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Abstract: Significant progress has been made in the field of autonomous driving during the past decades. However,
fully autonomous driving in urban traffic is still extremely difficult in the near future. Visual tracking of vehicles or
pedestrians is an essential part of autonomous driving. Among these tracking methods, kernel-based object tracking
is an effective means of tracking in video sequences. This paper reviews the kernel theory adopted in target tracking
of autonomous driving and makes a qualitative and quantitative comparison among several well-known kernel based
methods. The theoretical and experimental analysis allow us to conclude that the kernel based online subspace learning
algorithm achieves a good trade-off between the stability and real-time processing for target tracking in the practical
application environments of autonomous driving. This paper reports on the result of evaluating the performances of
five algorithms by using seven video sequences.
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1. Introduction

Driver assistance systems and autonomous driving have gained
rapid development in the last decades for the purpose of reduc-
ing traffic accidents and enhancing driving comfort [1]. The ear-
liest concept of autonomous driving has been proposed since
General Motors presented a mock-up of an automated vehi-
cle highway system at the 1939 World’s Fair [2]. During the
1990s, many autonomous driving projects have been supported
by government, such as the National Automated Highway Sys-
tems Consortium (NAHSC) project in U.S., the Assist Highway
Systems Research Association (AHSRA) project in Japan, the
PROMETHEUS project in Germany and the La Route Automa-
tisée (LARA) project in France [3]. The early autonomous driv-
ing was designed for low-speed freeway scenarios and has the
function of lane changes, obstacle avoidance and close-headway
platooning [4]. These applications usually need the help of sup-
ported infrastructures (such as magnetic markers or dedicated
lanes). As the rapid development of information processing sys-
tems and sensor technology autonomous driving has been ex-
tended to the urban traffic environment in recent years.

Autonomous driving will perform the lateral or longitudinal
control automatically according to the perception result of driv-
ing environment. For example, with the lateral control on steering
actuator, the vehicle can change driving lane to realize the over-
taking or obstacle avoidance; and with the longitudinal control on
brake and throttle actuator the vehicle can realize the automated
platooning. Many sensors have been employed to provide the
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surrounding information for the lateral and longitudinal controls,
such as infrared image sensor, sonar, laser range finder, radar,
and so on. Compared to these sensors, visual sensors can pro-
vide much rich information such as the shape and texture with
high resolution. The perception module will use this visual in-
formation to detect, recognize and track interesting targets like
lane, vehicle, pedestrian, traffic sign and traffic light. Therefore,
visual perception has been a prime technology for autonomous
driving [5], [6]. Target detection and tracking are the two import
part of visual perception, recent comprehensive reviews of com-
puter vision based vehicle and pedestrian detection can be found
in Refs. [7] and [8]. However target tracking for autonomous
driving has not been driven enough attention.

One of essential task in autonomous driving is to track sur-
rounding objects, which includes the position and dynamic infor-
mation of the certain moving objects (nearby vehicles and pedes-
trians) or stable objects (traffic sign and traffic lights) encountered
in the environment. In the semi-autonomous driving the driver
face has to be detected and tracked to analysis the fatigue driving.
Many tracking algorithms in computer vision field can be utilized
for the target tracking in autonomous driving and promising re-
sults were reported in recent years [9], [10]. This paper reviews
some recent tracking techniques which can be utilized for vision
based autonomous driving system, especially the tracking meth-
ods based in kernel theory.

Target tracking is the process of finding the most matched can-
didates with the target template in the sequence of videos. Typ-
ically, a visual tracker contains the components of target repre-
sentation, target localization, filtering and data association, these
processes can be combined to improve the robustness and effi-
ciency of a tracker. However, the loss of information caused
by projection of the 3D world onto a 2D image, noises in im-
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Fig. 1 An overview of the methodology of this paper.

ages, complex and non-rigid object motion, occlusions between
object-to-object and scene-to-object, illumination changes as well
as the requirement of real-time processing pose great challenges
on target tracking [11]. Many tracking algorithms have been pro-
posed in the past decades and significant progress has been made.
Generally, the properties of a tracking algorithm are evaluated by
the qualitative comparisons of robustness, accuracy, reliability,
adaptability as well as working in real time. Among these track-
ing methods utilized in autonomous driving, kernel-based target
tracking has gained approval due to its succinct description, non-
linear representation and computational efficiency.

