
der. Therefore, extra preprocessing works are required to map
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the sensing data into corresponding cells located by longitude-
latitude coordinators before loading into SciDB. Because this pre-
processing work is not strongly related to the topic of this paper,
more details are not included here.

After preprocessing, CSV files are produced, which can be
loaded into SciDB. After upload, the earth data is in schema of
a 3-dimensional array. The values of longitude and latitude di-
mensions are scaled 1000 times, so that different sensing samples
will not overlap into same cell in the array. Thus, corresponding
to the global area, longitude dimension is in scope of [-180,000,
180,000] and latitude dimension in scope of [-90,000, 90,000].
6.2.2 NDVI Gridding Task Evaluation

In the earth science benchmark, gridding task is executed on
the result of other analysis tasks in order to down-sample the ar-
ray so that the analysis result can be visualized. The gridding task
actually consists of 2 steps. The first step is a window aggregate
query to compute the average value of every cell on earth with
the window scope to be 0.05◦ × 0.05◦. In the second step, down-
sample is conducted by selecting cells with fixed skip length. Of
course, the gridding task consumes most time on the window ag-
gregate step because it is computing-intensive, while the second
step is fast and can be ignored comparing with the first step.

In this experiment, we select normalized difference vegetation
index(NDVI) to be the analyzing task to produce input array of
gridding task. We execute NDVI calculation following the source
code in MODBASE work [22] as NDVI task is also included in
the MODBASE benchmark. Three sets of area parameters are de-
signed, which are 10◦ × 10◦, 20◦ × 20◦, 30◦ × 30◦, corresponding
to the area size on the earth to be analyzed. The output result of a
NDVI analysis is a 2-D array with the same size as the area size
settings. After NDVI analysis task is finished, window aggregate
operator is executed over the result array. The result array has
two dimensions and the window aggregate query in gridding task
is as follows:

window(ndvi, 25, 25, 25, 25, avg(ndvi))

In this window aggregate query, for each cell, its window scope
is to expand in both dimensions and in both directions by 25
cells. Thus the total window size is 51 × 51 cells as the central
cell also counts. This is the same window setting in the MOD-
BASE benchmark introduced previously, the window scope is
about 0.05◦×0.05◦, corresponding to 50×50 window on data after
loaded into SciDB with longitude and latitude scaled by 1000.

The experiment has three groups corresponding to different
size of area on earth to be processed in the NDVI task. Window
sizes are varies from 11 × 11 to 51 × 51 in order to check how
each method behaves. To be noticed that only the size of 51 × 51
window is required in the real earth science application.

Table 4: Metrics of NDVI Arrays

Area Size Array Size Cells Density Data Size
10◦ × 10◦ 10000 × 10000 28787550 28.79% 559MB
20◦ × 20◦ 20000 × 20000 90526766 22.63% 1.78GB
30◦ × 30◦ 30000 × 30000 240706765 26.75% 4.32GB

Table 4 illustrates the details of the three source arrays used in

the experiment. Because not every cell is filled in MODIS real
data after the data mapping, there are empty cells in the array.
In the table, “Array Size” stands for the total array scope. Col-
umn “Cells” contains the real number of cells that is not empty.
Column “Density” shows how dense the array is.

Figure 12 shows the experiment result of the 10◦ × 10◦ area.

Fig. 12: Query Execution Time by Window Sizes, 10◦ × 10◦ NDVI

The improvement is obvious. From the result, another inter-
esting feature is that no matter how big the window is, the pro-
posed recursive IC method’s execution time is almost fixed. This
is because in recursive IC method, all redundant calculation are
completely eliminated, thus every cell in the array is processed
only once. Therefore, the time consumed is not related to the size
of window. On the contrary, Naive method travel every cells in
all windows and its running time is increasing based on the total
window size.

