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Abstract: Recently, Internet of Things (IoT) has been attracting attention due to its economical impact and high ex-
pectations for drastically changing our modern societies. Worldwide by 2022, over 50 billion IoT devices including
sensors and actuators are predicted to be installed in machines, humans, vehicles, buildings, and environments. De-
mand is also huge for the real-time utilization of IoT data streams instead of the current off-line analysis/utilization
of stored big data. The real-time utilization of massive IoT data streams suggests a paradigm shift to new horizontal
and distributed architecture because existing cloud-based centralized architecture will cause large delays for providing
service and waste many resources on the cloud and on networks. Content curation, which is the intelligent compilation
of valuable content from IoT data streams, is another key to fully utilize and penetrate IoT technologies. In this pa-
per, we survey the emerging technologies toward the real-time utilization of IoT data streams in terms of networking,
processing, and content curation and clarify the open issues. Then we propose a new framework for IoT data streams
called the Information Flow of Things (IFoT) that processes, analyzes, and curates massive IoT streams in real-time
based on distributed processing among IoT devices.
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1. Introduction

Recently, Internet of Things (IoT) technology, which connects
various physical things to the Internet, has been attracting con-
siderable attention. In a white paper [1], Cisco predicted that by
2022, 50 billion things will be connected to the Internet that will
produce 14.4 trillion dollars in revenue. IDC predicted that 28
billion IoT devices will be installed by 2020, and the annual mar-
ket revenue will reach 700 billion dollars [2]. IoT was ranked as
the top expected technology in Gartner’s hype cycle 2014 [3] and
continues to top the 2015 hype cycle. METI in Japan asserts that
IoT will fuel a data-driven society where the digital data collected
by IoT will acquire added value and benefit society [4]. IoT tech-
nology not only will hugely impact markets but also has large
potential to drastically change society.

Many IoT research projects are working on their own respec-
tive purposes. For example, IoT-A [5] aims to establish IoT archi-
tecture, ClouT [6] is integrating cloud computing and IoT tech-
nologies, iCore [7] is establishing cognitive management frame-
works, IoT6.eu [8] is applying IPv6 to IoT, and IERC [9] is in-
tegrating the results from different projects. Among the many
research challenges in IoT, (1) Heterogeneity, (2) Scalability, (3)
Interoperability, and (4) Security and Privacy have been identi-
fied as the most important challenges.

To tackle these challenges, various IoT platforms have been de-
signed and implemented to interconnect IoT devices and process/
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merge data streams. Arkessa [10], Axeda [11], ThingSquare [12],
Thingworx [13], WoTkit [14] and Xively [15] are examples of
such mashup services. Most of these IoT platforms employ archi-
tectures based on a type of cloud computing called Platform as a
Service (PaaS). Generated IoT data streams are placed in cloud
storage as big data, and off-line analysis is applied with generous
computation power and time to extract “intelligence” or patterns
beneficial for business.

Since IoT data streams reflect current, real world situations,
their real-time utilization is anticipated. For example, if live street
view video of every place in a city can be made from videos cap-
tured in real-time by multiple mobile cameras carried by people
and vehicles, tourism, economics, and security will benefit. For
such a service, however, existing cloud-based approaches must
introduce non-negligible delays until the service is provided, and
this may reduce service quality and/or rapidly increase service
costs due to wasting cloud computing resources and communi-
cation bandwidth. For the actual penetration of IoT, content cu-

ration, that is, creating valuable content from IoT data streams,
is important. Curating content from various IoT data streams re-
quires a recipe that consists of the following three steps:
• which data streams to use,
• how to process and analyze them and
• how to integrate multiple analysis results to form content.

Since the number of possible recipes will generally be enormous,
intelligence is needed that automatically finds good recipes.
Thus, we add the following two research challenges faced by IoT:
(5) timeliness (real-time utilization of IoT data streams), and (6)
intelligence (content curation from IoT data streams).

This paper is organized as follows. Section 2 provides IoT use
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cases that require timeliness and intelligence. Section 3 surveys
existing technologies for IoT, and Section 4 clarifies unsolved
problems. In Section 5, we propose a new IoT platform called
IFoT that deals with timeliness and intelligence. Finally, we con-
clude the paper in Section 6.

2. Use Cases of Real-Time Utilization of IoT
Data Streams and Key Challenges

In this section, we describe several use case scenarios for the
real-time utilization of IoT data streams and pose key challenges.

