FIT2009 (55 8 BMEHMFRIMTI 2 —3 L)

RA-008

A Deterministic Approximation Algorithm for Maximum 2-Path
Packing

Ruka Tanahashi*

Abstract

This paper deals with the maximum-weight 2-path
packing problem (M2PP), which is the problem of
computing a set of vertex-disjoint paths of length 2
in a given edge-weighted complete graph so that
the total weight of edges in the paths is maxi-
mized. Previously, Hassin and Rubinstein gave a
randomized cubic-time approximation algorithm for
M2PP which achieves an expected ratio of % —e=
0.5223 — ¢ for any constant € > 0. We refine their al-
gorithm and derandomize it to obtain a determinis-
tic cubic-time approximation algorithm for the prob-
lem which achieves a better ratio (namely, 0.5265 — ¢
for any constant € > 0).

1 Introduction

Let G be an edge-weighted complete graph whose
number of vertices is a multiple of 3. A 2-path pack-
ing of G is a set of 1|V(G)| vertex-disjoint paths of
length 2 in G. Given G, M2PP requires the com-
putation of a 2-path packing P of G such that the
total weight of edges on the paths in P is maximized
over all 2-path packings of G.

M2PP is a classic NP-hard problem; indeed, its
decision version is contained in Garey and Johnson’s
famous book on the theory of NP-completeness [2].
Hassin and Rubinstein [4] have presented a random-
ized cubic-time approximation algorithm for M2PP
which achieves an expected ratio of %? — € for
any constant € > 0. In this paper, we improve
their result in twofold by presenting a determinis-
tic cubic-time approximation algorithm for M2PP
which achieves a better ratio (namely, 0.5265 — € for
any constant € > 0).

To obtain our deterministic approximation algo-
rithm for M2PP, we first obtain a new randomized
cubic-time approximation algorithm for M2PP by
refining the algorithm due to Hassin and Rubinstein.

*Department of Mathematical Sciences, Tokyo Denki
University, Hatoyama, Saitama 350-0394, Japan. Email:
ruka@rnc.r.dendai.ac.jp

tSupported in part by the Grant-in-Aid for Scientific Re-
search of the Ministry of Education, Science, Sports and Cul-
ture of Japan, under Grant No. 20500021. Department of
Mathematical Sciences, Tokyo Denki University, Hatoyama,
Saitama 350-0394, Japan. Email: chen@r.dendai.ac.jp

51

Zhi-Zhong Chen'

Like their algorithm, our new randomized algorithm
starts by computing a maximum cycle cover C in
the input graph G, then processes C to obtain three
2-path packings of G, and finally outputs the max-
imum weighted packing among the three packings.
Unlike their algorithm, our algorithm processes tri-
angles in C in a different way than the other cy-
cles in C. By carefully analyzing the new algorithm,
we can show that it achieves an expected ratio of
0.5265(1 — €) for any constant € > 0. We then de-
randomize the algorithm using the pessimistic esti-
mator method [5]; the derandomization is nontrivial.

2 Basic Definitions

Throughout the remainder of this paper, a graph
means an undirected graph without parallel edges
or self-loops each of whose edges has a nonnegative
weight.

Let G be a graph. We denote the vertex set of
G by V(G) and denote the edge set of G by E(G). -
For a set F of edges in G, G — F denotes the graph
obtained from G by removing the edges of F. The
degree of a vertex v in G is the number of edges
incident to v in G. The weight of a set F' of edges
in G, denoted by w(F), is the total weight of edges
in F. If F consists of a single edge e, we write w(e)
instead of w({e}). The weight of a subgraph H of
G, denoted by w(H), is w (E(H)).

A cycle in G is a connected subgraph of G in which
each vertex is of degree 2. A path in G is either a
single vertex of G or a connected subgraph of G
in which exactly two vertices are of degree 1 and
the others are of degree 2. A path component of
G is a connected component of G that is a path.
The length of a cycle or path C, denoted by |C]|,
is the number of edges in C. We call a cycle C
of G a triangle if |C| = 3, and call it a 4% -cycle
otherwise. A cycle cover of G is a subgraph H of
G with V(H) = V(G) in which each vertex is of
degree 2. A mazimum-weight cycle cover of G is a
cycle cover of G whose weight is maximized over all
cycle covers of G. A matching of G is a (possibly
empty) set of pairwise nonadjacent edges of G. A
mazimum-weight matching of G is a matching of G
whose weight is maximized over all matchings of G.

(% 157D

FIT2009 (55 8 EIBHABFRIMT #—5 L)

The distance between two vertices v and v in G is
the shortest length of a path between u and v in G.
For arandom event A, Pr[A] denotes the probabil-
ity that A occurs. For a random event A and one or
more random events By, ..., By, Pr[A | Bi,..., By]
denotes the probability that A occurs given the oc-
currences of By, ..., B. For a random variable X,
E[X] denotes the expected value of X. For a ran-
dom variable X and one or more random events
By,...,Bp, £[X | By,...,Bp] denotes the expected
value of X given the occurrences of By, ..., Bp.

3 A Randomized Approxima-
tion Algorithm for M2PP

Throughout the remainder of this paper, we fix
an instance G of M2PP and an arbitrary constant
€ > 0. Moreover, we fix a maximum-weight 2-path
packing Opt of G.

The outline of Hassin and Rubinstein’s algo-
rithm [4] (H&R-algorithm for short) is as follows:

(1) Compute a maximum-weight cycle cover C of

G. (Comment: w(C) > w(Opt).)

(2) Modify C by breaking each cycle C in C with
|C| > 1 into cycles of length at most 1+ £ such
that the total weight of the cycles is at least
(1 —¢ - w(C). (Comment: w(C) > (1 —¢)-
w(Opt).)

Process C to obtain three 2-path packings Py,
P, and P3 of G and then output the maxi-
mum weighted packing among them. (Com-
ment: The names P;, P», and P; are inherited
from the H&R-~algorithm.)

®3)

Our algorithm differs from H&R-algorithm only
in the computation of P;. Before detailing our new

computation of P3, we first review their results on
P; and P,.

Lemma 3.1 [4] Let o - w(C) be the total weight
of edges in triangles in C. Then, w(Py) > (3 +
2a)w(C) > (3 + La)(1 —€) - w(Opt).