Fig. 13: Query Execution Time by Window Sizes, 20◦ × 20◦ NDVI

Fig. 14: Query Execution Time by Window Sizes, 30◦ × 30◦ NDVI

Figure 13 and Figure 14 show the 20◦×20◦ and 30◦×30◦ cases.
The results shows considerable acceleration has been achieved
for the recursive IC method against the SciDB’s built-in naive
method. With the window size to be 51 × 51 as in the real appli-
cation, recursive IC method achieves a speedup factor around 10
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while basic IC method achieves a speedup factor about 3. In the
largest 30◦ × 30◦ case, the naive method needs more than 23 min-
utes and the recursive IC method only cost less then 3 minutes.
Figure 15 below summarizes the experiment results only includ-
ing the cases with window size settings in real application of the
earth science benchmark as 51 × 51.

Fig. 15: MODIS Gridding Task Experiment Summary

Compared with time complexity analyzed in Section 5, the im-
provement seems not as big as in theory. This is because the
result arrays of NDVI tasks are not very dense. The density can
be found in Table 4. Our proposed method achieves best perfor-
mance improvement when dealing with dense arrays. For sparse
arrays, naive method can skip the empty cells but in incremen-
tal computation methods, during the IC computation round, ev-
ery step is necessary as to update the buffer tools. Therefore, for
a sparse array, the performance improvement will get some dis-
count.

6.3 Synthetic Data Experiment
In order to thoroughly evaluate the performance of the meth-

ods, we generated several series of synthetic data to check how
they perform with various settings of different parameters. The
attribute values of arrays are randomly generated in range [0,
100000].
6.3.1 Parameter: Dimension Number

This series of evaluations are designed to check how the meth-
ods performs when array with more than 3 dimensions is pro-
cessed. Because such high dimensional array is not included in
the previous experiment of real earth science application.

Table 5 illustrates the array metrics designed in this evaluation.
For all cases, array sizes are set to 1048576, and window sizes
are set to 1024. Meanwhile, the number of dimensions increases
from 2 to 5. Array sizes and window sizes are designed to be
the fixed so that the overall workload is the same for the naive
method in all cases. Besides, the schema of array and window
are designed to be as evenly distributed as possible so that the
importances of all dimensions are almost the same. This is to en-
sure the evaluation can expose the behaviours of methods when
dealing with high-dimensional array. For example, a 2-D array
whose schema is 10000 × 2 will mostly shown similar character-
istic to a 1-D array with dimension size 10000, while a 2-D array
with schema 100 × 100 behaviours differently for sure.

In the table, Wn stands for the window size in last dimension.
This parameter is listed separately because it is the crucial factor
makes performance different between basic IC method [26] and

Table 5: Evaluation Data Design to Check Dimension Number

Dimensions Array Schema Window Schema Wn

2D 1024 × 1024 32 × 32 32
3D 64 × 64 × 256 8 × 8 × 16 16
4D 32 × 32 × 32 × 32 4 × 4 × 8 × 8 8
5D 16 × 16 × 16 × 16 × 16 4 × 4 × 4 × 4 × 4 4

naive method.
All six aggregate functions are evaluated in this experiment.

They are divided into 3 groups and aggregates in the same group
has almost the same performance. Therefore, in each group only
one function’s execution time is displayed in the result as the rep-
resent of that group.

Fig. 16: Query Execution Time by Dimension Numbers, Summation Aggre-
gate

Figure 16 shows the result of the sum/avg aggregate group.
From the result, a very strange fact is that as the number of dimen-
sions gets higher, the naive method surprisingly becomes very
slow than expected. According to the data design, array size and
window size are both fixed, thus the workload for naive method
should remain the same in all evaluation cases. It means the exe-
cution time of naive method is supposed to be almost fixed. The
reason caused this phenomenon is not clear. One assumption is
that with more and more dimensions, the cost to locate and ac-
cess one single cell is getting more and more expensive. In pro-
posed recursive IC method, every cell is only visited once and
this heavier access cost does not cause a big influence. How-
ever, in naive method, one single cell is visited so many times
as all windows contain this cell has to access it once through the
computing process. The basic IC method has the similar prob-
lem because the repeated cell accessing remains the same in most
dimensions except the IC dimension. This makes the behaviours
of naive method and basic IC method similarly slow when the
number of dimensions gets big.