2.1 Use Case Scenarios
• (S1) Participatory live street view

The first use case scenario is participatory live street view,

shown in Fig. 1. This service allows a user to watch live street
view video of any place in the city from any angle. To realize this
service, based on user requests, relevant videos must be captured
by the mobile cameras of people/vehicles and/or fixed cameras
installed in the street, gathered, and processed to create/provide
requested videos in real-time. If such a service is realized, it
will benefit various purposes, such as tourist navigation (sight-
seeing, shopping, dining), economic activities (taxi/bus alloca-
tion, customer attraction), and security (surveillance, finding lost
children).

However, implementing such a service on top of current cloud-
based systems will be difficult, because such a huge number of
uploads and downloads of video streams as well as their process-
ing will exhaust both network bandwidth and cloud computation
resources. Thus, the system does not scale or need huge cost for
enhancing cloud systems. Unlike cloud-based architecture where
all the streams converge to a single point, we need a new archi-
tecture that allows multiple data streams to directly flow between
producers and consumers in parallel.
• (S2) Ultra-realistic live sports broadcasts based on UGC

Recently, User Generated Contents (UGC), which are up-
loaded to video/photo sharing websites, SNSs, and BBSs, are be-
coming more popular. Live video streaming applications such as
Meerkat [16] and Periscope [17] allow users to share live video
streams captured by smartphones.

Our second use case scenario is ultra-realistic live sports broad-

Fig. 1 Live street view.

casting services that target such popular sports as soccer, base-
ball, Olympic games, and World cup matches using UGC. This
service collects information in and around stadiums including
cheers, weather conditions, atmosphere and tweets (SNS mes-
sages) as well as video streams from the mobile/wearable devices
of spectators and audience members and creates video content for
broadcast by integrating the collected information. Such a service
can create new experiences for sport fans who cannot attend live
sporting events.

A key challenge to realize this service is how to create content
that has value to prospective audiences by intelligently selecting,
processing, and integrating data streams. This intelligent content
creation task is called content curation. For content curation, we
need techniques for capturing and handling various data streams
in a unified way as well as efficiently identifying relevant data
streams.
• (S3) City-wide real-time pedestrian flow tracking

Our third use case scenario is real-time pedestrian flow tracking
in crowded city areas. It is desirable to grasp pedestrian flow be-
tween points and/or areas for various purposes, for example, pro-
viding transportation options for smooth transitions and smooth
evacuation guidance during emergencies.

When a time series of the position data of tens of thousands
to millions of pedestrians is uploaded to a cloud and processed/
analyzed there, it will be difficult to track such pedestrian-flow
changes in real-time; many cellular bandwidth and cloud re-
sources will also be wasted.

We believe that the required spatio-temporal granularity of
people flow depends on where the information is used. That is,
the granularity of pedestrian-flow information near the requesting
place must be fine, but the information far from the place may be
coarser. The insight from this use case is that data streams must
be processed and aggregated near their generation sources to re-
duce them and propagate them in far places in a scalable manner.
• (S4) Real-time anomaly detection for seniors living alone

In recent years, the solitary deaths of elderly people who are
living alone is becoming a big social problem [18]. We must real-
ize elderly monitoring services that detect anomalies in real-time
and timely notify caretakers and families.

Many elderly monitoring services have been provided that
use electric pots, electricity/gas remote meters and sensors at-
tached to toilets and refrigerators. These systems, however, are
time-consuming for detecting anomalies and may not be effec-
tive for lifesaving purposes. Camera-based monitoring systems
can quickly detect anomalies like falls, but they violate privacy.
Moreover, most existing monitoring services are constructed as
cloud services. The cost of continuously using cloud commu-
nication and processing is non-negligible, and leakage risks are
induced by storing privacy data on the cloud.

Ueda et al. [19] proposed an in-home living activity recognition
method, where 11 different activities are recognized with more
than 90% accuracy using indoor position sensors and power me-
ters. However, the method is based on off-line learning; no real-
time activity recognition is provided. We must realize a low-cost
system as well as one that protects privacy and processes private
data streams near sources and sends only aggregated information

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.2

to the cloud.