Lemma 3.2 [4] Let 8- w(Opt) be the total weight
of those edges {u,v} such that some path of length 2
in Opt contains both v and v and some cycle in C
contains both u and v. Then, w(Py) > - w(Opt).

We next detail our new computation of P which
is basically a refinement of the computation of P;
in H&R-algorithm and is also a modification of an
algorithm in [1] for a different problem. The first
step is as follows:

52

1. Compute a maximum-weight matching M in a
graph Gy, where V(G1) = V(G) and E(G;) =
{{u,v} € E(G) : wu and v belong to different
cycles in C}.

Note that w(Mi) is heavy when Opt contains a
heavy set of edges between cycles in C. So, we want
to add the edges of M; to C. However, adding the
edges of M; to C yields a graph which may have a lot
of vertices of degree 3 and is hence far from a 2-path
packing of G. To remedy this situation, we want to
compute a set R of edges in C and a subset M of
Mj such that adding the edges of M to C — R yields
a graph C’ in which each connected component is a
cycle or path. The next four steps of our algorithm
are for computing R, M, and C’. Before describing
the details, we need to define several notations. Let
Ci,...,Cy be the cycles in C. Moreover, throughout
the remainder of this paper, let p be the smallest
positive real number satisfying the inequality 3p? —
2p° > 1%3 the reason why we select p in this way
will become clear in Lemma 5.2. Note that 0.276 <
p < 0.277; hence (1 — p)? > -é— Now, we are ready
to describe Steps 2 through 5 of our algorithm.

2. For each cycle C; in C, process C; (indepen-
dently of the other cycles in C) by performing
the following steps:

(a) Initialize R; to be the empty set.

(b) If |C;| = 3, then for each edge e of C;, add
e to R; with probability p. (Comment:
After this step, 0 < |R;| < 3. In contrast,
|R;| =1 in H&R-algorithm.)

(c) If |C;| > 4, then perform the following
steps: '

i. Choose one edge e; from C; uniformly
at random.

il. Starting at e; and going clockwise
around Cj, label the other edges of C;
as es, ..., €., where ¢ is the number of
edges in C;.

iii. Add the edges e; with j =1 (mod 4)
and j < c—3to R;. (Comment: R; is
a matching of C; and |R;| = [l%lj)

iv. If ¢ = 1 (mod 4), then add e._; to
R; with probability %. (Comment: R;
remains a matching in C;. Moreover,
ERil] =197t 1. 3 = 1)

v. If ¢ = 2 (mod 4), then add e._; to
R; with probability % (Comment: R;
remains a matching in C;. Moreover,
ERif] = &2 1. 1 = 16

vi. If ¢ = 3 (mod 4), then add e._s to
R; with probability %. (Comment: R;
remains a matching in C;. Moreover,

8[]Riﬂ=l§i_‘§+1.%:;%d')

(% 143D

FIT2009 (25 8 MBHRMFEM I —5 L)

3. Let R=RU---UR,.

4. Let M be the set of all edges {u,v} € M; such
that both u and v are of degree 0 or 1 in graph
C—R.

5. Let C’ be the graph obtained from C — R by
adding the edges in M. (Comment: Each con-
nected component of C’' is a cycle or path.
Moreover, every triangle in C’ is also a trian-
gle in C while every 4%-cycle C in C’ contains
at least two edges in M.)

Note that our algorithm processes those cycles C;
of C with |C;| > 4 as in the H&R-algorithm. So, we
have the following lemma:

Lemma 3.3 For every cycle C; of C with |C;| > 4,
the following hold:

(1) For every edge e of C;, Prle € R] = %.

(2) For every vertex v of C;, v is incident to at
most one edge of R and the probability that v is
incident to one edge of R is %

By the comments on Step 5, C’ is not so far from
a 2-path packing. We can now finish computing P;
by performing the following steps:

6. For each cycle C in C’ with |C| > 4, choose one
edge in E(C) N M uniformly at random and
delete it from C’.

7. If C’ has at least one path component, then per-
form the following two steps:

(a) Connect the path components of C’ into a
single cycle Y by adding some edges of G.

(b) Break Y into paths each of length 2 by
removing a set F' of edges from Y with
w(F) < §-w(Y).

8. Remove the minimum-weight edge from each
triangle in C’. (Comment: After this step,
each connected component of C’ is a path of
length 2.)

9. Let P3 =C.
The following fact is clear from Steps 7 through 9:

Fact 3.4 Let Eg be the set of edges of C that re-
main in C' immediately after Step 6. Then, w(Ps) >
2

sw(Es).

Consider an edge e € M; U E(C). Let t. be the
probability that e remains in ¢’ immediately after
Step 6. If e appears in a triangle in C, then by
Step 2b, t. = 1 —p. If e € E(C) does not appear in
a triangle in C, then by Statement (1) in Lemma 3.3,

53

te = 2. If e € My, then we can claim that t, > 2.
So,

E[w(Es))
> (1-pla-w(C)+ 2(1 —a)-w(C) + %w(Ml)

S+
4

Note that the above argument is informal because
we have not proved the claim. Indeed, we will
not prove the claim because we will never use it
to prove anything. The claim and the above in-
formal argument are only for helping the reader
understand what we are going to do next. In
fact, the next section shows how to derandomize
Steps 2 through 6 (using the pessimistic estimator
method [5]) to obtain Eg deterministically so that
w(Ee) > (2 + (3 - p)a)w(C) + Sw(M;). Of course,
this lower bound on w(Eg) will be proved rigorously
(without using the unproved claim).

(G =)o) w(0) + Fgu(a).

4 A Crucial Lemma

This section proves a lemma that is crucial for
our derandomization of the above randomized al-
gorithm. It is similar to Lemma 3 in [4] but does
not follow from the latter directly.

Lemma 4.1 Consider an arbitrary i € {1,...,r}
with |C;| > 4, and consider two arbitrary vertices u
and v of C;. Let A1 be the event that the degree of
v in graph C; — R; is 1. Let Ay be the event that
u and v are the endpoints of some path component
of C; — R;. Let As be the event that u and v are
endpoints of two different path components of C; —
R;. For each j € {1,2,3}, let s; = Pr[A;]. Then,
15y + Ls3 < 151, or equivalently, $so + 1s3 < §.

