
IPSJ SIG Technical Report

Using Continuous Representation of Various Linguistic
Units for Recurrent Neural Network based TTS Synthesis

XinWang1,a) Shinji Takaki1,b) Junichi Yamagishi1,c)

Abstract: Building high-quality text-to-speech (TTS) systems without expert knowledge of the target language and/or
manual time-consuming annotation of speech and text data is an important and challenging research topic in speech
synthesis. Recently, the distributed representation of raw word inputs, called “word embedding”, have been used in
various natural language processing tasks with success. Moreover, the word-embedding vectors have recently been
used as the additional or alternative linguistic input features to a neural-network-based acoustic model for TTS sys-
tems. Since word-embedding approaches may provide means for obtaining effective linguistic representations from
texts without requiring specialized knowledge of the language and/or manual time-consuming annotation, we further
investigated the use of the word-embedding for neural-network-based TTS systems in two new directions. First, in ad-
dition to the standard word embedding vectors, we attempted to use phoneme, syllable, and phrase embedding vectors
to verify whether continuous representations of these linguistic units may improve the segmental and suprasegmental
quality of synthetic speech. Second, we examined the impact of normalization methods on the obtained embedded
vectors before they were feed into the neural-network-based acoustic model.

Keywords: Text-to-speech, Speech synthesis, Recurrent neural network, Contexts, Word embedding

1. Introduction
Text-to-speech (TTS) synthesis converts text strings into

speech waveforms. Due to the non-linear relationships between
text and speech, TTS is normally decomposed into front-end and
back-end. The front-end performs linguistic analysis and sym-
bolic prosody prediction in order to obtain intermediate linguistic
representations between speech and text. Based on the interme-
diate representations, the back-end performs acoustic feature pre-
dictions and synthesize the speech waveform.

The front-end can be further divided into smaller yet specific
sub-modules. For English TTS, they include a) grapheme-to-
phoneme conversion (G2P), b) syllabification, c) part-of-speech
(POS) tagging, d) syntactic parsing, e) symbolic prosody predic-
tion, and so on [1]. These sub-modules are usually statistic mod-
els trained using databases in which correct labels are carefully
and manually annotated. This results in very accurate and high-
quality synthetic speech. However, it is laborious to collect such
the databases. This becomes the major barrier, especially when
we need to build a TTS system in a new language in which speech
and linguistic resources are lacking. Even for the major languages
such as English, we encounter a similar problem when we scale
up the size of the database or change to a new domain.

Recently, the distributed representation of raw word inputs,
called “word embedding”, have been used in various natural lan-
guage processing (NLP) tasks with success [2]. Typically, this
1 National Institute of Informatics, 2-1-2, Hitotsubashi-cho, Chiyoda-ku,

Tokyo, 101-8430, Japan
a) wangxin@nii.ac.jp
b) takaki@nii.ac.jp
c) jyamagis@nii.ac.jp

low-dimension continuous vector representation of words can be
learned from raw word inputs. It has been reported that a well
trained embedding vector is able to encode syntactic and semantic
information [3]. Therefore, it is interesting to investigate whether
such the word embedding vectors can be used as the additional or
alternative linguistic representations in front-end modules of TTS
systems. In [4], various types of the word embedding vectors,
such as those learned by the recurrent neural network (RNN)-
based language model (LM) [3] and log-linear model with neg-
ative sampling [5], have been utilized for an RNN-based TTS
systems. The objective and subjective evaluation showed that the
RNN-based TTS system with the word embedding vectors per-
forms marginally worse than that with correct POS and prosodic
tags but clearly performs better than a system with neither the
POS nor prosodic tags. In [6], the word embedding vectors
and triphone embedding vectors were used for text-to-articulatory
prediction. Their experiments have also confirmed the same trend
as the above TTS experiments.

We further investigated the use of the distributed representation
of input text for the neural-network-based TTS systems in two
new directions. First, because the word embedding approaches
may provide effective representations not only for word units but
also at other linguistic levels, we attempted to use phoneme, syl-
lable, and phrase embedding vectors in addition to the standard
word embedding vectors. Second, we examined the impacts of
several different normalization approaches on the word embed-
ded vectors before they are fed into neural-network-based acous-
tic models. We showed that the normalization of the obtained
word vectors may alter the distance between units in the original
embedded space, thus, degrading the systems’ performance.