2.2 Key Challenges
The following four key challenges arise from the use case sce-

narios.
C1: Creation technology for IoT data streams: capturing vari-
ous real world events anywhere and anytime in a unified manner.
C2: Networking technology for IoT data streams: enabling
direct flow between producers and consumers in parallel.
C3: Processing technology for IoT data streams: processing
and aggregating data streams near their sources.
C4: Content curation technology: intelligently selecting nec-
essary streams and processing and integrating them into valuable
content, based on the interests of prospective users.

3. Enabling Technologies

In this section, we survey the technologies that enable the chal-
lenges discussed in Section 2.

3.1 Sensor as a Data Stream Generator
A variety of sensors can sense the mechanical, thermal, bio-

logical, chemical, optical, and magnetic properties of physical
environments. Due to the progress of Micro-Electro-Mechanical
Systems (MEMS) technologies, sensor nodes, on which sensors
are equipped for communication and processing capabilities, are
becoming smaller. These sensor nodes are organized into Wire-
less Sensor Networks (WSNs) [20], which are deployed on farms
and in factories to monitor them. Sensors are embedded not
only in wearable devices such as eyeglasses and watches but also
in cups [21], furniture and sporting equipment like tennis rack-
ets [22] and basketballs [23], door locks [24], and even fish find-
ers [25]. They are connected by the Internet to cloud servers, and
smartphones are common ways to access, control, and visualize
sensing data.

Participatory sensing and opportunistic sensing [26] also ex-
ploit sensor nodes, which mainly rely on mobile agents like
humans and vehicles. Well-known or recent projects include
EarPhone [27], GreenGPS [28], and SakuraSensor [29]. In par-
ticular, incentive mechanisms and gamification to promote user
participation are recent challenging topics [30].

As seen above, a variety of sensors may generate a number
of IoT data streams. Nevertheless, they are basically utilized by
dedicated software or platforms due to the proprietary aspects of
devices and a lack of standard platforms that enable many devel-
opers to easily obtain, analyze, and combine data streams in the
context of applications and services that are provided to users.
In other words, content-centric (or dependent) stream processing
is required to migrate service-level processing tasks from cloud
servers to distributed components in networks to mitigate the data
processing cost, which is high in terms of delay, server load, and
throughput.

3.2 Networking Technologies for IoT data Streaming
A number of protocols have been proposed for academic re-

search, industrial use, and the standardization of IoT/M2M com-
munication. For lightweight communications where IoT sensors

are restricted due to limited energy sources or processing capa-
bilities, several protocols have been proposed, such as Message
Queue Telemetry Transport (MQTT) [31] and Constrained Ap-
plication Protocol (CoAP) [32]. MQTT is a lightweight publish/
subscribe messaging transport protocol based on a client-server
model designed for M2M and IoT applications with constrained
networks. CoAP is a simplified web transfer protocol that is spe-
cialized for use with constrained nodes and networks such as in
M2M applications. It provides asynchronous request/response in-
teractions between clients and servers over UDP, which can easily
interface with HTTP.

Other protocols have also been proposed, including Web-
socket [33] and IPv6 over Low power Wireless Personal Area
Networks (6LowPAN) [34]. WebSocket is a full-duplex proto-
col over a TCP connection that typically provides bidirectional
communication between web browsers and web servers. 6LoW-
PAN defines an IPv6 header compression format for IPv6 packet
delivery in low-power wireless personal area networks, i.e., IEEE
802.15.4. These protocols are designed for peer-to-peer commu-
nication, client-server communication on the Internet, or com-
munication in WPANs. The peer-to-peer style of communication
cannot provide real-time services. Instead, it is more feasible and
reasonable to connect heterogeneous IoT devices, often directly
through heterogeneous access networks or local cloud servers.

This concept leads to edge-heavy computing. EdgeComput-
ing [35] and Fog Computing [36] are based on such paradigms
where data processing is executed on those components in or
on the edge of networks to mitigate server load. The demerit
of these approaches is the need for investment to replace such
network constituents like Information-Centric networks (ICNs).
Edge-Centric Computing [37], which seeks a more practical solu-
tion by extending EdgeComputing and Fog Computing, delegates
the processing tasks of cloud servers to other distributed systems
like P2P to realize service components such as proximity, intelli-
gence, trust and control outside the cloud.

As recent work on IoT, MINA [38] is an integrated network
system that provides seamless unification of different wireless
access technologies like cellular, WiFi, ZigBee, and Bluetooth
and multi-hop communication technologies like MANET. It
uses software defined networks (SDNs) and flexibly delivers data
streams among devices. To cope with the issue of the heterogene-
ity of available resources in such multinetwork environments,
MINA, which is composed of SDN controllers on four different
layers, monitors the available resources and schedules the data
streaming considering the QoS required by the services.