PrROOF. We prove the lemma by a case-analysis.
Let ¢ = |C;| and let d be the distance between u
and v in C;. Since s3 < s, we need to consider only
those cases where s # 0. For example, s = 0 if
d > 4+ (|C;| mod 4) and thus we ignore such C;
in the rest of the proof. We say that C; is long if
|C;| > 8, and is short otherwise. Note that if C;
is long, then at least two edges are added to R; in
Step 2c. For convenience, starting at v and going
clockwise around C;, we label the edges of C; as fi,

f2, --., fe. To prove that %32 + %33 < %, we may
assume that the edges incident to u in C; are f3 and
fd+1-

Case 1: |C;| = 4. In thiscase,d=1or2. Ifd=1
(cf. Figure 1(1)), then sy = 7 and s3 = 0. If d = 2,
then s = s3 = 0. So, we always have %32+%53 < %.

Case 2: |C;| = 5. In this case, d = 1 or 2. If
d = 1 (cf. Figures 1(2) through (5)), then sy =

(& 121D

FIT2009 (55 8 [EFHRM=FARIMT +—35 L)

3838383
)] @

fﬁji@i@i{}%

®) (10

()

it

(11) (12) (13) (14) (15)
(16) an (18) (19)
(20) (21) (22) (23)

Figure 1: Short cycles C;, where the edges in R; are
dotted.

4=5and33—25 7= 15 LHd=2(cf
Figures 1(6) hrough (8)), then sy = é 1= and
&- So, we always have 1 32+%33 <i

Case 3: |C;| = 6. In this case, d = 1, 2, or 3.
Ifd=1 (cf Figures 1(9) through (12)), then Sg =
L=1 Ifd=2(cf Flgures 1(13)

s3 =253 =

and (14)), then s, =0and s3 =2-1-1 = 1. Ifd =3
(cf. Figures 1(15) and (16)), then s3 = 2- é A=1
and s3 = 0. So, we always have 2s» + 3s3 < 1.

Case 4: |C;| = 7. In this case, d = 1, 2, or 3. If

d = 1 (cf. Figures 1(17) through (19)), then s; =
$ - i=sandss=2-1.3 =2 1fd =2 (cf
Fi ue1(20)) then s, = 1.2 = 2 and s3 = 0. If
d = 3 (cf. Figures 1(21) through (23)), then s, =
i. %=2—8and33:2 1.2 = 3 So, we always
have so + §s3 < L.

C’ase 5: C; is long and |C;| = 0 (mod 4). In this
case, so = 0if d # 3. Moreover, if d= 3 then sg =
and s3 = 0. So, we always have s, + 3 < 1.

C'ase 6: C; is long and |C;] = 1 (mod 4) Let
k=<t and S = {fi, fu, f5, f.}. Obviously, sz =0
if d > 5. So, it suffices to consider the following
subcases:

4

Case 6.1: d = 4. In this case, let § =
{f1, fa, f5, fc}- Then, sy = % . % because event
As occurs exactly when edge fs is selected as e;
in Step 2(c)i and edge f3 is not added to R; in
Step 2(c)iv. Moreover, if event Ag occurs, exactly
one of the following events occurs:

o Ag1: SN R ={fa fc}
o Az SNR; = {f1, fs}.
e A33: SNR; = {f., fs} and f3 € R;.
o Asa: SO R, = {f1, fa}.

Obviously, event As; occurs exactly when one
of fo, fis, ..., fc is selected as e; in Step 2(c)i,
implying that Pr[As] ﬁg—l Similarly, event
A3z occurs exactly when one of fi, fio, fi4, ...,
fe—3 is selected as e; in Step 2(c)i, implying that
Pr[43q] = k=1 Moreover, event As 3 occurs exactly
when f5 is selected as e; in Step 2((:)1 and f3 is added
to R; in Step 2(c)iv, implying that Pr[dss] = 1 - 1.
Furthermore, event As 4 occurs exactly when fg is
selected as e; in Step 2(c)i and fy is added to R; in
Step 2(c)iv, implying that Pr[Az 4] = . There-
fore, s3 = 2(E=1 +.1. 1) = 2k=3 Consequently,
1s,+1s 3+4k3<1forc—~4k+1
292 T 353 = 8 =
Case 6.2: d = 3. In this case, let S =
{f1, f3, f4, fe}. Then, s; = E=1 because event A,
occurs exactly when one of fg, fiz, ..., fc is se-
lected as e; in Step 2(c)i. Moreover, if event A
occurs, exactly one of the following events occurs:

) A3,1: SNR; = {f37fc}'
o A3 SNR; ={f1, fa}
o A3z SNR; ={f1, f3}

Obviously, event Ag; occurs exactly when f5 is
selected as e; in Step 2(c)i and f3 is added to R; in
Step 2(c)iv, implying that Pr[As ;] = 1.2, Similarly,
event As o occurs exactly when fg is selected ase; in
Step 2(c)i and fy is added to R; in Step 2(c)iv, im-
plying that Pr[A3 o] = c 4 Furthermore, event Ag 3
occurs exactly when f3 is selected as e; in Step 2(c)1

cand fy is added to R; in Step 2(c)iv, 1mply1ng that -
L.

54

Pr[Ass) = < 1 Therefore .93 =3.2-7= 2%2 Con-
sequently, 232+ 433 26 1,3 160 <3 i for c=4k+1.
Case 6.3: d = 2. In this case, let S =

{f1, f2, f3, f}. Then, sp = % - § because event A,
occurs exactly when fs is selected as e; in Step 2(c)i
and f3 is added to R; in Step 2(c)iv. Moreover, if
event Ag occurs, exactly one of the following events
occurs:

. A3,1: SNER; =
. A3’2Z SNR; =

{f%.fc}'
{f1, fa}.