The applications of kernel theory in target tracking can be clas-
sified into two aspects: One is acting as the description of target in
the spatially-weighted intensity histogram, combines with mean
shift algorithm for tracking, named as kernel-based tracking; the
other is corresponding to a scalar product in the high dimensional
nonlinear feature space introduced by some machine learning al-
gorithms such as Kernel Support Vector Machine (kernel-SVM),
Kernel Fisher Discriminant (KFD) analysis and Kernel Principal
Component Analysis (KPCA), known as kernel-based learning.
In this paper, we briefly review the recent progresses in these two
aspects, the methodology of this paper can be found in Fig. 1. We
do not attempt a full treatment of all available literatures; rather,
we introduce some basic concepts of kernel theory and exhibit
its applications or variants in target tracking. A qualitative eval-
uation is conducted at the end of each part, and a quantitative
comparison of several well-known kernel based trackers is made
by using publicly available test sequences database of vehicles
and pedestrians. The performance of these trackers is discussed
and their strengths and weaknesses are highlighted. The aim of
this paper is to provide a feasible tracking method in autonomous
driving for readers and propose some promising future directions
in target tracking.

The arrangement of this paper is as follows: In Section 2, some
basic concepts of kernel density estimation and kernel trick are
briefly presented. In Section 3, the kernel-based target tracking is
introduced, where both simple kernel and multiple kernel meth-
ods are to be discussed and a qualitative comparison is given.
In Section 4, the kernel-based learning algorithm for tracking is
summarized. We also introduce the basic idea of kernel-SVM,
KFD and KPCA and analysis the kernel trick applied in these al-
gorithms. A quantitative comparison of five tracking approaches

for seven video sequences is proved and discussed in Section 5.
The conclusion and discussion on future directions are presented
in Section 6.

2. Kernel Description

This section briefly introduce some basic concepts of kernel
density estimation and kernel trick, which will be helpful for
readers to understand the algorithms to be mentioned in the fol-
lowing sections.

2.1 Kernel Density Estimation
Kernel density estimation (KDE) or Parzen estimation is a kind

of nonparametric density estimation method. Given N observa-
tions {Xi}i=1,...,n drawn form an unknown probability density p(X)
in D-dimensional space RD. The density at X can be estimated as
Ref. [12]:

p(X) =
1

N · hD

N∑
n=1

K

(
X − Xi

h

)
(1)

where K(·) is the kernel function having the following definition:

K(u) =

⎧⎪⎪⎨⎪⎪⎩
1 |ui| < 1

2 , i = 1, . . . ,D
0 else

(2)

With the definition of (2), K
(

X−Xi
h

)
is 1 if the observation Xi

lies inside a cube with side h centered on X, and 0 otherwise;∑N
n=1 K

(
X−Xi

h

)
is the total number of observations that lies be-

side X. If h is small enough, the probability associated with the
adjacent region of X can be calculated as P = 1

N

∑N
n=1 K

(
X−Xi

h

)
.

Furthermore, if p(X) is roughly constant over this region, we have
p(X) = P/hD, hD is the volume of a hypercube of side h in D di-
mensions, as (1) is explained.

Equation (2) is named as uniform kernel or Parzen window, h is
the bandwidth of the kernel. The profile of a kernel K is defined
as a function [0,∞) → R, such that K(X) = k(‖X‖2), other com-
monly used kernels and their profiles can be found in Table 1, all
these kernels should satisfy the following conditions [13]:∫

RD
K(X)dX = 1 lim

‖X‖→∞
‖X‖DK(X) = 0∫

RD
XK(X)dX = 0

∫
RD

XXT K(X)dX = CK I
(3)
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Table 1 The commonly used kernels in kde and their profiles.

Table 2 Some widely used kernels in kernel trick.