3.3 IoT Data Stream Processing
Unlike conventional DBMS that assume all data are stored in

DBs before analysis, more than a few IoT systems assume that
data from IoT devices are streams, where data elements have tem-
poral relationships and require real-time processing. Most are
also redundant with respect to the data’s value.

Following its definition by Ref. [39], data stream processing
is represented, at a high level, as a graph of FIFO queues that
correspond to data streams and operators that may take multiple
inputs/outputs from/to those FIFO queues. Operators are contin-
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uous stream transformers, which must contain activation, initial-
ization, and output data rate policies. For example, the function of
averaging the input data streams is a simple stream transformer.

In the context of databases, such a system that deals with
data streams is often called a Data Stream Management System

(DSMS). In contrast to DBMS, which issues a single query to an
entire dataset, DSMS updates the result whenever new data ar-
rive, but it can be seen as an extension of DBMS since it is a
query-based system.

Complex Event Processing (CEP) [39], [40] is another well-
known technique to detect events that satisfy given conditions
over different streams. Historically, such single event process-
ing as attribute-based data and interest filtering has been em-
ployed in publisher/subscriber systems, but these systems with
multiple sensors must deal with more complex conditions. CEP
has been exploited in many fields like distributed information
systems, business process automation, control systems, network
monitoring, and sensor networks. CEP supports a variety of lan-
guages (Java, Python, and R) to specify conditions, but SQL-
based ones are popular in many systems. For example, Continu-
ous Query Language (CQL) [41] was initially developed by Stan-
ford for their STREAM [42] system, and Oracle, uCosminexus
Stream Data Platform (Hitachi Co. LTD.), and others have imple-
mented CQL in their systems. Event Processing Language (EPL)
is another common language.

Several platforms exist for stream processing, including IBM
Infosphere Stream [43] (which uses IBM Streams Processing
Language (SPL)), SAP Sybase Event Stream Processor, Stream-
Base [44], SQLstream Blaze, Amazon AWS IoT, Yahoo!S4,
TIBCO Business Events, Microsoft StreamInsight, Apache
Storm [45], and Apache Spark [46]. These platforms are tuned
for high-speed real-time processing of a massive amount of tem-
poral data. For example, Spark has a function called Resilient
Distributed Dataset (RDD) that hides parallel and distributed op-
erations over multiple streams and provides seamless access to
service users. More academic issues have been discussed in sci-
entific research. For example, CLARO [47] designed stochastic
query processing when the input data are uncertain and have er-
rors.

Machine learning and statistics are considered part of IoT data
streaming frameworks. Feature selection and principal compo-
nent analysis (PCA) help reduce the data dimensions to maintain
the capability of representing data characteristics. Machine learn-
ing also involves operations to create such classifiers as Support
Vector Machine (SVM) or unsupervised learning (like clustering)
and to train various models, including linear function, k-nearest
neighbor, and logistic model by regression analysis. These op-
erations can be applied to data streams slotted by a certain time
window or revised for incremental updates of models whenever
new data arrive. This is often called on-line machine learning,
whose popularity is rising due to increased attention to IoT and
big data. Supervised on-line machine learning represents the er-
rors between the true and estimated values by models and up-
dates the model parameters to minimize the errors whenever data
arrive. Assuming that the error functions are represented as prob-
ability distribution functions, the parameters are updated to min-

imize the expected values of errors. Stochastic Gradient Descent
(SGD), a well-known method for this purpose, was originally de-
signed for randomly picked data from a dataset; but by assuming
the incremental feeding of data to the procedure, it can be applied
to data streams with limited memory space. Similarly, many algo-
rithms for batch (or off-line) machine learning algorithms can be
converted to on-line versions if we control references to training
data and model updates.

Many of the IoT platforms introduced above support on-line
learning schemes. For example, AWS and StreamInsight pro-
vide Amazon Machine Learning [48] and Azure Machine Learn-
ing [49] to enable data processing and analysis over data streams.
However, both systems need cloud servers, which are often ex-
pensive for many types of applications and services in terms of
performance. Jubatus [50] supports distributed on-line machine
learning, but it does not focus on distributed stream fusion based
on service-level context.