1ⓒ 2016 Information Processing Society of Japan

Vol.2016-SLP-110 No.7
2016/2/6

IPSJ SIG Technical Report

Grapheme to
phoneme

conversion
Linguistic
analysis

Phrase break
Pitch accent
…

Text
normalization

Prosodic
inferring

Linguistic
specification

POS tagging
Syntactic Parsing
…

Speech

Back-end of TTS

Text

Fig. 1: Simplified diagram of conventional front-end processing
flow used for typical TTS systems

The rest of this paper is structured as follows: Section 2 briefly
introduces the conventional front-end modules in English TTS
systems. Section 3 then introduces the neural-network-based
acoustic model, wherein the embedded vectors replaces the con-
ventional prosodic context. Section 4 describes the proposed em-
bedded vectors for syllable, phoneme and phrases. The analysis
of the effects of normalization of the embedded vectors is also
presented. Section 5 explains the experiments and results, and
Section 6 summarizes this work and describes the future work.

2. Conventional front-end processing flow for
typical English TTS systems

To convert a text into natural speech, a TTS system must re-
trieve the pronunciation of words in the text and infer the prosody
for the text. However, the association between pronunciation
symbols and the word tokens is ambiguous in English. Also, even
if the pronunciation of words is known, the prosodic information
can not be easily acquired because it is not encoded explicitly in
the normal text string [7].

Considering the above challenge, typical English TTS systems
deploy the front-end and back-end architecture shown in Fig.1.
The front-end of a TTS system infers the symbolic representa-
tion of both segmental and prosodic properties of speech. Then,
the back-end acoustic model converts the symbolic intermediate
representation into a speech waveform, typically using the unit-
selection method [8] or the statistical parametric method [9].

Between the front- and back-ends, the intermediate represen-
tation encodes both segmental and suprasegmental aspects of
speech. The segmental part mainly includes the phoneme se-
quence of every word in the input text. With a carefully produced
pronunciation lexicon and well-tuned G2P algorithms, this seg-
mental information can be inferred with high accuracy [10][11].

However, the prosody, e.g., the intonation, timing and stress
of the utterance, is more difficult to predict. First, no consen-
sus has been reached on designing the set of prosodic symbols
for English. A widely adopted set is the Tone and Break Indices
(ToBI) [12] wherein pitch accent and break index represent the
local pitch excursion and association between adjacent words, re-
spectively. With the target prosodic symbols defined, the next
problem is to predict these targets for the input text. Typically,
the front-end of TTS first usually infers linguistic features of the

input text [13]. For example, as shown in Fig.1, a Part-of-speech
(POS) tagger and a syntactic parser may be used at this stage in
order to derive the sequence of POS tags and the syntactic tree
of the input text. Given the inferred POS and syntactic structure,
prosodic targets can be predicted [13].

For the task of linguistic analysis and prosodic modelling in
the front-end, researchers have proposed several effective meth-
ods. For example, Taylor used the hidden Markov model (HMM)
to infer the phoneme sequence for each word in the input text
[10]; Kupiec used HMM for POS tagging [14] ; Various syn-
tactic parsers also utilized the statistical approach [15]. On the
prosodic modelling part, Hirchberg utilized the decision tree to
predict the pitch accent based on syntactic features of the text
[13]. To construct these statistical modules, expert knowledge on
specific topics such as syntax is required to design task-related
input and output features. Also, a specific data corpus must be
prepared to train each modules. For example, prosodic models
are usually trained on the Boston University News Radio Cor-
pus [16] and syntactic parsers are usually trained using the Penn
Treebank corpus [17]. Based on expert knowledge in feature de-
signing and data annotation, the front-end of a TTS system can
exhibit good performance.

3. Using word embedding for neural-network-
based acoustic models

3.1 Shortcomings of conventional front-end framework
The conventional front-end framework is not ideal for TTS,

especially on prosody modelling. First, it assumes that discrete
prosodic symbols must be defined. However, researchers have not
yet reached a consensus on the best definition of discrete prosodic
form [1][18]. Even if a consensus is reached, another dispute is
whether symbolic prosody is necessary for a speech task. After
all, the acoustic feature space is continuous. This inconsistency
may result in quantization noise during prosody annotation and
acoustic realization given the prosodic symbols [19][20].