2.2 Kernel Trick
Kernel concept was first introduced by Aizerman et al. [14],

but it did not draw considerable interest until Boster et al. [15] re-
introduced it in SVM. Kernel function is defined to represent the
scalar or inner product in some high dimensional feature space:

k(X, X′) = ∅(X)T · ∅(X′) (4)

where ∅(X) is a nonlinear feature space mapping. In fact, the
kernel functions given in Section 2.1 are the special kind of this
definition as ‖X‖2 = XT · X is still a scalar product. If an algo-
rithm is formulated in such a way that the input vector X enters
only in the form of scalar products, then we can replace this scalar
product with a suitable choice of kernel, this kernel substitution
is known as kernel trick.

A valid kernel is defined as ∅(X)T · ∅(X), if the feature map-
ping is known, the corresponding kernel can be found. How-
ever, in most cases, ∅(X) is unknown explicitly. Shawe-Taylor
and Cristianini [16] gave a necessary and sufficient condition for
k(X, X′) to be a valid kernel, that is the Gram matrix K (whose
elements are given by Knm = k(Xn, Xm)) should be positive semi-
definite for all possible choices of the set {Xn}.

Table 2 lists some widely used kernels and it is referred to [12]
and [17] for detailed descriptions.

3. Kernel-based Tracking

Template matching is a common approach for target tracking
in video sequences. Image intensity, color features or image gra-
dients are often used to form templates, and then the similarity
measure is utilized to calculate the position of the target by match-
ing the templates and candidates. However, template matching is
a brute force method, which makes it a high computation cost.
By limiting the candidates’ position at the target neighboring lo-
cations in the previous frame the computation cost can be re-
duced [21]. Kernel-based object tracking (KBOT) is a kind of
this strategy. It was first proposed by Comaniciu et al. [22], and
then many researchers’ works mainly focuses on the following
questions:
• How to estimate the scale and orientation changes of the tar-

get?
• Which kind of kernel profile is suitable for tracking?
• How to adapt the bandwidth of the kernel?
• How many kernels are appropriate for target tracking?
The first three questions should be solved in both single and

multiple kernel tracking, so we divide this section into single ker-
nel and multiple kernel tracking in KBOT.

3.1 Single Kernel Tracking
In most common cases, one kernel function is enough to repre-

sent the weighted-histogram of the target. This representation is
simple and needs less computation. The kernel-based mean-shift
is introduced first and then the kernel particle filter is discussed.
3.1.1 Kernel-based Mean-shift

Mean-shift algorithm is a nonparametric method based on
KDE for mode seeking [23]. Typically, in mean-shift tracking
the target is represented by a circular region and the color his-
togram is used as features. However, this representation only
contains the intensity information of the target and this is not
enough in applications. Comaniciu et al. [22] utilized an isotropic
kernel to regularize the histogram-based target feature repre-
sentations, which considered the descriptions of both intensity
values and spatial positions of the target region together. The
target model is represented by its pdf in the feature space as
qu = C · ∑n

i=1 k(‖X∗i ‖2) · δ[b(X∗i ) − u], where k(·) is the kernel
function as defined in Section 2.1, {X∗i }i=1,...,n be the normalized
pixel locations in the region defined as the target model, δ is the
Kronecker delta function, u = 1 . . .m is the bins of histogram,
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Fig. 2 (a) The original image, (b) the kernels generated by target shape,
(c) the gradient kernel generated from (b), (Figure from Ref. [28]).

C is the normalization constant such that
∑m

u=1 qu = 1, the func-
tion b: R2 → {1, ..,m} associates to the pixel at location X∗i the
index b(X∗i ) of its bin in the quantized feature space. The target
candidates {Xi}i=1,...,nh centered at y can also be written in the
same way as pu(y) = Ch · ∑nh

i=1 k(‖ y−Xi

h ‖2) · δ[b(Xi) − u]. The
Bhattacharyya coefficient is employed as the similarity measure,
and then mean-shift is performed to obtain the target position.
The kernel profile used here is Epanechnikov kernel, which acts
as the weights of the feature histogram. The Epanechnikov ker-
nel is a convex and monotonic decreasing kernel function, which
assigns smaller weights to pixels farther from the target center.
This kernel application increases the robustness of the density es-
timation since the peripheral pixels are the least reliable, being
often affected by occlusions (clutter) or interferences from the
background. This tracking approach based on kernel function is
termed as KBOT.

