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1 Introduction

In Principle Component Analysis(PCA), local vari-
ations caused by facial expressions are less significant
than global variations, e.g., lighting conditions, per-
sonal differences, etc. [1] Independent Component
Analysis(ICA) is argued to be more effective than PCA
in feature extraction for facial expression recognition,
due to its ability of encoding local variations by per-
forming sparse coding.[2]

A problem in ICA is permutation ambiguity, i.e., the
derived independent components are fully exchange-
able in order, where the original order provides no in-
formation on the significance of components in discrim-
ination. As a result, the derived independent compo-
nents may not be most distinctive for the classification
task, especially when only a small subset of compo-
nents is derived. One solution is to include a process
of feature selection into the feature extraction of ICA.
Selection after performing ICA, as the Best Individual
Feature (BIF) selection in Ref [3], limits the universe
set for choosing features. Selection before performing
ICA, as GEMC [4] that replaces PCA with MDA as
preprocessing to ICA does, still lacks a mathematical
understanding. A natural way is to incorporate fea-
ture selection into ICA. Especially, we try to design a
method to let those components with higher degree of
class separation emerge easier than others. The classi-
cal ICA in Ref.[5] was shown to be derivable under the
scheme of Maximum Log-Likelihood (MLL) estimation.
[6] Instead of using the uniform prior for de-mixing co-
efficients in MLL, we take the Maximum a Posteriori
(MAP) estimation. A prior defined on the degree of
class separation is introduced to the de-mixing coef-
ficients, which in turn increases the probability of the
corresponding independent component to be significant
in classification.

In the present paper, we include classification infor-
mation into ICA to propose a supervised ICA(SICA)
and derive a fixed-point learning algorithm for facial
expression recognition. Numerical experiments show
that our method significantly improved the robustness
of recognition rate under a median number of indepen-
dent components, which is meaningful in speeding up
the extraction of distinctive features.
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2 Facial Expression Recognition by

sICA
2.1 Generative Model of sICA
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Figure 1: Generative model of sICA and the corre-
sponding de-mixing process.

Fig. 1 illustrates the generative model of sSICA. ICA
assumes that observed samples Y are linear mixed sig-
nals from @ statistically independent sources S, i.e.,
Y = VS. V is the mixing matrix and W = V!
is the corresponding de-mixing matrix that satisfies
S = WY. ICA tries to estimate W to recover S
from Y. Different from maximizing the log-likelihood
criterion which assumes an uniform prior for V), ie.,
Vica = arg maxy log P(Y|V)[6], we search for a way
to make a selection of most distinctive features during
ICA, by introducing a priori for the coefficients and
maximizing the following MAP criterion,

Viica = arg‘r/na.x[log P(Y|V)+log P(V)]. (1)

Note that we use P(V]Y) = £ o« P(VY) =
P(Y|V)P(V). P(V) = P(W) is defined on the degree
of separation:

exp{ \wM,(Y)wT
PW) = [[ Pu(wq) =[] = ZS( S
q q Y
Where wq = [waa"' ,qu]>W = [U}’{)- . ,wg]T, Zw

is the partition function while M,(Y") is defined as

M(Y)= A NllT® -T2 -3 Il - 79I}, (3)
k ke
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7(®) represents the mean vector for samples in class k
and ¥ is the mean value for all samples. A is a hyper-
parameter introduced to control the influence of the
prior. For A > 0, an independent component whose
de-mixing coefficients are of larger degree of class sep-
aration will have a higher prior probability.

2.2 Fixed-point sICA

Different from natural gradient-based ICA with
fixed learning rate[7], fixed-point ICA provides im-
proved robustness and speed of convergence by tak-
ing adaptive learning rate. Without loss of gener-
ality, we assume all sample data {y*?} are mean-
centered. A pre-whitening preprocessing is first ap-
plied to the sample data Y to reduce the complexity
of ICA by de-correlating sample data. We solve the
eigen-decomposition on the covariance matrix E{yy” }
as E{yyT} = UTAU, where U is the matrix of eigen-
vectors and A is the diagonal matrix of all eigen-
values. Pre-whitened sample matrix Y?¥ is computed
as YP¥ = WPYY where WP = UTAY2U is the
whitening matrix. Independent components are then
estimated by maximizing the criterion in Eq.(1) on
pre-whitened samples Y?*. We further diagonalize the
scatter matrix M(YP¥) as Ms(Y?P*) = ATA,(Y)A,
where A is an D x D orthogonal matrix which satisfies
ATA=1

If we let 1 = wAT which is a 1 x D vector, we rewrite
the prior in Eq.(2) as

Pwre) =[] Po(we®) = [] Polg),  (4)
q q

Py(ih) = — exp{MbA,(Y)uT}.