(& 153

FIT2009 (%5 8 EIEEHREIFFEM I+ —F L)

Obviously, event As; occurs exactly when fo is
selected as e; in Step 2(c)i and f, is added to R; in
Step 2(c)iv, implying that Pr[As 1] = % - 3. More-
over, event As o occurs exactly when f3 is selected as
e1 in Step 2(c)i and f; is added to R; in Step 2(c)iv,

implying that Pr[Ass] = % . i. Therefore, s3 =
2-% ‘11 = 2c Consequently, 2324—433 = 8€-|—86 < é
for c =4k + 1.

Case 6.4: d = 1. In this case, s9 = = because

event A, occurs exactly when fo is selected as e
in Step 2(c)i and f. is added to R; in Step 2(c)iv.
Moreover, event Az occurs exactly when {u,v} € R;.
Therefore, s3 = } by Statement (1) in Lemma 3.3.
Consequently, %82+%83 = iJr% < %for c = 4k+1.

Case 7: C; is long and |C;| = 2 (mod 4). Let k =
=2 and S = {f1, fs, fe, fc}. Obviously, sy = 0 if
d ¢ {1,3,5}. So, it suffices to consider the following
subcases:

Case 7.1: d = 5. In this case, let S
{f1,fs, fer fe}- Then, so = % . % because event
Ay occurs exactly when edge fg is selected as e
in Step 2(c)i and edge fs is not added to R; in
Step 2(c)iv. Moreover, if event Az occurs, exactly
one of the following events occurs:

e A3t SNR; = {fe,fc} and fs € R;.
o Azz: SNRy = {fs,fc} and f2 € R;.
o A33: SNR;={f1,fs} and fr ¢ R;.
e A34: SNR;={f1,fs} and f7 € R;.

Obviously, event Az occurs exactly when fg is
selected as ey in Step 2(c)i and fy is added to R; in
Step 2(c)iv, implying that Pr[As 1] = %% Similarly,
event As o occurs exactly when f; is selected as e;
in Step 2(c)i and f. is added to R; in Step 2(c)iv,
implying that Pr[As o] = 1 . Moreover, event Az 3
occurs exactly when one of fl, f11, f15, -+ fe—3 is
selected as e; in Step 2(c)i, implying that PI‘[Ag,g] =
k—zl. Furthermore, event Az 4 occurs exactly when
fr is selected as e; in Step 2(c)i and f5 is added to
R; in Step 2(c)iv, implying that Pr[As4] = 1 - 1.

c 2
Therefore, s3 = 3- % + ﬁz—l = Q—kzic'i Consequently,

%32+%33:4lc+%§§forc:4k+2.
Case 7.2: d = 3. In this case, let § =

{f1, f3, fa, fe}- Then, s3 = % . % because event
As occurs exactly when edge f3 is selected as eg in
Step 2(c)i and edge f; is added to R; in Step 2(c)iv.
Moreover, if event Ag occurs, exactly one of the fol-
lowing events occurs:

° A271: SNR; = {f4,fc} and f6 ¢ R;.
o Aot SNR; ={f4, fc} and fs € R;.

Obviously, event Ay 1 occurs exactly when one of
fi0, fia, ---, fec is selected as e; in Step 2(c)i, im-
plying that Pr[Ady;] = %=1

#=2. Moreover, event Az

bb

occurs exactly when fg is selected as e; in Step 2(c)i
and fy is added to R; in Step 2(c)1v, 1.mply1ng that

Pr[As o] = Therefore, sp =kl 1 — 2kl
Consequently, ész +1sy = 21 + .8.15 < 1 for
c=4k + 2.

Case 7.3: d = 1. In this case, s2 = ¢ because

event As occurs exactly when fs is selected as e
in Step 2(c)i and f, is added to R; in Step 2(c)iv.
Moreover, event Az occurs exactly when {u, v} € R;.
Therefore, s3 = % by Statement (1) in Lemma 3.3.
Consequently, %324—%33 = 4lc+% < % for ¢ = 4k+2.

Case 8: C; is long and |C;| = 3 (mod 4). Let k =
% and S = {f1, fe, fr, fc}. Obviously, s; = 0 if
d ¢ {2,3,6}. So, it suffices to consider the following
subcases:

Case 8.1: d = 6. In this case, let S
{f1, fe, fr, fc}. Then, sy = % . % because event
Ao occurs exactly when edge fr is selected as e
in Step 2(c)i and edge f4 is not added to R; in
Step 2(c)iv. Moreover, if event Az occurs, exactly
one of the following events occurs:

° A3’1: SN R@ = {f7,fc} and f4 S Rz
. A3,22 SNR; = {f7,fc} and f3 c R;.

Obviously, event As; occurs exactly when f7 is
selected as e; in Step 2(c)i and and fy is added to
R; in Step 2(c)iv, implying that Pr[As;] = 1.3
Moreover, event As o occurs exactly when f3 is se-
lected as e; in Step 2(c)i and f. is added to R; in
Step 2(c)iv, implying that Pr[Ass] = 1 - 2. There-
fore, s3 = 2+ 2 = 2. Consequently, 353 + 753 =
E+E <gforc=4k+3.

Case 8. 2 d = 3. In this case, let S
{f1, f3, fa, fc}- Then, if event Ay occurs, exactly

one of the following events occurs:

e Ayq: SNR, ={fs, fc} and fr € R;.
o Aso: SNR; ={f4,fc} and fr € R;.

Obviously, event A, ; occurs exactly when one of
fi1, fisy -~ fc is selected as e; in Step 2(c)i, im-
plying that Pr[As ;] = £=1. Moreover, event Ao
occurs exactly when f7 is selected as e; in Step 2(c)i
and fy is added to R; in Step 2(c)1v, 1mp1y1ng that
Pr(As,] == 3 . Therefore, sy = £=1 4 4C]flzl.

Sunllarly, if event As occurs, exactly one of the
following events occurs:

° A3’1I SﬂRz = {f3fo}‘
e Aso: SNR; = {f1, fa}.

Obviously, event As; occurs exactly when f3 is
selected as e; in Step 2(c)i and f, is added to R; in
Step 2(c)iv, implying that Pr[A3] = - 3. More-
over, event Az o occurs exactly when fy is selected as
e; in Step 2(c)i and f; is added to R; in Step 2(c)iv,

(% 152

FIT2009 (55 8 MIEHRBIFEM I+ —5 L)

implying that Pr[Asq] = 1. 3. Therefore, s

2- % = 2. Consequently, $so+4s3 = #1438 <

forc=4k + 3.
Case 8.3: d = 2. In this case, s3 = 1 - 2 because
event As occurs exactly when f3 is selected as e;

in Step 2(c)i and f. is added to R; in Step 2(c)iv.