Here is results of the other two aggregate groups as shown in
Figure 17 and Figure 18. The results show the same pattern. Ac-
tually, the execution time of different aggregate functions are so
similar on same parameter settings that tiny differences can be
shown in the figure when draw all of them together in a single
figure. It’s also consistent to the time complexity analyzed in
chapter 5 that they all have the same complexity. Therefore, in
the following experiments, we take variance as the represent of
all these six aggregates and focus on the other interesting param-
eters.
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Fig. 17: Query Execution Time by Dimension Numbers, Minimum Aggre-
gate

Fig. 18: Query Execution Time by Dimension Numbers, Variance Aggregate

6.3.2 Parameter: Array Size
This series of evaluation is designed to check how total sizes

of the arrays affect the performance of window aggregate query.
Six arrays with different size are generated. Table 6 illustrates the
data design details of this evaluation.

Table 6: Evaluation Data Design to Check Array Size

Dimensions Array Size Array Schema Data Size
2D 103 10 × 100 8.7KB
2D 104 100 × 100 87KB
2D 105 100 × 1000 869KB
2D 106 1000 × 1000 8.5MB
2D 107 1000 × 10000 86MB
2D 108 10000 × 10000 849MB

Three groups of evaluations with different window size settings
are conducted, with window of 5 × 10, 10 × 10 and 10 × 50.

Fig. 19: Query Execution Time by Array Size: 5 × 10 Window

Figure 19 shows the result of 5× 10 window case. Because the
window size is quite small, the performance improvement is not
so obvious. With larger window size cases shown in Figure 20
and Figure 21, the proposed method shows better performance.

Fig. 20: Query Execution Time by Array Size: 10 × 10 Window

Fig. 21: Query Execution Time by Array Size: 10 × 50 Window

6.3.3 Parameter: Window Size
This evaluation is designed to check the parameter of window

size. Because the amount of redundant computation is directly re-
lated to the window size, this parameter affects the improvement
factor of our proposed method against the naive method greatly.

Three different sized 2D arrays are evaluated here, whose sizes
are 1000× 1000, 5000× 5000 and 10000× 10000. Because naive
method consumes much time for large arrays, the window sizes
designed for the later two array are relatively smaller.

The results are shown in the Figure 22, Figure 23, and Fig-
ure 24. From the result, it is obvious that with larger window,
the proposed method achieve better improvement. Larger win-
dow means more redundant calculation exist in naive method, and
our previous work, basic IC method can reduce such unnecessary
calculation in one dimension. While our proposed recursive IC
method in this work can completely eliminating such unneces-
sary calculation in all dimensions and greatly improve the perfor-
mance. With the largest window 120×120 in Figure 24, recursive
IC method achieves a speedup factor of 64.07, finishing a almost
2 minutes task of naive method in less than 2 seconds.

Fig. 22: Query Execution Time by Window Size: 1000 × 1000 Array
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Fig. 23: Query Execution Time by Window Size: 5000 × 5000 Array

Fig. 24: Query Execution Time by Window Size: 10000 × 10000 Array

7. Related Work
Our previous works [26], [28] discuss a simple attempt to ac-

celerate the execution of window aggregate by incremental com-
putation. The proposed basic IC method in those works manages
to achieve incremental computation in one dimension. However,
the scientific data we are dealing with has multiple dimensions
and the basic IC solution is not good enough as most redun-
dant calculation still exists. One the other hand, the recursive IC
method we proposed in this work further optimizes incremental
computation of window aggregate, eliminates all redundant cal-
culation in every dimension. It is a real n-dimensional solution
and is a breakthrough compared with basic IC method whose im-
provement is limited in one single dimension.