Additionally, as mentioned above, prosodic models based on
a supervised machine learning method require sufficient train-
ing data with consistent annotation. However, consistency of
prosodic annotation across annotators may not be as high as ex-
pected [21]. Inconsistency in the training data may affect the per-
formance of the prosodic models. The errors predicted by these
models may be propagated to the following acoustic model and
eventually degrade the quality of the synthetic voice.

3.2 Word embedding
Although the notion of the prosodic form is beneficial, the

prosodic form can be defined and modelled implicitly [19]. For
example, we may directly feed the one-hot vectors of words to
the acoustic model and then rely on the model to infer prosodic
information during the training process. In this way, the cost of
defining prosodic symbols and preparing various prosodic mod-
ules can be decreased. However, this approach is impractical be-
cause the one-hot vector has huge dimension (e.g. 50k dimen-
sions for Penn TreeBank corpus). More significantly, these one-
hot vectors can not encode syntactic and semantic information
that should be useful for inferring prosody.

2ⓒ 2016 Information Processing Society of Japan

Vol.2016-SLP-110 No.7
2016/2/6

IPSJ SIG Technical Report

Grapheme-to
phoneme

conversion
/ /

Acoustic model based
on neural network

Fig. 2: Neural-network-based TTS with word embedding. The
sequence of phonemic context p and embedded vectors m are
converted into acoustic feature vectors O. M∗ denotes the em-
bedded vectors for words or other linguistic units of the input text
{w1, · · · , wN}. Duration prediction to convert p and m sequences
to I sequence is not shown here.

Recently, distributed representation of words based on word
embedding technique became popular. This method derives a
continuous low-dimensional vector representation for words. It
was found that, with a specific training scheme, the learned em-
bedded vectors can encode the syntactic and semantic relation-
ship between words. For example, Mikolov utilized an RNN
based language model to derive the embedded vectors [3]. The
results showed that a syntactic analogy, such as “year to years
is as law to laws”, can be derived through calculating the cosine
distance between word vectors. Besides RNN-based LM, simple
log linear models, such as continuous bags of words (CBOW) and
skip-gram, have been used to derive the word embedded vectors.

Since such word embedded vectors have much less dimensions
than the size of the vocabulary, they can be used as the input
to the acoustic model. If embedded vectors indeed encode the
syntactic information of words, the acoustic model may infer the
prosodic regularity hopefully from the embedded vectors without
additional a linguistic analyzer and prosodic model.

3.3 Acoustic modelling based on recurrent neural network

Inferring prosodic parameters implicitly requires a powerful
acoustic model. For this study, we used the deep bidirectional
RNN-based on long short term memory (LSTM) units [22]. The
basic RNN is based on the normal feed-forward neural network
plus the hidden state of the previous time step as the input to the
current node of the current time step, expecting that dependency
of the training data over the time span can be modelled. However,
due to the gradient vanishing problem, a vanilla RNN may not be
able to capture the dependency over a long time span. As a solu-
tion to this problem, LSTM has been proposed to replace the sim-
ple non-linear activation function in the hidden node of a vanilla
RNN. Particularly, an LSTM unit uses three gates to control the
input, output information flow and the state of the memory cell.
This LSTM cell can also be incorporated in a bi-directional RNN,
which results in bi-directional LSTM (DBLSTM) RNN [22].

For acoustic modelling, the text of an utterance is converted

into a sequence of frames {I1, I2, · · · , It, · · · , IT }, wherein T is
the total number of frames of the utterance to be synthesized.
The linguistic vector It at time t consists of the embedded vector
of a word at time t and the phonemic context of that word. To-
gether with a sequence of acoustic feature vectors {O1, · · · ,OT },
the acoustic model can be trained. Note that, in this paper, the
phonemic identity is kept. Only prosodic contexts are replaced
by embedding vectors, which are described in the next section.