1
8

Moreover, s3 = 0. Therefore, %32 + —}133 = g‘o’é < %
for ¢ = 4k + 3. O
5 Derandomizing Steps 2

through 6

For convenience, we define a random variable z; for
each i € {1,...,7}, as follows:

o If ICZI = 3, then let z; = R;.

o If |C;| > 4, then let 2; denote the pair (e, b),
where e; is the edge randomly selected in
Step 2(c)i and b is the number of edges added to
R; in Steps 2(c)iv through 2(c)vi. (Comment:
b<1.)

Obviously, x; has 8 possible values if |C;| = 3; z; has
|Ci| possible values if |C;| > 4 and |C;| = 0 (mod 4);
x; has 2|C;| possible values if |C;| > 4 and |C;] £ 0
(mod 4).

5.1 Outline of the Derandomization

We may assume that our algorithm processes the
cycles in C in the following order: Ci,...,C, where
the triangles precede the others. Then, the compu-
tation till the end of Step 2 can be represented by
a rooted tree 7 as follows. The root of 7 corre-
sponds to Cy and each child of the root corresponds
to C5. In general, if a node of T corresponds to C;
(1 <4< r~1), then each child of the node in T
corresponds to Cj41.

Consider a cycle C; € C. Let u be a node of
T corresponding to C;. Let h be the number of
possible values of the random variable x;. Then, u
has h children v4,...,vp in 7. Fix an arbitrary one-
to-one correspondence between the possible values
of z; and the children of y. The edge from y to
v; (1 <3 < h)in 7 is labeled with the possible
value of z; corresponding to v;. This finishes the
construction of 7.

Fact 5.1 Let p be a nonleaf node of T, let C; be
the cycle in C corresponding to u, and let vy, ..., vy
be the children of p in T. For each j € {1,...,h},
let £; be the label of the edge from p to v;. Define
a function g; as follows: For each j € {1,...,h},

qz(@) = PI‘[{E,L = ZJ] Then, Z?:l qi(fj) = 1.

56

The size of 7 is exponential and we cannot afford
to construct it explicitly. The essence of the pes-
simistic estimator method is to associate a value to
each node of T satisfying the following four condi-
tions:

(C1) The value of a given node of 7 can be com-
puted in polynomial time.

(C2) The value of each leaf node yu of 7T is smaller
than or equal to E[w(Ee) | 1 = £1,...,%, =
£,], where {1, ..., £, are the labels of the edges
on the path from the root to yin 7.

(C3) The value of each nonleaf node p of 7 is
smaller than or equal to the largest value of
a child of y in 7.

(C4) The value of the root is large enough (com-
pared to the maximum weight of a 2-path pack-
ing of G).

Instead of constructing 7 explicitly, we only con-
struct one path @ of 7 by starting at the root
and repeating the following (till arriving at a leaf
node of 7): Construct the child of the current node
whose value is the largest among all the children,
and then move to that child. Once we have ob-
tained @), we start at the root and walk down path
(). While walking down @, we process Cy,...,C,
where we make our choices according to the labels on
the edges of Q (instead of making random choices).
In this way, we arrive at a leaf node v and obtain
Ry, ..., R, deterministically. By repeatedly apply-
ing Condition (C3), we can see that the value of
v is at least as large as that of the root. More-
over, by Condition (C2), the value of v is at most

as large as Ejw(FEg) | 1 = 41,...,2, = £,], where
£1,...,4, are the labels of the edges in Q. Thus,
Elw(Eg) | 1 = £1,...,2, = 4] is at least as large

as the value of the root, and is hence large enough
by Condition (C4).

Now that we have Ry, ..., R,, we can proceed
to Steps 3 through 5, obtaining R, M, and C'.
Obviously, after further performing Step 6, we ob-
tain C' whose expected weight is E[w(Ee) | 1 =
4y, ...,z, = £;]. Fortunately, instead of performing
Step 6, we can perform the following (deterministic)
step:

6’. For each cycle C in (', choose the edge in
E(C)NM of minimum weight and delete it from
c.

After Step 6, w(C’) is at least as large as
Elw(Ee) | €1 = 44,...,x, = £-] and is hence at least
as large as the value of the root.

(& 10D

FIT2009 (35 8 OMEHRMZER I+ —3 L)

5.2 Evaluating a Node of 7

When applying the pessimistic estimator method,
the difficulty is in how to define the value of a node
pwof T.

Let 1 be anode of 7. Let C1,...,C;_1 be the cy-
cles corresponding to the ancestors of p in 7. Note
that ¢ = 1 if p is theroot of T,and ¢ =7 +1if p is
a leaf node of 7. Let @) be the path from the root
to u in 7. Suppose that we process Ci,...,C;1
where we make our choices according to the la-
bels on the edges of @ (instead of making random
choices). In this way, we obtain Ry, ..., R;_1. Based

on Ry,..., R;_1, we construct an auxiliary graph H,
as follows:
o V(H,)=V(G) and E(H,) C E(C)U M.

e E(H,)NE(C) = U;_1(E(C)) - Ry).

e For each edge {u,v} € M, e € E(H,) if and
only if elther both 4 and v are incident to edges
in UJ ! R, or one of them is incident to an

edge in szl R; and the other is contained in

U;:i V(Cj)~

Note that each connected component of H, is a
path or cycle. We classify the path components K
of H, into two types as follows:

o Type 1: At least one endpoint of K is contained
i—1
in UJ 1 V()

e Type 2: Both endpoints of K are contained in
Uj=: V(C)).

Figure 2: An example of E(C)UM;, where C; =
the edges in M; are thin, the edges in C are bold,
the edges in |J;_ =1 ! R; are bold broken, the number
near each edge is 1ts type, and the edges of H, are
those of type h with 3 < h < 9.