3.4 Service Composition from IoT Data Streams
Some programming models and tools have been developed and

provided for creating contents (composing services) by collect-
ing and merging various IoT data streams. Web of Things [51]
is a programming model where services can be easily mashed-
up by associating objects with web components using web 2.0
technology. WotKit [52] is a visual programming tool for ser-
vice mashups. IBM also provides a visual programming tool
called Node-RED [53] where a new service can be created just by
drawing lines among IoT devices, APIs, and services. Another
study [54] extends Node-RED to treat distributed data streams.
Mobile Fog [55] is a programming model that constructs large-
scale IoT services.

Although these programming models and tools facilitate users
to easily and intuitively compose services and/or create contents,
they still need to manually design output layouts of the contents
and specify the processing sequence of the streams until the con-
tent is derived. Therefore we need automated content creation
adaptive to the availability of data streams and their dynamism.

Fujisawa et al. proposed a video curation system [56] that tar-
gets baseball games and automatically creates real-time video
content with high values from multiple video streams captured by
spectator cameras in different places and at different angles and
zoom levels. In their study, assuming that video contents with
similar camera switching patterns (i.e., which camera’s video is
used in the broadcasted content and when) to the TV broadcast
have high values, machine learning algorithms are constructed
using the camera switching patterns of TV broadcasts as training
data.

3.5 International Activities on IoT Framework Design and
Standardization

Many IoT-related organizations, consortiums, and projects
exist. For example, Open Interconnect Consortium (OIC),
which was founded by Intel, Samsung, and others, released
IoTivity [57], an open source software framework that enables
seamless device-to-device connectivity to address the emerging
needs of the Internet of Things (IoTivity 1.0 was released in
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October 2015). AllSeen Alliance from the Linux Foundation
released Alljoyn [58], an open-source IoT framework by Qual-
comm. OneM2M [59], which developed technical specifications
for M2M services, releases standards to create a foundation plat-
form for IoT devices and applications. Industrial Internet Consor-
tium (IIC) [60] focuses more on industrial applications for IoT;
Intel, GE and some others are leading this consortium. Though
their goals are different, they basically share a common vision for
IoT where everything is connected by the Internet to support next
generation applications and services that have deeply penetrated
our social lives, societies, industries, and infrastructures. The
IPSO Alliance [61] established the Internet Protocol as the basis
for the connection of Smart Objects. The European Commission
7th Framework program (EU-FP7) sponsors the IoT European
Research Cluster (IERC) [9] that addresses the large potential for
IoT-based capabilities in Europe involving international partners
from Europe, USA, Japan, China, and Korea.

Many platforms and related projects have also been developed.
Some platforms for developing IoT applications are now avail-
able on the market and primarily focus on processing large-scale
real-time streams. Research-based projects share this goal. For
example, the concept of the EU-Japan funded project ClouT [6]
is leveraging cloud computing as an enabler to bridge things,
people, and services by the Internet. Another EU-Japan project,
FESTIVAL [62], connects and unites European and Japanese IoT
testbeds to provide IoT experimentation platforms for homoge-
neous access APIs with an Experimentation as a Service (EaaS)
model for experimenters. Many other EU-funded projects exist:
CASCADAS2, VITAL-IoT [63], and IOT-I & IOT-A [5].

Finally, smart city projects are closely related with IoT tech-
nologies. In the EU, many cities are now interested in making
them smarter with respect to such infrastructure-related issues as
energy, mobility, government services, and health. The follow-
ing are well-known smart city projects: Santander supported by
Future Internet Research (FIRE), BCN Smart City (Barcelona),
Valencia Smart City, and Smart Beehive Project (Ireland). For
smaller-scale networks (in comparison with smart cities) that are
deployed in homes, buildings, and offices, several platforms are
available. For example, HomeKit and Brillo are provided by Ap-
ple and Google, IoTivity by OIC, and AllJoyn by AllSeen.

4. Open Issues

This section reflects on the use case scenarios in Section 2 and
key challenges C1-C4 and clarifies the open issues for the real-
time utilization of IoT data streams.