4. Proposed methods

4.1 Motivation for using embedded vector of various lin-

guistic units

In [4], embedded vectors of words were utilised as the input
to the acoustic model instead of the ToBI symbols and POS tags.
However, the word is not the only linguistic unit that can be repre-
sented in the embedded space. An utterance can be hierarchically
decomposed as phrase, word, syllable or phoneme sequences. As
Bian et al. argues, the base of embedded vectors can be a sub-
word unit such as a prefix, suffix, or syllable [23]. It can also be
the whole sentence or document (known as doc2vec) [24].

For speech application, both sub-word and supra-word vectors
may be useful. The sub-word vectors may be expected to en-
code the segmental information of speech. For example, it has
been shown that vowel and consonants can be differentiated in a
two-dimensional space derived by latent semantic indexing (LSI)
[25]. Even though the phonemes can be efficiently represented
using one-hot vectors, it would be interesting to explore whether
continuous representation can be beneficial.

Another sub-word linguistic unit is syllable. Bian et al. has
used vectors of syllable as the input feature for an NLP task [23].
Although the performance is not improved for the NLP task, it
may be useful for speech-related tasks. Thus, it would be inter-
esting to explore whether embedded representation of those lin-
guistic units can improve the performance of the acoustic model.

As mentioned above, prosody of speech is mainly supraseg-
mental. A single word can be realized with different prosody
in different contexts, which indicates that the word or sub-word
level vectors may be insufficient to encode all the prosodic in-
formation. Therefore embedding, vectors of phrases or sentences
may be used. There has been a similar attempt for sentimental
analysis and [24] has utilised sentence-level vectors to predict the
sentiment of a sentence. Hence it is also interesting for us to
verify whether sentence-level vectors could benefit the acoustic
model in prosodic realization.

4.2 Learning the embedded vectors for various linguistic

units

To derive the embedded vectors for syllable and phoneme,
we used the Continuous-Bag-of-Word (CBOW) model [5]. For
CBOW, the input is a set of one-hot vectors corresponding to each
word in the context c = {wi−n, · · · , wi+n}, as shown on the left side
of Fig.3. The input projection layer maps the one-hot vector of
context word w into mI(w). Because the input vector is one-hot,
the projected mI(w) actually corresponds to the I(w)-th row of the
projection matrix M, where I(w) is the index of w. Then, the
hidden representation h is calculated as the average of u:

3ⓒ 2016 Information Processing Society of Japan

Vol.2016-SLP-110 No.7
2016/2/6

IPSJ SIG Technical Report

phrase
ID

Fig. 3: CBOW (left) and Doc2Vec model (right) models

h =
1
|c|

|c|∑

i=1

mI(wi) (1)

where |c| is the size of the context, in this case |c| = 2n + 1.
This h will be further transformed by another projection matrix

M′ into u = M′h. The dimension of u is the same as that of the
input one-hot vector. Then, based on the softmax function, the
‘probability’ to generate the word wi can be written as

p(wi|c; M,M′) =
exp(m′I(wi)

h)
∑

j exp(m′jh)
(2)

where m′j is the j-th row of M′ and I(wi) is the index of wi. The
projection matrix θ = {M,M′} can be learned through the maxi-
mum likelihood (ML) criterion. Each row of the learned M cor-
responds to the embedded vector of one word. If we replace the w
as the token of syllable or phoneme, the same CBOW model can
be used to derive the embedded vectors for syllable or phoneme.

For the embedded vector of phrase, we used the doc2vec
model. This structure is similar to the CBOW model except for
the paragraph matrix P. This structure is shown on the right side
of Fig.3. At the training stage, the input to the model includes a
vector pk for the current phrase where k is the ID of this phrase.
Following the same training procedure as CBOW, P can be up-
dated. Note that updating each row of pk depends on the errors
propagated backwards for all the words wk

1, w
k
N in the k-th phrase.

At the test stage, because a test phrase is most of time different
from the training phrases, the test phrase is unseen and can not
be retrieved directly from P. Instead, the paragraph embedding
pk′ for unseen phrase k′ must be inferred given the words in k′.
This can be achieved using the back-propagation algorithm with
all the other parameters of the Doc2Vec model fixed.