In KBOT, the bandwidth of kernel profile corresponds to the
search region of the target and it should be adapted automati-
cally when the scale of the target changes. Many algorithms have
been proposed to adapt the scale and orientation changes of tar-
get. Object affine model is employed to describe scaling problem
in Ref. [24], and the object corner correspondences between two
frames are used to estimate the parameters of this model. With the
registration of object centroid in consecutive frames by backward
tracking, scaling magnitude in the affine model can be estimated.
However, this method needs more memory space and high com-
putation cost. Parameswaran et al. [25] used tunable kernels to
track humans walking, in which the target is divided into several
blocks and each block corresponding to a kernel with different
bandwidths. However, these bandwidths are specified in the train-
ing of sample images from motion capture and the dependence of
the optimal bandwidth parameters on the pose of the person is not
considered. An asymmetric target kernel is proposed to track the
target with scale and orientation changes [26], [27], [28], [29].
This asymmetric kernel represents the target’s shape (as shown
in Fig. 2), reducing the estimation-bias introduced by non-target
regions residing inside the kernel. The affine kernel transforma-
tion was proposed by Leichter et al. [30], this tracker incorporated
the target boundary cue into the tracking process and the kernels
were affinely transformed then the scale of the target changed.

Additionally, Li et al. [31] applied the basic set analysis to es-
timate the scale of the target. Zhang et al. [32] used the canny
edge detection to determine the change tendency of the target.
Some deformable contours tracking methods [33], [34] were uti-
lized to handle the scale change problem. These scale adaption
algorithms are mostly depend on the additional information such
as the corner, edge or contour of the target, these additional infor-
mation is not so stable to the illumination change and non-rigid
deformation. What’s more, the affine model or transform cannot
handle the out of plane motions.

Occlusion is another intractability issue in KBOT, approaches
that based on fragments or local information have been proposed
to handle this problem [35], [36], [37], [38]. In this method
target is divided into several fragments, the color histogram of
each target and candidate-patch is represented as {q(k)}k=1,..,K and
{p(k)(y)}k=1,..,K , where, K is the number of fragments. Then the
KBOT is used to calculate the new candidate locations for each
fragment as {ŷ(k)}k=1,..,K . The new target position ŷ is computed
as the weighted sum of the K candidate locations, which is for-
mulated as ŷ =

∑K
k=1 λk · ŷ(k) where λk is the weight of the k-th

fragment determined by the proportion of target and background
distributions. However, this method doesn’t consider the rela-
tions in these fragments and is not suitable for non-rigid target
tracking. The relationship of local and global information should
also be considered, the local location of each fragment may be
affected by the partial occlusion and drift away from the ground
truth, and how to detect this drifting and use the suitable local
information to obtain the global is still an open issue.

Another limitation of KBOT is the inability to track fast mov-
ing objects. Ali et al. [39] calculated the Gaussian pyramids of
the image, and the KBOT is first applied to the most coarsest
image level l, then the estimated location at the level l is trans-
ferred to the next higher resolution level (l− 1) as an initial guess
and the same procedure is performed form level (l − 1) to (l − 2)
and so on till the highest resolution image level comes. This
method could easily track the fast moving targets having larger
motions as compared to their sizes. However, the kernel band-
width in the different pyramid levels keeps constant. In the coars-
est image, kernel includes large part of non-target regions which
bias the motion estimation and results in loss of the tracked tar-
get. A novel multi-bandwidth mean shift procedure was proposed
by Shen et al. [40], which combines simulated annealing algo-
rithm with the kernel-based mean-shift tracking process, termed
as annealed mean-shift. The bandwidth of the procedure plays
the same role as the temperature in conventional annealing. The
proposed algorithm can offer considerable promise in finding the
true target location even when it was initialized from a distant
point. The fast moving target tracking can be solved by increas-
ing the search bandwidth of KBOT and this can be realized by
using pyramids or multi bandwidth search strategy. However, as
the bandwidth increase more background information is included
and that made the algorithm unstable especially when the back-
ground has the similar features with the target or other similar
object exists within the background.