C7>

Moreover, we define the type of each edge e €
E(C)U M, at p and assign a coefficient c,(€) to e as
follows (see Figure 2):

e Type 1: Neither endpoint of e is contained in

Ui=1 1V(C;). Define c,(e) as follows:
— If e appears in some triangle Cj, then
cule)=1-p
— If e appears in some 4%-cycle C;, then
cu(e) = y

— If e € My, then cyu(e) = 35

57

Type 2: At least one endpoint of e is contained
in Uz 1 V(C;) but e is not an edge in H,. De-

fine cu(e)

e Type 3: e € M; and e appears in a cycle of H,,.
Define c,(e) = 231, where b is the number of
edges in both M; and the cycle of H,, containing

€.

e Type 4: Either e is an edge of both C and H,,,
or e is an edge in M; and appears in a type-1
path component of H, and both endpoints of e

are contained in U2 . V(C). Define c,(e) = 1.

e Type 5: e is an edge in My and appears in a
type-1 path component of H, and one endpoint
of e is contained in some 4+—cycle C; with ¢ <
j < r. Define ¢, (e) =

e Type 6: e is an edge in M; and appears in a
type-1 path component of H, and one endpoint
of e is contained in some triangle C; with ¢ <
j < r. Define c,(e) = 2p — p%.

e Type 7: e is an edge in M; and appears in a
type-2 path component of H,,, and neither end-
point of e is contained in |J;_; V(Cj). Define

cule) = %

e Type 8: e is an edge in M; and appears in a
type-2 path component of H,, and one end-
point of e is contained in some trlangle C; with
i < j <. Define ¢ (e) = 2p— §p

e Type 9: e is an edge in M; and appears in a
type-2 path component of H,, and one end-
point of e is contained in some 4*-cycle C; with
i < j <r. Define c,(e) =

Now, we are ready to define the pessimistic es-
timator, namely, a function f mapping each node
u of T to a real number as follows: f(u)

2eeE(C)um, Cule)w(e). We call f(p) the value of
node .

5.3 Verifying Conditions

through (C4)

Clearly, f(@) can be computed in linear time. Thus,
Condition (C1) is satisfied.

To see that Condition (C2) is also satisfied, con-
sider an arbitrary leaf node u of 7. Let ¢1,...,%,
be the labels of the edges on the path from the
root to u in 7. For each edge e € E(C) U My,
cule) = Prle € Eg | zy = {1,...,2r = £;] because
e is of type 2, 3, or 4 at u. Consequently, Condi-
tion (C2) is satisfied.

To see that Condition (C3) is also satisfied, it suf-
fices to prove the following two lemmas:

(C1)

(% 1 53D

FIT2009 (55 8 EIBHREIFZRMT r—5 L)

Lemma 5.2 Let p,Ci,vq,. .., Vh,£41,...,8n, q; be as
in Fact 5.1. Suppose that |C;| = 3. Then, for every

e € B(C)U M, cu(e) < Yj—; ai(4s)eu, (¢)-

Proor. Consider an arbitrary edge e € E(C)UM;.
If the types of e at u and its children are the same,
then by Fact 5.1, c,(e) = Z?zl ¢ (£j)cu,;(€). So,
assume that the type of e at y differs from the type
of e at some child of y. By this assumption, e cannot
be of type 2, 3, or 4 at . Moreover, since |C;| = 3,
e cannot be of type 5 at u. According to the type
of e at p, we distinguish several cases as follows:

Case 1: e is of type 1 at u. In this case, one of
the following three subcases occurs:

Case 1.1: e € E(C;). In this case, for each child
v; of p, e can be of type 2 or 4 at v;. Because
of the way the algorithm processes triangles in C,
> ;4(4;) = 1 — p, where j ranges over all integers
in {1,...,h} such that e is of type 4 at v;. So,
Yy ail)e,(€) =p-0+(1—p)-1=1-p=cule).

Case 1.2: e € My, one endpoint of e appears in
C;, and the other endpoint appears in some triangle
C; with i +1 < j < r. In this case, for each child
vj of u, e can be of type 2, 6, or 8 at v;. Because
of the way the algorithm processes triangles in C,
2 04) = (1-)2, where j ranges over all integers
in {1,...,h} such that e is of type 2 at v;. For the
same reason, y ; ¢:(£;) > p?, where j ranges over all
integers in {1,..., h} such that e is of type 6 at v;.
So, >_,4i(4;) < 2p(1 — p), where j ranges over all
integers in {1,...,h} such that e is of type 8 at v;.
Hence, 3°7_; ¢i(4;)cy,(€) > (1—p)?- 0+ p?- (2p —
P)+2p(1—p)-(3p—5p%) = 3p* - 2p° > F5 = cule),
where the last inequality holds because of our choice
of p.

Case 1.3: e € M,, one endpoint of e appears in
C;, and the other endpoint appears in some 4*-cycle
C; with i +1 < j < r. In this case, for each child
v; of u, e can be of type 2, 5, or 9 at v;. Because
of the way the algorithm processes triangles in C,
2 a(t) =1 —p)?, where j ranges over all integers
in {1,...,h} such that e is of type 2 at v;. For the
same reason, Ej ¢:(£;) > p?, where j ranges over
all integers in {1,...,h} such that e is of type 5 at
vj. So, >, ¢i(4;) < 2p(1 — p), where j ranges over
all integers in {1,...,h} such that e is of type 9 at
v;. Hence, E;;l a:(4j)cn,(e) > (1—p)2 - 0+p2- 1 +
2p(1—p) -3 =32p—1p* > 3 = cu(e), where the
last inequality holds because p > 0.276.

Case 2: e is of type 6 at p. In this case, C; con-
tains exactly one endpoint of e. Moreover, for each
child v; of u, e can be of type 2 or 4 at v;. Be-
cause of the way the algorithm processes triangles
in C, > ;qi(¢5) > 2p— p?, where j ranges over all
integers in {1,...,h} such that e of type 4 at v;.

So, S0y qi(tj)en, () = (1—p)2 -0+ (2p—p%) - 1 =

58

2p — p? = c,(e). ,

Case 3: e is of type 7 at p and C; contains
both endpoints of the path component of H,, con-
taining e. In this case, for each child v; of u, e
can be of type 3 or 4 at v;. Because of the way
the algorithm processes triangles in C, >, ¢i(¢;) >
1—p?(1—p)—p(1—-p)?, where j ranges over all inte-
gers in {1,...,h} such that e of type 4 at v;. Since
cy;(€) > & when e is of type 3 at v, it follows that
Sy ailt)en, (e) 2 (1—p*(1—p) —p(1 - p)?) -1+
(P*(1-p)+p(1=p)?)-3 = 1-3p+50* > § = cu(e),
where the last inequality holds because p > 0.276.