4.3 Normalization method of the embedded vectors

For training the neural network model, normalization of the in-
put and output features is necessary. However, care should be take
when the embedded vectors are normalized. As Mikolov showed,
the distance between embedded vectors of words w1 and w2 is [3]

cos(mI(w1),mI(w2)) =
mT

I(w1)mI(w2)

||mI(w1)|| · ||mI(w2)|| (3)

If we normalize the vector as m̂k =
mk−μk
σk

, wherein μk and σk are
the k−th dimension of the mean and variance vector, respectively,
the distance cos(m̂I(w1), m̂I(w2)) between the normalised vectors
will be unequal to the original distance.

To verify the above thought, we conducted a syntactic test
[3] using the word embedding derived using an RNN language
model. The original embedded vectors exhibited an accuracy of
16.2%, which is identical to that reported. However, after we nor-
malized the vectors using the global mean and variance vector, the
accuracy dropped from 16.2% to 10.68%.

Directly using the raw embedded vectors without normaliza-
tion is possible. However, the vectors m have unit a length, and
the value of each dimension may be too small. Thus, another
strategy is to scale the dimension of every embedded vector as
mk =

mk
σk

. With this scale, the accuracy on the syntactic test in-
creases from 10.68% to 12.75%. Part of the information encoded
in the scaled vectors may be lost. However, it is interesting to
know whether the simply scaled vectors can be more useful.

5. Experiments and Results

5.1 Preparing the embedded vectors of linguistic units

Experiments were conducted for the English TTS task. Em-
bedded vectors of word, phoneme, syllable and phrase were in-
volved in the experiments. For the vectors of words, we directly
used the vectors trained based on the RNN language model *1.
The same set of word vectors was also used in [4]. This vector
data set covers most of the words in the speech corpus used for
the following experiments; only 358 out of 340,000 word tokens
were not found. The vectors of these words were simply set as
the global mean of all the word vectors.

The embedded vectors at the phoneme and syllable level were
derived using the Word2Vec tool [5]. The training data were the
English text in the news domain *2. At first, text was normalised
*3. Then, Flite [26] was used to convert the text into the sequences
of syllables and phonemes. After that, CBOW models for sylla-
bles and phonemes were trained separately using the Word2Vec
tool. The training process was iterated for 15 times with nega-
tive sampling [5] and finally yielded 200 dimensional embedded
vectors of syllable and phoneme.

The phrase level vectors were learned using the distributed
memory model of paragraph vectors (PV-DM) [24], which is
shown on the right of Fig.3. The same news data corpus for syl-
lable and phoneme vectors were used for model training. Phrases
were first extracted from the corpus according to the punctuation
in the utterance. Then, the PV-DM model was trained with nega-
tive sampling for 15 iterations. Given the PV-DM model, phrase
vectors for all the grammatical phrases in the speech data cor-
pus were inferred based on the back-propagation algorithm. The
dimensions of the word and phrase vectors were 100 and 100, re-
spectively. For each word in the speech data corpus, the phrase
and word vectors learned using the PV-DM model were concate-
nated into a vector of 200 dimensions.

5.2 Experimental setup for the TTS task

The database for acoustic model training contains 12072 En-
glish utterances from a female speaker. 500 utterances were ran-

*1 http://rnnlm.org
*2 http://www.statmt.org/wmt14/training-monolingual-news-

crawl/news.2013.en.shuffled.gz
*3 http://word2vec.googlecode.com/svn/trunk/demo-train-big-model-v1.sh

4ⓒ 2016 Information Processing Society of Japan

Vol.2016-SLP-110 No.7
2016/2/6

IPSJ SIG Technical Report

Table 1: Additional features besides quinphones as input to the
acoustic model. Feature ID was used as the subscript to identify
experimental systems. For example, Re denotes the RNN-based
system using phoneme vectors and quinphones as input.

ID description dimension
N none -
p traditional prosodic context 90
e embedded vectors of phoneme 200
s embedded vectors of syllable 200
w embedded vectors of word 80
h embedded vectors of phrase 200

domly chosen as the test set. Given the transcription of each ut-
terance, its phoneme sequence was acquired using Flite. Mean-
while, Mel-generalized cepstral coefficients (MGC) of order 60, a
1 dimensional continuous F0 trajectory, the voiced/unvoiced con-
dition, and band aperiodicity of order 25 were extracted for each
speech frame. Although an RNN-based acoustic model was as-
sumed to be able to model the inter-frame dependency of consec-
utive frames, we still used the delta and delta-delta components of
the acoustic features except the voiced/unvoiced condition. Thus,
the number of dimension of the acoustic feature per frame was
(60 + 25 + 1) × 3 + 1 = 259.