C1 (Creation technology for IoT data streams): Scenarios
S1-S4 utilize different sensors/data streams, such as those from
cameras, microphones, accelerometers, ambient sensors, posi-
tion sensors, power meters, vital sensors, and SNSs. Thus,
C1 requires a common representation format of various IoT
data streams because they are processed and combined to form
new streams. The common format must also be able to rep-
resent higher-level streams. Hereafter, we use the term flows

to refer to both raw data streams and higher-level streams after
processing. The common format should include metadata that
help devices/servers easily search for necessary flows, aggregate/

summarize flows, and obtain knowledge or patterns. Existing
IoT technologies do not have a common representation format
for handling different types/levels of flows in a unified manner.

C2 (Networking technology for IoT data streams) and C3 (Pro-
cessing technology for IoT data streams): Since scenarios S1-S4
suppose real-time stream distribution among devices and real-
time processing and analysis of flows, they require an adaptive
processing mechanism to meet real-time constraints by adaptively
allocating computation resources and/or a granularity adjustment
mechanism to satisfy the bandwidth constraint. On-line learning
is another issue. Flows with high dynamism must be analyzed in
real-time, and knowledge or patterns such as contexts and objects
must be detected on-line so that the learned tags are attached to
flows for real-time utilization. Few existing IoT platforms con-
sider both network/computation resources and data granularity
adjustments to achieve real-time distribution of flows.

C4 (Content curation technology): Scenarios S1-S4 suppose
real-time content curation from multiple flows. There are two
kinds of curators: human and machine. For human curators,
support for the selection of relevant flows and for understanding
them is essential (C5). There are three functions for human cu-
rators: intelligent flow search that considers the curator’s value,
flow visualization for understanding the content, and flow pre-
diction for understanding temporal changes. Realizing machine
curators is a very interesting but challenging issue. Predicting
content values for prospective audiences is one part of the key
challenges. Few existing IoT platforms have developed auto-
mated curators or functions to support human curators to manage
real-time contents. Machine learning-based automatic video cu-
ration from spectator mobile cameras that target baseball games
was proposed [55], but TV broadcasts are used as training data

Table 1 Challenges and technical issues for real-time utilization of IoT
flows.
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by assuming that they have high values. Since preparing train-
ing data that only contain good curations is difficult, a method is
required for estimating the user values of a given curation.

Another big challenge is related to security and privacy issues
(C6). Scenarios S1-S4 utilize privacy-sensitive data flows such
as location data, vital signs, and video/audio data. For the wide
penetration and the utilization of IoT flows, functions are neces-
sary that make people feel secure and safe when distributing their
flows and/or using the flows of others. Many security studies treat
individual data types like location data. Security architecture for
the cyber-physical-social world was proposed [64], but few treat
both security and privacy issues in the IoT context such as data
heterogeneity and real-time distribution.

Table 1 summarizes the main challenges, their purposes, and
the remaining technical issues.

5. IFoT: Real-Time Information Flow Process-
ing Framework

As discussed above, most existing IoT platforms do not fully
support both distributed and on-site processing. Even for local
services, we need to set up a cloud server and collect/process
data streams in servers far from the data sources. Such archi-
tecture not only limits communication and computation capacity
but also requires additional efforts for handling privacy-sensitive
data, creating barriers to the real-time utilization of IoT big data.

In this section, we propose the Information Flow of Things

(IFoT), a new framework for processing, analyzing, and curating
IoT data streams in real-time and in a scalable manner based on
distributed processing among IoT devices. In IFoT, both raw data
streams and higher-level streams after processing/aggregating/
merging are called information flows (or flows) and treated iden-
tically.

IFoT aims to solve the following three technical issues: (1)
handling various information flows in a unified manner, (2) pro-
cessing and analyzing flows in their proximity and distributing
them directly between devices in real-time and in a scalable man-
ner, and (3) intelligently integrating different flows into content
(as a higher-level flow) and providing it in real-time. These issues
are solved by three different layered components: IFoT-Neuron,
IFoT-PO3-Engine, and IFoT-Curator (Fig. 2).

5.1 IFoT-Neuron
IFoT-Newron, which is an abstraction of an intelligent sensing

Fig. 2 IFoT: challenges and approaches.

device and a flow source, captures and processes data in the real
world and sends them out as a flow(s). For this purpose, it in-
corporates functions for creating relevant information flows (C1
in Table 1), and processing/analyzing flows (C3), and handling
security and privacy issues (C6). IFoT-Neuron is expected to be
installed in every IFoT compatible device (called an IFoT node)
as a software library or a hardware module.

IFoT-Neuron has communication capabilities with nearby
IFoT nodes, connections to the Internet (optional), and process-
ing flows such as attaching tags, basic stream processing, and
anonymization.