7 (5)

Accordingly, the posteriori is given as

log P(VP*|Y?") = logP(V|Y) = Nlog |W]|

+ > 1og Py gy} + A Y weh s (V)T + C.
k,i.q d q

Since [y?*](k%) has been pre-whitened, we have uncor-
relatedness and unit variance of the $%% . Accordingly,
the following relation, i.e.,

1] = |E{35T}| = [WI|AIE{y" g™ T HIAIWT], (6)

means that |W| is constant. In order to optimize the
likelihood under the constraint ||w,|| = 1, we define the
criterion by using the Lagrange multiplier,

L=1logP(W|Y) + > ag(igi] 1) ()

q
with its first-order differential with respect to wqq being

8L _ dlog P(W|Y)
Bga  Oigg

NE[g(Wgf)ia) + 2Mbg[As(Y)]a + 204Wga

+ 2aq1qu

(8)
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with g(z) = P; (z)/Py(x). In a vector form of differen-
tial, we derive

oL

Fr

= —NE[g(tg$)97] + 22 [As(Y)] + 204154  (9)

To maximize the criterion, we set the first-order differ-
ential to zero, i.e.,0L/0w, = 0, under the constraint
||lwg]] = 1 and obtain ay, i.e.,

0 =20,1,67 — N Elg(irgg)i" |67 + 2\l Ao (¥)]7,

N

og == Elg(q)iq9] — Mbq[As(¥)] ] (10)

The second-order gradient is

0%L b .
902, —NElg (be8)d3] + 2A[As(Y)]aa + 204
(I

~ —NEg (10,8)] + 2A[As(V)]da + 204.  (11)
Finally, the fixed-point update rule for .4 reads
oL / %L
OWgq Bu‘)gd
_ _NE[g(949)ja] — NdgaElg (e9)]
—NE[g' (bg3)] + 204g + 2A[As(Y)]aa

Wed — Wed —

(12)

By taking an adaptive learning rate, fixed-point algo-
rithm may provide faster and more robust estimation
than the natural gradient method which uses a fixed
learning rate. If we let g($) and ¢'(3) to denote the
element-wise calculation of functions g(z) and g (z) on
sources § = WY, we have NEg (0g9)] = [g (9)1],-
We further simplify the update rule as
W ®o[g(S)YT - G'W], (13)
by defining G' = diag{NE[g (#,9))lq 1,--,Q}
and a Q x D matrix ® with ¢,y = [—G; + 2a4 +
2A[A¢(Y)]ag) L. The symbol o defines the component-
wise multiplication of two matrices. The algorithm is
given in Table 1. Finally, we have de-mixed source as

S=S=WY =WATWPY = WY  (14)
and de-mixing bases as W = WATW»w,

2.3 Apply sICA to Expression Recognition
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Figure 2: A block diagram for the processing flows in
both the learning phase and the running phase of facial
expression recognition. All input image data will be
normalized in face position and histogram-equalized.

We perform sICA on the PCA coefficients Y instead
of directly on the image data X where ¥ = WPcaX,
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Accordingly, the final bases for extracting features are
computed as WF = WWP®2 Let X = [zu|n €
{1,---,N}] be the matrix by putting all testing im-
ages into different columns and N be the number of
samples in the testing set. We define Z = {2z, €
{1,---,K}n € {1,---,N}} as the true classified la-
bels for observed data, and define a recognition rate as

Te = -}\7 271:;1 0(zn, 2), where §(z,y) is the Kronecker
delta. 2 is the estimated label value which is the label
of the class whose center has the minimum distance to

the current feature vector, i.e.,

2% = argmin D(s,, Wg¥)
k
and s, = Wrzp. D(z4,7zp) calculates the dis-
tance between two feature vectors, which is defined as
D(Ta,zp) = 1.0 — (x¥24)/(|zal|zs]). A block diagram
for the whole process is given in Fig. 2.