In this rest of the paper, experiments are introduced in a
chronological order. First, we compared the performance of the
DBLSTM-RNN-based acoustic model with different embedded
vectors as input features. We use R to denote these RNN-based
systems, and use subscripts shown in Tab.1 to identify those with
specific input features. Note that, all experimental systems uses
the quinphone as input features. The prosodic context in Tab.1 in-
cludes binary (e.g. whether the current syllable is pitch accented)
and positional information (e.g. distance to the next pitch accent)
derived using Flite.

The model structure for all RNN systems contains two normal
feed-forward layers with a sigmoid activation function and two
bi-directional LSTM layers. Except the first feed-forward layer,
the number of hidden nodes of the following layers was fixed at
512, 256, 256, respectively. For systems with a the combination
of embedded vectors as input (e.g. Res), the size of the first hidden
layer was 1024. Otherwise, it was 512.

5.3 Performance of DBLSTM-RNN based systems with dif-
ferent input features

For this initial work, we just adopted three types of objective
measures to show the performance of each system: RMSE of
the predicted MGC coefficients and RMSE and correlation co-
efficients of F0 trajectory. To yield meaningful results, we took
the average of the objective measures over the last five training
epochs of each system. The voiced/unvoiced error rate is not
shown because the difference across systems was trivial.

As Fig.4 and Fig.5 show, Rp and Rpw, as the systems with the
conventional prosodic context, performed the best. Compared
with these two systems, the inferior performance of RN was ex-
pected. However, when the word vectors were used as input fea-
tures, Rw was only slightly better than RN on F0 modelling. This
result was unexpected since it was reported that the word vectors
could improve a system without prosodic context [4]. Additional

0.56
0.57
0.58
0.59
0.6

0.61
0.62
0.63
0.64
0.65

M
G
C	
RM

SE

Fig. 4: RMSE of MGC when DBLSTM-RNN was trained using
different input features

0.61
0.63
0.65
0.67
0.69
0.71
0.73
0.75
0.77
0.79

36
37
38
39
40
41
42
43
44
45
46

F0
	 R
M
SE
	 (H

z)

Fig. 5: RMSE (Hz) and correlation coefficients of F0 when
DBLSTM-RNN was trained using different input features

tuning of the hyper-parameters may be required to take advantage
of the word vectors.

Embedded vectors of other linguistic units showed different ef-
fects on the results. Particularly, Rh performed the best on F0
modeling among the systems without prosodic context. This re-
sult is interesting because it indicates that a phrase vector may
encodes information related to the suprasegmental property of
speech. Unfortunately, when combining vectors of different lev-
els, the results only degraded.

The overall performance of the systems with embedded vec-
tors was not positive. At first, we wondered whether the power
of the DBLSTM-RNN reduced the effect of the input features so
that input features were not important (e.g. even the difference
between Rp and RN was less than 2Hz in F0 modelling). Thus,
we prepared another five systems using feed-forward neural net-
work (D) to replace DBLSTM-RNN. The network structure was
similar, except the LSTM layers were replaced with feed-forward
layers with 512 nodes. The results are listed in Tab.2. The first
observation is that the RNN-based system without any prosodic
context (RN) performs better than the DNN-based system with
prosodic context (Dp). Another observation is that the difference
between DNN systems using or not using prosodic context was
much larger than that between RNN systems. By comparing DN ,
Dw, and Dh, we observed that the differences between DN and
the other two systems were larger than the DBLSTM-RNN case.
This result suggests that that the word and phrase vectors encode
useful information. However, their effectiveness may be insignif-
icant when a powerful model is used.