Case 4: eisof type 7 at u and C; contains only one
endpoint of the path component of H,, containing e.
In this case, for each child v; of i, e can be of type 4
or 7 at v;. Since ¢,,(e) > 2 when e is of type 4 or 7
at v;, it follows that Z?zl ai(4;)cu;(e) = 3 = cule).

Case 5: e is of type 8 at u and C; contains
both endpoints of the path component of H,
containing e. In this case, for each child v; of
i, e can be of type 2, 3, or 4 at v;. Because of
the way the algorithm processes triangles in C,
>;a) = 20 - p®) — p*(1 = p) — p(1 — p)?,
where j ranges over all integers in {1,...,h}
such that e of type 4 at v;. For the same rea-
son, Y..qi(4;) = p*(1 — p) + p(1 — p)?, where j
ranges over all integers in {1,...,h} such that e
of type 3 at v;. Since ¢,,(e) > 3 when e is of
type 3 at v;, it follows that Z?:;l q:i(€5)cu;(e) =
(2p-p*-p*1-p)—p(1-p?) - 1 +
(P*1-p) +p(1-p)*) - § = 3p— 30° = cule).

Case 6: e is of type 8 at u, C; contains only one
endpoint v of the path component of H, containing
e, and u is also an endpoint of e. In this case, for
each child v; of u, e can be of type 2, 4, or 7 at v;.
Because of the way the algorithm processes triangles
in C, 3, 4:(4;) = (1 — p)?, where j ranges over all
integers in {1,...,h} such that e of type 2 at v;.
For the same reason, . ¢;(¢;) > p?, where j ranges
over all integers in {1,...,h} such that e of type 4
at v;. So, >,4i(¢;) < 2p(1 — p), where j ranges
over all integers in {1,...,h} such that e of type 7
at v;. So, Z;‘zl gi(4j)cy,;(e) =2 p*-1+2p(1—p)-3 =
2p— 307 =cule).

Case 7: e is of type 8 at u, C; contains only one
endpoint u of the path component of H, containing
e, and u is not an endpoint of e. In this case, for
each child v; of i, e can be of type 6 or 8 at v;. Since
cv;(€) = 3p — 2p® when e is of type 6 or 8 at v;, it
follows that Z;;l qi(€5)cn;(e) = 3p — 3p? = cu(e).

Case 8: e is of type 9 at p. In this case, for each
child v; of u, e can be of type 5 or 9 at v;. Since
cv;(€) > 2 when e is of type 5 or 9 at v, it follows

that Z?=1 ai(l5)cu, (€) = 2 =cule). |

(&8 1 21

FIT2009 (55 8 EMEHRRIERIMT 2 —5 L)

Lemma 5.3 Let pu,Ci,v1, ... Vhy¥1,...,8n,q; be as
in Fact 5.1. Suppose that |C;| > 4. Then, for every

e € E(C) UMy, cule) < S0y qi(ts)ew,(e).

Proor. Consider an arbitrary edge e € E(C)UM;.
As in Lemma 5.2, assume that the type of e at u
differs from the type of e at some child of u. By
this assumption, e cannot be of type 2, 3, or 4 at pu.
Moreover, since |C;| > 4 and the algorithm processes
the triangles in C first, e cannot be of type 6 or 8 at
u. According to the type of e at u, we distinguish
several cases as follows:

Case 1: e is of type 1 at p. In this case, one of
the following two subcases occurs:

Case 1.1: e € E(C;). In this case, for each child v;
of y1, e can be of type 2 or 4 at v;. Because of the way
the algorithm processes 4*-cycles in C, 3, ¢:(¢;) =
%, where j ranges over all integers in {1,...,h} such
that e is of type 4 at v;. So, 2?21 ¢ (45)cy;(e) =
%'0'!'%'1:6#(6)-

Case 1.2: e € M; and C; contains one endpoint
of e. In this case, the other endpoint appears in
some 4%-cycle C; with ¢ +1 < j < r. Moreover,
for each child v; of u, e can be of type 2, 5, or 9
at v;. Because of the way the algorithm processes
4*-cycles in C, Zj a:(4;) = %, where j ranges over
all integers in {1,...,h} such that e is of type 2

at v;. Since ¢,,(e) > % no matter whether e is of

type 5 or 9 at vy, it follows that 2;;1 qi(€5)cy,(e) >
%-O—F%-%:%—cu(e).

Case 2: e is of type 5 at u. In this case, exactly
one endpoint of e appears in C;. Moreover, for each
child v; of u, e can be of type 2 or 4 at v;. Be-
cause of the way the algorithm processes 4T-cycles
in C, 32, a(4) 3, where j ranges over all inte-
gers in {1,...,h} such that e of type 4 at v;. So,
Z;L=1 ai(4)cu; (e) = 30+ 3-1=3=cule).

Case 3: eis of type 7 at u and C; contains only one
endpoint of the path component of H, containing
e. In this case, for each child v; of pu, e can be
of type 4 or 7 at v;. Since ¢,,(e) > 3 no matter
whether e is of type 4 or 7 at vj, it follows that
Y- Gill)e, (€) = § = cule).

Case 4: e is of type 7 at u and C; contains both
endpoints of the path component of H, containing
e. In this case, for each child v; of u, e can be
of type 3, 4, or 7 at v;. Because of the way the
algorithm processes 4-cycles in C, Ej a:(45) > %,
where j ranges over all integers in {1,...,h} such
that e of type 4 at v;. Since ¢,,(e) > 2 no matter
whether e is of type 3 or 7 at v;, it follows that
Y1 G(ti)en,(€) 2 -1+ 55 = § = cule).

Case 5: e is of type 9 at u, C; contains only one
endpoint u of the path component of H,, containing
e, and u is not an endpoint of e. In this case, for
each child v; of u, e can be of type 5 or 9 at v;. Since

59

Cy; (e) > % no matter whether e is of type 5 or 9 at
v;, it follows that Z?Il ai(4;)c; () = & =cyule).