More flexible algorithms of KBOT have been proposed in the
past decades. Tyagi et al. [41] extended KBOT to 3D by com-
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bining evidence from multiple calibrated cameras. This algo-
rithm uses a feature level fusion framework to track the target
directly in 3D space, and could be bootstrapped with an automatic
re-initialization technique based on clustering 3D point clouds of
the foreground targets. This tracker works in 3D space, since the
real size of the object does not change over time, the bandwidth
of the kernel function remains constant in the tracking process.
Birchfield and Rangarajan [42] proposed the spatiogram feature
in kernel-based trackers. Spatiogram is identical to a histogram
of its features, except that it contains additional spatial mean
and covariance for each histogram bin. Spatiogram captures
a richer description of the target to increase robustness in track-
ing. Pouladzadeh et al. [43] combined the mean-shift method
with LBP based tracking algorithm to achieve more accurate re-
sults. Ju et al. [44] proposed a fuzzy color histogram generated
by a self-constructing fuzzy cluster to reduce the inference from
lighting changes in the mean-shift tracking algorithm. Mazinan
and Amir-Latifi [45] carried out the motion information by a bi-
nary mask and a new kernel function was obtained by multiply
this mask. This kernel can overcomes the clutter and tracks the
target having the similar color with the background. Liu [46] con-
structed the multiple feature pseudo-color images (MFPCIs) in-
cluding the Gabor and entropy features, KBOT is directly used
in MFPCIs to realize the tracking in infrared images. Wang et
al. [47] incorporated shape knowledge into the appearance model
of kernel based trackers, etc. Some other similarity measure cri-
teria are utilized in kernel tracking; Yang et al. [48] measured the
similarity in average separation criterion in cluster analysis and
Leichter [49] employ the Cross-bin metrics in mean-shift track-
ing. Minwoo et al. [50] combined the mean-shift and Belief Prop-
agation (BP) for multi-target tracking and the adaptive binning
color model was utilized in Ref. [51] for mean-shift tracking.

KBOT is a simple and effective algorithm for target tracking
due to its low computational complexity and robustness of track-
ing both rigid and non-rigid targets. So it can be used in au-
tonomous driving to satisfy the real-time processing, however, in
the complex environment this method may be less robustness due
to the simple target representation. Some cautions would be help-
ful when adopt this algorithm in real-time video sequence.
• In most cases, KBOT is a color feature based tracking. It

should be combined with other features to handle the com-
plex environments, i.e., background with the similar color as
target, sudden light changes and occlusions.

• The target representation weighted-histogram should be
auto-update according to the tracking result, especially for
non-rigid target tracking.

• It is necessary for applying multiple template images in tar-
get tracking.

It should also be noticed that an appropriate tracking
method should consider the specific of tracking target and the
surroundings.
3.1.2 Kernel Particle Filter

Particle Filter (PF) has been widely used to deal with non-
linear and non-Gaussian systems in multi-modal visual tracking
problems, it’s a hypothesis tracker based on recursive Bayesian
filter with Monte Carlo sampling. However, PF usually demands

large numbers of particles to estimate the posterior probability
density function of the state variables, which leads to heavy com-
putation cost and thus limits its applications in real-time tracking.

Kernel Particle Filter (KPF) was proposed by Chang et al. [52],
[53] to handle this problem, KPF introduced KDE and mean-shift
in the traditional frameworks of PF to reduce the number of par-
ticles that demanded for tracking. Given the particles and the
associated weights at time t, KPF can be generalized as follows:
• KDE is used to estimate the posterior density p̂(xt |Yt),

where, xt is the target state and Yt is the observation at time t.
• Mean-shift is applied to move particles along the gradient

direction toward the modes of the posterior estimation and
the new particles are re-weighted.

• The posterior density p(xt |Yt) is calculated based on these
new particles and weights.

Some applications and modifications have been made in re-
cent years. Schmidt et al. [54] presented the KPF for 3D body
tracking in the video stream acquired from the un-calibrated cam-
era. Zhang and Wong [55] applied KPF for tracking person’s lo-
cation on an indoor floor map by wireless local area networks
(WLANs). Chia et al. [56] adopted KPF and edge orientation his-
togram (EOH) for tracking target that having the similar color
features with backgrounds. Yao et al. [57] pointed that not all par-
ticles in KPF were suitable by applying mean-shift to refine their
positions. The incremental Bhattacharyya dissimilarity (IBD)
and matrix condition number are proposed to determine the suit-
able particles for running mean-shift.