Window aggregate is an important class of operators whose
acceleration has been well studied. SAGA [18] presents efficient
approaches for structural aggregates of array data. This work also
deals with multi-dimensional data and the window aggregate. But
it is focusing on reducing disk I/O cost . Our proposal exploiting
incremental computation scheme to eliminate redundant calcu-
lation is out of the scope of SAGA. Besides, the improvement
of SAGA is orthogonal to our work and thus can be adopted to-
gether. Their work is on the I/O level reducing unnecessary re-
dundant data accessing exists in storage hierarchy, while our work
is on the algorithm level reducing the redundant computation ex-
ists in query execution.

Incremental computation has been studied in the context of
stream data processing [16], [17]. while performance improve-
ment in these work is quite meaningful, they focus on 1D data and
multi-dimensional problems are out of scope. On the other hand,
stream data is quite different from array data which is prefetched
and unchanged during query processing. Therefore, the “window

aggregates” in stream data processing and array data processing
are actually two different type of query.

For temporal aggregates of interval data, important works ex-
ist, such as balanced-tree [14] and SB-tree [15], to incrementally
compute the query. The difference between these works and mine
is the the underlying data model is different. The works intro-
duced above are designed to deal with particular type of data, the
interval data. They are not suitable for multi-dimensional array
data, which is the target data type on which we herein focus.

A set of graphic processing studies are related to our work. The
convolution filter exploits incremental computation and it imple-
mented in OpenCV [21]. Nevertheless, it does not address large
arrays, which do not fit into memory and it works only in 2-D
cases. Some contest problems [29], [30] are more complicated
than our problem, although they completely differ from the sce-
nario of scientific data analysis tasks we try to solve in this work.
Diamond, hexagon, and polygonal shaped window aggregates are
discussed in [19], [20]; however, these algorithms are targeting 2-
D images and they are not applied to n-D scientific data. Thus,
such shapes are not supported by any array database systems, in-
cluding SciDB. Furthermore, all the above works focus only on
algorithms but lack a system design perspective and efficient so-
lution for huge data that can’t fit in memory. In this paper, on
the other hand, we provide design and implementation of the pro-
posed method on a distributed database system, SciDB.

About array databases, there are researches extending scientific
features, such as data versioning [31] and uncertain data [32].
Also, efficient distributed storage and parallel processing of ar-
ray data are discussed in work [33]. As the most popular array
DBMS, SciDB gains more attentions [2], [3], [4]. These works
focus on the architecture design and low-level array storage,
while our work is to improve a specific query in array database.

8. Conclusion
This paper proposes an efficient algorithm for window aggre-

gate operators in array databases based on an incremental com-
putation scheme. Window aggregate is an important operator in
array-oriented processing tasks and widely used in many scien-
tific fields. However this operator is very computation-intensive
and consumes long execution time. Based on our previous work,
we propose a further improved method, the recursive incremental
computation method to accelerate window aggregates by elimi-
nating all the redundant works exist in every dimension.

We developed acceleration techniques for 6 aggregate func-
tions that exploit different designs of buffer tools to efficiently
eliminate redundant calculation: “circle-list” for summation, av-
erage, variance and standard deviation, while “monotone queue”
for maximum and minimum.

Time and space complexity analysis is presented in the paper.
To evaluate the proposed method, all methods are fully imple-
mented into SciDB, which is a popular array database system.
Experiments includes a real applications in earth science and
synthetic data. The results of the experiments shows great im-
provement. Comparing with SciDB’s built-in operator that im-
plemented in naive method, the proposed method shows perfor-
mance improvement by a factor of 10 for the MODIS earth sci-
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ence benchmark. With a large window evaluation case over syn-
thetic data, proposed recursive IC method shows a speedup factor
of 64.
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[14] Moon, B., López, I. F. V. and Immanuel, V.: Scalable algorithms
for large temporal aggregation, Data Engineering, 2000. Proceedings.
16th International Conference on, IEEE, pp. 145–154 (2000).