Case 6: e is of type 9 at u, C; contains only one
endpoint u of the path component of H,, containing
e, and u is an endpoint of e. In this case, for each
child v; of u, e can be of type 2, 4, or 7 at v;. Be-
cause of the way the algorithm processes 4*-cycles
in C, Zj qi(4;) = %, where j ranges over all inte-
gers in {1,...,h} such that e of type 2 at v;. Since
cv;(€) = 3 no matter whether e is of type 4 or 7 at v,

it follows that Z?zl gi(£j)cy;(e) = 3-3 = 3 =cu(e).

Case 7: e is of type 9 at p and C; contains both
endpoints of the path component K of H,, contain-
ing e. In this case, for each child v; of p, e can be of
type 2, 3, 4, or 7 at v;. Let u and v be the endpoints
of K. We may assume that u is an endpoint of e but
v is not. We say that a child v; of p is dangerous for e
if u and v are the endpoints of some path component
in the graph (V(C;), E(C;)NE(H,,)). Similarly, we
say that a child v; of u is critical for e if u and v are
endpoints of two distinct path components in the
graph (V(C;), E(C;)NE(H,,)). For each child v; of
p such that e is in H,,,, consider the following three
cases:

e Case (a): v; is dangerous for e. In this case,
e must be of type 3 at v; and the cycle of H,,
containing e contains at least two edges in Mj.
So, ¢,,(e) > %

e Case (b): v; is critical for e. In this case, e may
be of type 3, 4, or 7 at v;. If e is of type 3 at v;,
then the cycle of H,, containing e contains at
least four edges in Mj; hence ¢, (e) > %. Ifeis
of type 4 or 7 at v;, then obviously ¢, (e) > 3.
So, we always have c,, (e) > 3.

e Case (c): v; is neither dangerous nor critical
for e. In this case, e is of type 4 at v; and so
cy;(e) = 1.

Now, let s1 = 3_,¢i(¢;), where j ranges over all
integers in {1, ..., h} such that e is in H,,. Because
of the way the algorithm processes 4-cycles in C,
s1 = 3. Let sg =), qi(¢;), where j ranges over
all j € {1,...,h} such that e is in H,;, and v; is
dangerous for e. Let s3 =, ; 4i(¢;), where j ranges
over all integers in {1,...,h} such that e is in H,
and v; is critical for e. By Lemma 4.1, %sz + %33 <
%31. Hence, Z?=1 ai(lj)ey,(e) > (1 —s1) -0+ 52
%4‘83'%-’:-(81—82—83)-12%81 Z%:cu(e).]

(% 15D

FIT2009 (55 8 BIRERAIZREM I+ —5 L)

By Lemmas 5.2 and 5.3,

>

e€E(C)UM;

h
= Z%(fj)

h
w(e) Y it)cw, (€)

j=1

2

e€E(C)UM;

h
2{: (45)f(v;)-
j=1

flu) <

¢y, (e)w(e)

So, by Fact 5.1, f(u) < max_, f(v;). Conse-
quently, Condition (C3) is satisfied. The following
lemma shows that Condition (C4) is also satisfied:

Lemma 5.4 The value of the root of T is at least

E+(- p)a) w(C)+ 167,0(]\/11) Consequently, it is
at least (£ — 3e— (p— 1)1 — €)a — +8) w(Opt).
Proor. First note that each edge e € E(C) U

My is of type 1 at the root of 7. Also re-
call that o - w(C) is the total weight of edges in
the triangles C; in C. So, the value of the root
is at least (1 — p)a w(C) + 2(1 — a) - w(C) +

1ge(M) = (34 -po)w(C) + u(M) >
(3 +(p)a) (1- e)w((’)pt) 6'w(M1) As ob-
served in [4], the construction of M; clearly implies

that w(Mi) > 3(1 — B)w(Opt). Thus, the lemma
holds. O

6 Analysis of the Approxima-

tion Ratio

By Fact 3.4 and Lemma 5.4, the output 2-path pack-
ing P satisfies the following inequality:

w(Ps)
S g 27 3
- 3 32 4

So, by Lemmas 3.1 and 3.2, we have

(- D~ e)a—-ﬁ) w(Opt).

4p -)w(Pl) + 16 ’w(Pz) + w(Ps)
1+ 32p 32pe .

16

w(Opt).
Therefore, the weight of the best packing among Py,
Py, and Ps is at least

14 32p — 32pe
1+ 64p

1-+32p

>
w(Opt) 2 7 6dp

(1 —€)w(Opt).

Given G, C can be computed in O(|V(G)}?)
time [3]. Moreover, given G and C, P; and P, can
be computed in O(|V(G)|?) time [4]. Furthermore,

60

one can easily verify that P3; can be computed from
G and C in O(|V(G)|?) time. So, our deterministic
algorithm runs in O(|V(G)[?) time.

In summary, we have proved the following theo-
rem:

Theorem 6.1 For any constant € > 0, there is
a deterministic cubic-time approximation algorithm

for M2PP that achieves a ratio of ﬁ—gi’—; (1—¢€) >
0.5265 - (1 — e).
References

(1] Z.-Z. Chen, R. Tanahashi, and L. Wang. An Im-
proved Randomized Approximation Algorithm
for Maximum Triangle Packing. Proceedings
of 4th International Conference on Algorith-
mic Aspects in Information and Management
(AAIM’08), Lecture Notes in Computer Science
5034 (2008) 97-108. The full version will ap-
pear in Discrete Applied Mathematics.

M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-
Completeness, Freeman, New York, 1979.

D. Hartvigsen. Extensions of Matching The-
ory. Ph.D. Thesis, Carnegie-Mellon University,
1984.

R. Hassin and S. Rubinstein. An Approxima-
tion Algorithm for Maximum Triangle Packing.
Discrete Applied Mathematics 154 (2006) 971-
979.

P. Raghavan. Probabilistic Construction of De-
terministic Algorithms: Approximating Pack-
ing Integer Programs. Journal of Computer and
System Sciences 37 (1988) 130-143.

(%8 143D