In kernel particle filter, mean-shift is used to move particles
with negligible weights in gradient ascent direction, which made
these particles converge to the neighboring local maxima. These
new particles have high likelihood and most of them are pre-
served after re-sampling, which reduces the number of particles
required for tracking and solves the impoverishment problem in
regular PF as well. However, another problem that the KPF in-
troduced is the sub-optimal solution; the variety of the particles
after the mean-shift process is reduced and may converged to the
local optimal. As all known, PF is the numerically implement
of the Bayesian framework, this kernel-based mean-shift can be
directly applied to modify the model in Bayesian framework as
well [58], [59], [60].

3.2 Multiple Kernels Tracking
With the wider applications of KBOT in visual tracking, it is

found that single kernel function doesn’t perform well in track-
ing target with complex motion or under complex surroundings
as expected. Gregory et al. have pointed that [61]: a single ker-
nel, no matter what its structure, was ultimately limited by two
factors:
• Dimensionality of the histogram (which in turn may be

a function of available image structure).
• The interaction between its derivative structure and the spa-

tial structure of the image as it was exposed by the histogram.
Therefore, Multiple Kernel Tracking (MKT) was proposed

to enhance the effectiveness of KBOT. Multiple kernels can
have the properties of different characterizations or locations.
Collins [62] employed spatial kernel and scale kernel deal with
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Table 3 A qualitative comparison of some algorithms in KBOT.
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the problem of selecting kernel scale for mean-shift blob tracking.
Zhang et al. [63] adopted a dual-kernel for visual tracking, one
for the similarities between candidates and target model, another
for the contrasts between candidates and their neighboring back-
ground, this dual-kernel was measured by Bhattacharyya coeffi-
cient and Jensen-Shannon divergence respectively.

The MKT framework was proposed by Hager [61], in this
framework, the sum of squared differences (SSD) is employed
as the similarity measure instead of Bhattacharyya coefficient,
and the Newton-style iterative procedure is derived to solve the
optimization process. The displacement of target region is ob-
tained by using several kernels placed at different locations of
the target. The representation histogram of the target and can-
didate region q and p(c) are obtained by a histogram concatena-
tion approach. This multiple kernel SSD tracking performs well
in tracking and converges with less iteration. The kernels uti-
lized in tracking are independent with each other. Therefore, this
approach is also known as multiple independent kernel tracking
(MIKT). One advantage of using independent kernel is that the
incorrect estimation of one kernel may not affect the proper esti-
mation of others. However, once a kernel suffers a bad iteration
the tracker is unable to recover.

Multiple Collaborative Kernel Tracking (MCKT) was pro-
posed by Fan et al. [64], which consider the constraints between
kernels and view the kernel tracking problem as a linear system

with

{ √
q − √

p(y) = M · 
 y
Ω(y + 
 y) = 0

, where, y is the kernel center vec-

tor, M is the measurement matrix and Ω are the constraints ma-
trix between kernels. By exploiting the inherent relationship in
multiple kernels, not only the “kernel-observability” has been im-
proved, but also the applicability of KBOT is naturally extended
to cope with articulated targets and complex motions. However,
the constraints considered here are geometric constraints, which
can restore the in-plane rotation and translation, but invalid with
view and scale changes. Therefore, the cross ratio invariant con-
straint [65] was proposed.

Based on MIKT and MCKT, the Piecewise Affine Kernel
Tracking (PAKT) was proposed by Martinez and Binefa [66] for
tracking non-planar target. In this approach, triangular mesh de-
scribed by the centers of each three kernels is considered. For
each mesh triangle affine transform is estimated, subject to the
constraints that each affine transform of a triangle must be com-
patible with the affine transforms coming from contiguous trian-
gles, these constraints are explained in Fig. 3. This method can
track rigid targets with out-of-plane motions and deformable tar-
gets. Unfortunately, it cannot run in real time.