5.4 Effect of normalization on embedded vectors
Another perspective to interpret the unsatisfactory results of

the previous section is to re-examine the input features. Accord-
ing to Sec.4.3, additional systems were trained based on embed-
ded vector of words using different pre-processing methods. The

5ⓒ 2016 Information Processing Society of Japan

Vol.2016-SLP-110 No.7
2016/2/6

IPSJ SIG Technical Report

Table 2: Performance of acoustic modeling using DNN (D) and
DBLSTM-RNN (R) based on different input features listed in
Tab.1. Superscript s means the feature vector was scaled by the
variance vector. Superscript r means the raw feature vector was
used without pre-processing.

Input MGC RMSE F0 RMSE(Hz) F0 Corr.
feature D R D R D R

p 0.634 0.590 45.71 40.17 0.692 0.766
p + w 0.638 0.590 45.30 39.85 0.694 0.774

N 1.009 0.604 53.82 41.98 0.518 0.742

w 1.011 0.609 53.31 41.71 0.533 0.749
ws 1.004 0.598 53.17 41.26 0.535 0.751
wr 1.004 0.606 53.59 41.70 0.523 0.750

h 1.006 0.604 53.24 41.00 0.536 0.759
hs 1.008 0.622 53.36 41.82 0.532 0.744

results are listed in Tab.2. For Ds
w and Rs

w, the embedded vec-
tors were scaled without subtracting the mean vector; For Dr

w and
Rr
w, the embedded vectors were directly feed into the model. As

shown in Tab.2, the comparison among Rw,Rs
w,R

r
w suggests that

the scaling strategy results in the better performance. This was
also observed among DNN-based systems.

Additional experiments were conducted for systems with
phrase vectors h as input. However, as the comparison among
Rh and Rs

h shows, the scaling strategy can not surpass the nor-
mal normalization method. However, further investigation is re-
quired before claiming that the simple scaling strategy is not use-
ful. First, we must answer whether similarity between phrases
can be measured in the same way as word vectors? If the answer
is no, normalizing the phrase vectors may not distort the similar-
ity in the phrase vector space. As far as we know, this is still an
open question.

6. Conclusion
We investigated the embedded vectors of various linguistic

units to replace the conventional linguistic context as input fea-
tures to an acoustic model. The results suggested that the phrase
vectors can be beneficial in acoustic modelling. However, the
overall improvement is relatively small. For the word vectors, if
the simple scaling strategy is used instead of the normal normal-
ization method, their benefits could be better used by the neural
network based acoustic model. Subjective evaluation on typical
systems such as Rh will be conducted in the future.

Overall, further investigation is required on embedded vectors
for TTS. Typically, all embedded vectors are learned based on
the “meaning by collocation” assumption. It is doubtful whether
this assumption is valid for speech-related tasks. In fact, many
researchers recently argued that “meaning by collocation” is not
ideal. Better embedded vectors may still require domain-specific
knowledge [27][28]. In the future, embedded vectors may be
tuned with speech-related tasks so that sufficient acoustic infor-
mation can be encoded in the embedded space. Towards the goal
of end-to-end TTS framework, an interesting idea is to adopt the
Connectionist Temporal Classification (CTC) method [29] to di-
rectly map the text sequence into speech waveform.

References
[1] Taylor, P.: Text-to-Speech Synthesis, Cambridge University Press

(2009).
[2] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K.

and Kuksa, P.: Natural language processing (almost) from scratch,
The Journal of Machine Learning Research, Vol. 12, pp. 2493–2537
(2011).

[3] Mikolov, T., Yih, W.-t. and Zweig, G.: Linguistic regularities in
continuous space word representations., HLT-NAACL, pp. 746–751
(2013).

[4] Wang, P., Qian, Y., Soong, F. K., He, L. and Zhao, H.: Word embed-
ding for recurrent neural network based tts synthesis, ICASSP-2015,
IEEE, pp. 4879–4883 (2015).

[5] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J.:
Distributed representations of words and phrases and their composi-
tionality, NIPS-2013, pp. 3111–3119 (2013).

[6] Zhu, P., Xie, L. and Chen, Y.: Articulatory movement prediction us-
ing deep bidirectional long short-term memory based recurrent neural
networks and word/phone embeddings, INTERSPEECH-2015 (2015).

[7] Halliday, M. A. K.: An Introduction to Functional Grammar, London,
UK: Edward Arnold, 2nd ed edition (1994).