3 Experiments and Discussions

We will focus on the comparison between sICA and
ICA under same conditions to investigate the effect by
introducing the prior and by changing hyper-parameter
A for facial expression analysis.

3.1 Experimental Conditions

We use the Japanese Female Facial Expression
(JAFFE) Database [8], which includes 213 images in
total. These images are aligned in face position and
histogram-equalized. Some samples are given in Fig.
3. All images are resized to 64 x 80 pixels. The goal of
recognition is to classify them into neutral face or one of
six elemental facial expressions suggested by Ekman et
al.[9], i.e., happiness, anger, fear, disgust, sadness and
surprise. Numerical experiments have been performed
on 4 randomly selected training sets with size N be-
ing 70, 80, 90 and 100, respectively. For each N, a pair
of two mutually exclusive sets was created, one with
N images for training, and another with 213 — NV im-
ages for testing. Average results over five-time compu-
tations from different random initializations are com-
pared in the present paper.

() (b)

(8)
Figure 3: Several normalized samples in the JAFFE
database. (a) Neutral (b) Happiness (c) Anger (d)
Fear (e) Disgust (f) Sadness and (g) Surprise.

© @ (@

3.2 Recognition Rates in sICA

Performances of ICA and sICA in facial expression
recognition are compared in Fig.4 for classifying all
testing datasets. For comparison, performances of
PCA and MDA (a multi-class extension of linear dis-
criminant analysis) are also compared in our experi-
ments. Recognition rate r. is plotted as a function of
Q@ with hyper-parameter A being set to 0.35 ad hoc. In
our experiments of facial expression recognition, ICA
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Figure 4: Recognition rates r. by using PCA, MDA,
ICA and sICA are compared on the four testing
datasets with training sample size N being 70,80,90
and 100 in four graphs, respectively. The hyper-
parameter A is heuristically set to 0.35.
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Figure 5: Recognition rate r. is plotted as a func-
tion of number of components @ at different hyper-
parameter X in (a) for the testing dataset with train-
ing sample size N = 80. The transition of r, w.r.t. A
is shown in (b). A properly selected A helps improve
the performance.
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Figure 6: Degrees of class separation ds(w) are com-
pared on components from sICA and classical ICA.
Number of components Q is set to 10. Each bar
represents one component. Five components with
highest ds;(w) appear in (b).
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outperforms PCA in all cases. The reason is thought
to be that facial expression is mainly caused by local
variations which are less significant in PCA bases than
those global variations, e.g., pose variation, lighting,
and personal difference, etc.

Our sICA significantly improves the robustness of
performance under a much smaller number of compo-
nents. With this characteristic of sICA, it is possible
to derive a small subset of independent components
that are distinctive in classification, which will signif-
icantly reduce the training time when dealing with a
large training dataset. A smaller set of independent
components also speeds up the running phase of recog-
nition. Compared to MDA, sICA increases the recogni-
tion rate by 5 points in average for all testing datasets.

3.3 Characteristics of sICA
a) Behavior under Different Hyper-parameter A

We plot recognition rate r as a function of A at differ-
ent number of components @ for N = 80 in Fig.5(a).
With the increasing of A, the robustness of recognition
rate r, against small number of components @ could be
improved. The transition of recognition rate r. w.r.t.
hyper-parameter A appear in Fig.5(b), which shows
that too large A causes a heavy bias on the sparse-
ness of the obtained independent components and then
deteriorates the result. A tradeoff between the sparse-
ness and the discrimination degree should be taken to
achieve the best results.

b) Degree of Separation in sICA

We define the degree of class separation dg(w) =
wM,(Y)wT for de-mixing component w. In Fig.6, all
components derived by sICA are compared to those de-
rived by ICA in ds(w). sICA achieves higher degrees of
class separation than ICA for almost all components.
A common feature between components of high ds(w)
is that they both emphasize on some facial parts, e.g.,
eyebrows, cheeks, mouth corners, etc., that are thought
to be essential in understanding facial expressions.

4 Conclusion and Future Work

We have proposed a supervised ICA for facial ex-
pression recognition by performing the feature selection
along with the learning of ICA. We include a selective
prior defined on the scatter matrix into ICA and derive
the learning rule in a fixed-point algorithm. Numerical
experiments show that our method outperforms ICA,
especially in increasing the recognition rate under a
median number of independent components. Our fu-
ture works include the decision of optimal A and the
investigation on various priors.
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