Generally, MKT approach divides the tracking region into sev-
eral pieces, for each piece a single kernel is implied for track-
ing. Intuitively speaking, not all of the kernels will be affected by
the complex clutter, partial occlusion or luminance change con-
ditions, so the MKT performs well than single kernel tracking.
Applied in autonomous driving, MKT is more suitable for track-
ing rigid objects (vehicle or traffic sign and lights) because the
kernels have stable spatial relationship and made the tracking re-
sult robustness. However, if tracking non-rigid target (pedestrian
or driver face) the constraints between kernels will be much more

Fig. 3 Example of a piecewise defined function. On each of the three re-
gions (pieces) the piecewise affine transformation is defined by a dif-
ferent affine transformation fi. Each two consecutive pieces share
one edge, for example pieces R1 and R2 intersect on the signaled
edge ( f1(R1 ∩ R2) = f2(R1 ∩ R2)). The objective will be to find those
transformations fi, respecting the constraint given over the intersec-
tion (Figure from Ref. [66]).

complicated and cannot processed in real-time. MKT can work
on mean-shift framework [62], [63], [67], [68] or SSD frame-
work [61], [64], [65], [66]. In most of mean-shift framework the
kernels are independent, while in SSD tracking the relations be-
tween kernels are considered. These constraints improve the ro-
bustness of MKT at the cost of computation complex.

Table 3 gives some of the qualitative comparison of the algo-
rithms mentioned in this section.

4. Kernel-based Learning

Kernel learning machines have been widely used in machine
learning and pattern recognition [69], [70], [71], [72], it has been
proven that the kernel machines have a stronger mathematical
slant than earlier machine learning method (e.g., neural networks)
and also attract significant interest from the statistics and math-
ematics community [17]. Meanwhile, these kernel machines are
becoming particularly popular in target tracking; exceptionally
in complex environment that kernel based tracking cannot give
good performance. According to the learning mechanism of ker-
nel method, this section is divided into two parts: tracking-by-
detection and increasing kernel subspace learning. Some detailed
descriptions of SVM have to be given in order to make read-
ers comprehend of the kernel-trick that utilized in these learning
algorithms.

4.1 Tracking-by-detection
Tracking-by-detection treats the tracking problem as a classifi-

cation task, which applies an offline or online learning classifier
to distinguish the tracking target from the background. Support
Vector Machines (SVM) and Kernel Fisher Discriminant (KFD)
are these classification algorithms, which have shown practical
relevance not only in classification and regression problems but
also, in supervised and unsupervised learning [73].
4.1.1 Support Vector Machines

For a two-class linear classification problem in supervised
learning, the training data set comprises of N input vectors
X1, . . . , XN, respectively corresponds to target values y1, . . . , yN

where yN ∈ {−1, 1}. If these training samples can be separated by
a hyper-plane, the linear classify models has a decision function
of the form
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Fig. 4 Two-dimensional classification example. (a) In input space this con-
struction corresponds to a nonlinear ellipsoidal decision boundary.
(b) By mapped into three-dimensional feature space by (x1, x2) →
(z1, z2, z3) = (x1

2,
√

2 x1 x2, x2
2), there exists a linear hyper-plane that

can separate the features (Figure from Ref. [74]).

y(X) = wT · X + b (5)

where w is the hyper-plane’s normal vector, b is an offset.
Equation (5) satisfies y(Xn) > 0 for training sample having

yn = 1 and y(Xn) < 0 for yn = −1. The decision boundary is
defined as {X |wT · X + b = 0}. However, there exist many solu-
tions of w and b that satisfy the above conditions. SVM applies
a concept of margin to confirm an optimal hyper-plane having
the maximum margin. The margin is defined to be the smallest
distance between decision boundary and any of the samples. If
w and b are rescaled such that all the training samples satisfies
yn · (wT · X + b) ≥ 1, the margin can be measured as 2/‖w‖,
which equivalent to minimizing ‖w‖2. The training samples that
satisfy yn · (wT · X + b) = 1 are termed as support vectors (SVs).
By this means, the classification problem is a kind of a quadratic
programming problem defined by:

min
w,b

1
2
‖w‖2

Subject to yt · (wT · Xt + b) ≥ 1 for t = 1, . . . ,N (6)

This constrained optimization problem can be transformed into
a dual representation by introducing Lagrange multipliers

min
α

N∑
i=1

αi − 1
2

N∑
i=1

N∑
j=1

αiα jyiy j(Xi · X j)