[8] Hunt, A. J. and Black, A. W.: Unit selection in a concatenative speech
synthesis system using a large speech database, ICASSP-1996, IEEE,
pp. 373–376 (1996).

[9] Tokuda, K., Nankaku, Y., Toda, T., Zen, H., Yamagishi, J. and Oura,
K.: Speech synthesis based on hidden Markov models, Proceedings of
the IEEE, Vol. 101, No. 5, pp. 1234–1252 (2013).

[10] Taylor, P.: Hidden Markov models for grapheme to phoneme conver-
sion, INTERSPEECH-2005, pp. 1973–1976 (2005).

[11] Black, A. W., Lenzo, K. and Pagel, V.: Issues in building general letter
to sound rules, SSW3-1998 (1998).

[12] Silverman, K. E. A., Beckman, M. E., Pitrelli, J. F., Ostendorf, M.,
Wightman, C. W., Price, P., Pierrehumbert, J. B. and Hirschberg, J.:
TOBI: a standard for labeling English prosody, ICSLP-1992, pp. 867–
870 (1992).

[13] Hirschberg, J.: Pitch accent in context predicting intonational promi-
nence from text, Artificial Intelligence, Vol. 63, No. 1, pp. 305–340
(1993).

[14] Kupiec, J.: Robust part-of-speech tagging using a hidden Markov
model, Computer Speech & Language, Vol. 6, No. 3, pp. 225–242
(1992).

[15] Collins, M.: Head-driven statistical models for natural language pars-
ing, Computational linguistics, Vol. 29, No. 4, pp. 589–637 (2003).

[16] Ostendorf, M., Price, P. J. and Shattuck-Hufnagel, S.: The Boston
University radio news corpus, Linguistic Data Consortium (1995).

[17] Marcus, M. P., Marcinkiewicz, M. A. and Santorini, B.: Building a
large annotated corpus of English: The Penn Treebank, Computational
linguistics, Vol. 19, No. 2, pp. 313–330 (1993).

[18] Hirst, D.: The phonology and phonetics of speech prosody: between
acoustics and interpretation, Speech Prosody (2004).

[19] Shriberg, E. and Stolcke, A.: Prosody modeling for automatic speech
recognition and understanding, Mathematical Foundations of Speech
and Language Processing, Springer, pp. 105–114 (2004).

[20] Batliner, A. and Möbius, B.: Prosodic models, automatic speech un-
derstanding, and speech synthesis: Towards the common ground?, The
integration of phonetic knowledge in speech technology, Springer, pp.
21–44 (2005).

[21] Wightman, C. W.: ToBI or not ToBI?, Speech Prosody (2002).
[22] Greff, K., Srivastava, R. K., Koutnı́k, J., Steunebrink, B. R. and

Schmidhuber, J.: LSTM: A search space odyssey, (online), available
from 〈http://arxiv.org/abs/1503.04069〉 (2015).

[23] Bian, J., Gao, B. and Liu, T.-Y.: Knowledge-powered deep learning
for word embedding, Machine Learning and Knowledge Discovery in
Databases, Springer, pp. 132–148 (2014).

[24] Le, Q. and Mikolov, T.: Distributed representations of sentences and
documents, ICML-14, pp. 1188–1196 (2014).

[25] Watts, O. S.: Unsupervised learning for text-to-speech synthesis, PhD
Thesis, University of Edinburgh (2013).

[26] HTS Working Group: The English TTS System ”Flite+hts engine”
(2014).

[27] Rubinstein, D., Levi, E., Schwartz, R. and Rappoport, A.: How well
do distributional models capture different types of semantic knowl-
edge?, Proceedings of ACL, Vol. 2, pp. 726–730 (2015).

[28] Xu, C., Bai, Y., Bian, J., Gao, B., Wang, G., Liu, X. and Liu, T.-
Y.: RC-NET: A general framework for incorporating knowledge into
word Representations, CIKM-14, pp. 1219–1228 (2014).

[29] Graves, A., Fernández, S., Gomez, F. and Schmidhuber, J.: Connec-
tionist temporal classification: Labelling unsegmented sequence data
with recurrent neural networks, ICML-2006, pp. 369–376 (2006).

6ⓒ 2016 Information Processing Society of Japan

Vol.2016-SLP-110 No.7
2016/2/6