To tackle challenge C1, for different flows, we define a com-
mon metadata format that consists of data type, granularity, lo-
cation information, and a set of tags for each time interval of the
flows.

For challenge C2, tags (i.e., contexts, identified objects/events,
etc.) are derived through a learning algorithm implemented in
the IFoT-PO3-Engine and automatically attached to flows. The
metadata associated with each flow facilitate efficient searches
and further processing of the flows by other IFoT nodes. More-
over, for the real-time distribution of flows, it offers a dynamic

granularity adjustment function that reduces the data granularity,
as requested by the IFoT-PO3-Engine.

For the wide penetration of IFoT compatible devices, IFoT-
Neuron should be implemented as a small, low-cost, and low-
power hardware component with sufficient computation power.
Toward zero-energy operation, MEMS and energy-harvesting
technologies should also be employed.

5.2 IFoT-PO3-Engine
To distribute flows between sources and users without stag-

nation, collecting low-level (raw) flows in clouds is not a good
idea because of the bandwidth waste in paths to the cloud and
the imposition of large delays. Instead, it is desirable to process,
analyze, and aggregate flows near their sources to reduce the re-
quired bandwidth between sources and destinations. We call this
concept “Process On Our Own,” or PO3 in short.

For a concrete shape of this concept, we designed an IFoT-
PO3-Engine that offers functions for executing high-load tasks
including complex event processing and on-line learning among
IFoT nodes in a distributed and cooperative manner and ef-
ficiently distribute resulting higher-level flows to remote IFoT
nodes.

For distributed and cooperative processing, predicting process-
ing time for a heavy task is required. If the predicted time does
not satisfy the time constraint, the task is divided into sub-tasks,
which are sent to nearby IFoT nodes for execution. Division into
sub-tasks and allocating them are dynamically done by consider-
ing the available bandwidth in the network and the computation
power of the nearby IFoT nodes.

Real-time flow distribution among remote IFoT nodes is an-
other issue to be solved. The IFoT-PO3-Engine searches for mul-
tiple routes to a destination node (including routes through cellu-
lar networks), measures or estimates delays and available band-
width on each route, and establishes a multi-path route to deliver
a flow in real-time in cooperation with the dynamic granularity

c© 2016 Information Processing Society of Japan
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adjustment function of IFoT-Neuron.

5.3 IFoT-Curator
IFoT aims to realize the real-time utilization of information

flows by providing users with content curated from multiple flows
in real-time. To this end, we need to define a language to de-
scribe a curation recipe (e.g., a task graph to create content with
the data’s required spatio-temporal granularity) and its execution
system. When a curation recipe is submitted to an IFoT node, it is
executed among nearby IFoT nodes in a distributed manner with
an API provided by the IFoT-PO3-Engine and the IFoT-Neuron.
Therefore, the execution system is designed and implemented as
middleware with such functions as code/data migration and dis-
tributed/cooperative task processing.

IFoT-Curator aims not only for the execution of human-edited
recipes but also for the support for recipe-editing work (C5 in
Table 1) and the further automatic creation of recipes (C4 in Ta-
ble 1). For the challenge C5, it is required for a human curator
to be able to acquire only a special subset of massive flows that
match his/her interests, visualize dynamism in flows and predict
their future change for their better understanding.

For automated curation, it is also needed to realize a function to
measure the value of a content’s value for its prospective audience
and a function to predict new content’s expected value created
with each possible recipe. Even though the latter is challenging,
this function must be achieved.

6. Conclusion

IoT technologies offer the potential to drastically change our
societies. The keys are the real-time utilization of IoT data
streams and intelligent content creation (content curation) from
these data streams. However, existing network and cloud com-
puting architectures may not be able to accommodate the mas-
sive data streams generated by as many as a trillion IoT devices
in real-time. Thus, a paradigm shift is essential for new informa-
tion processing architecture that allows data streams to flow in the
required form among places.

In this paper, we surveyed the existing and emerging technolo-
gies toward real-time IoT data stream utilization and content cu-
ration, clarified open problems, and proposed a new framework
called Information Flow of Things (IFoT) for processing IoT data
streams in real-time. To realize IFoT, many challenging issues
need to be solved. We hope this paper spurs prospective re-
searchers in related fields to advance their research toward the
realization of data-driven societies.
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