[15] Yang, J. and Widom, J.: Incremental computation and maintenance of
temporal aggregates, The VLDB Journal, Vol. 12, No. 3, pp. 262–283
(2003).

[16] Li, J., Maier, D., Tufte, K., Papadimos, V. and Tucker, P. A.: No pane,
no gain: efficient evaluation of sliding-window aggregates over data
streams, ACM SIGMOD Record, Vol. 34, No. 1, pp. 39–44 (2005).

[17] Wu, Y., Maier, D. and Tan, K.-L.: Grand challenge: SPRINT stream
processing engine as a solution, Proceedings of the 7th ACM interna-
tional conference on Distributed event-based systems, ACM, pp. 301–
306 (2013).

[18] Wang, Y., Nandi, A. and Agrawal, G.: SAGA: array storage as a DB
with support for structural aggregations, Proceedings of the 26th in-
ternational conference on scientific and statistical database manage-
ment, ACM, p. 9 (2014).

[19] Sun, C.: Diamond, hexagon, and general polygonal shaped window
smoothing, Proc. VIIth Digital Image Computing: Techniques and Ap-

plications, Sydney (2003).
[20] Sun, C.: Moving average algorithms for diamond, hexagon, and gen-

eral polygonal shaped window operations, Pattern recognition letters,
Vol. 27, No. 6, pp. 556–566 (2006).

[21] Garcı́a, G. B., Suarez, O. D., Aranda, J. L. E., Tercero, J. S., Gra-
cia, I. S. and Enano, N. V.: Learning Image Processing with OpenCV
(2015).

[22] NASA: Moderate Resolution Imaging Spectroradiometer, http://
modis.gsfc.nasa.gov/.

[23] NASA: Earth Observing System Program, http://eospso.gsfc.
nasa.gov/.

[24] NASA: Terra Earth-observing satellite mission, http://terra.
nasa.gov/.

[25] NASA: Aqua Earth-observing satellite mission, http://aqua.
nasa.gov/.

[26] Jiang, L., Kawashima, H. and Tatebe, O.: Incremental window aggre-
gates over array database, Big Data (Big Data), 2014 IEEE Interna-
tional Conference on, IEEE, pp. 183–188 (2014).

[27] Stonebraker, M., Duggan, J., Battle, L. and Papaemmanouil, O.: Earth
Science Benchmark over MODIS data, http://people.csail.
mit.edu/jennie/elasticity_benchmarks.html.

[28] Jiang, L., Kawashima, H. and Tatebe, O.: Implementing Incremental
Aggregate Computation on SciDB, Research report of system software
and operating system(OS), Vol. 2014, No. 2, pp. 1–8 (2014).

[29] UVAOnlineJudge: Maximum Sum Problem, https://uva.
onlinejudge.org/external/1/108.html.

[30] ACM ICPC, J. D.: Square Carpets,, http://judge.u-aizu.ac.
jp/onlinejudge/description.jsp?id=1128 (2003).

[31] Seering, A., Cudre-Mauroux, P., Madden, S. and Stonebraker, M.:
Efficient versioning for scientific array databases, Data Engineer-
ing (ICDE), 2012 IEEE 28th International Conference on, IEEE, pp.
1013–1024 (2012).

[32] Ge, T. and Zdonik, S.: Handling uncertain data in array database sys-
tems, Data Engineering, 2008. ICDE 2008. IEEE 24th International
Conference on, IEEE, pp. 1140–1149 (2008).

[33] van Ballegooij, A., Cornacchia, R., de Vries, A. P. and Kersten, M.:
Distribution rules for array database queries, Database and Expert
Systems Applications, Springer, pp. 55–64 (2005).

15ⓒ 2016 Information Processing Society of Japan

Vol.2016-OS-136 No.5
2016/2/29