Subject to
αi ≥ 0 i = 1, . . . ,N∑N

i=1 αiyi = 0
(7)

where α = (αi, . . . , αN)T is the Lagrange multiplier. By solving
the above equations, the coefficients α can be obtained, the deci-
sion function in Eq. (5) can be expressed as

y(X) = sgn

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

i=1

yiαi(Xi · X) + b

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

However, in most applications, linear separable is rather a strict
condition (as shown in Fig. 4 (a), there is no linear hyper-plane
that can separate these two classes), in this case, a nonlinear
feature space mapping function ∅(X) is applied for mapping the
training data into a potentially much higher dimensional feature
space (as shown in Fig. 4 (b)). In this high-dimensional feature
space, the mapped training data is linear separable. Notice that
the calculation process in classifier enters only in the form of

scalar products, the kernel trick can be used and Eq. (7) becomes∑N
i=1 αi − 1

2

∑N
i=1

∑N
j=1 αiα jyiy j · k(Xi · Xj). By assigning a spe-

cific form of kernel function k(Xi, X j), ∅(Xi)T · ∅(X j) can be di-
rectly calculated avoiding the explicit introduction of the feature
mapping function ∅(X), which allows a implicit way to use fea-
ture spaces of high, even infinite, dimensionality. This nonlinear
classification problem based on kernel trick is termed as kernel
support vector machines (kernel SVM).

The application of SVM for tracking was applied in Ref. [75],
in which SVM is integrated with the optic-flow-based tracker and
termed as support vector tracking (SVT). The process of SVT can
be generalized as follows: The SVM classifier can detect possi-
ble candidates in the current frame and hand them over to SVT.
The SVT can refine their position so that a local maximum of
SVM score is achieved. If the score is positive, the candidate will
be declared as a tracking target and the optic-flow-based tracker
start. The refined position in the current frame can serve as the
initial guess in the next frame, etc. SVT combines the computa-
tional efficiency of optic-flow-based tracking with the power of
a general classifier SVM, which extends the power of both the
tracker and the classifier. However, this approach cannot handle
partial occlusions, momentary disappearance and reappearance.
Moreover, in Ref. [75] the classifier and tracker worked indepen-
dently, Shen et al. [76] made them a cooperated work. Shen et
al. generalized the standard kernel-based mean-shift tracker by
maximizing a sophisticated cost function defined by SVM. In
SVM a probability product kernels (PPK) is used to form the
decision function, the optimal position in the next frame is de-
termined by maximizing this cost function. In this framework,
multiple temples are considered and the temple update is realized
by SVM. Chen et al. [77] proposed a description-discrimination
collaborative for target tracking, the Support Vector Data De-
scription (SVDD) acted as the descriptive component to describe
the global properties of the target and Structured Output SVM
(SSVM) worked as the discrimination collaborative to distinguish
the tracking target from the background. A self-paced learning al-
gorithm in Ref. [78] was proposed to realize the long-term track-
ing, in which the appearance-based templates were learned and
updated by SVM.

In most tracking-by-detection methods, classifier update needs
to convert the estimated target position into a set of labeled train-
ing samples. However, it is not clear how best to perform this
intermediate step. Hare et al. [79] extended the online structured
output SVM learning method [80], [81] to handle this problem.
The structured output prediction can directly predict the change
in target location between frames and avoid the need for interme-
diate classification step, which reduces the errors in sampler and
labeler process. A budgeting mechanism is applied to prevent
the unbounded growth in the number of SVs. A semi-supervised
SVM for tracking was also proposed [82].
4.1.2 Kernel Fisher Discriminant

Fisher linear discriminant (FLD) is a linear classifier that terms
the classification problem as a dimensionality reduction problem.
As for the two classes classification problem in Section 4.1.1,
Fisher maps the high dimensional training samples X into one
dimension by y = wT · X, thus for a new arrive sample Xt if
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yt greater than a specified threshold, yt = 1, otherwise yt = −1.
FLD minimize the class overlap by giving a large separation be-
tween the projected class means while also giving a small vari-
ance within each class. Therefore, the Rayleigh coefficient is
defined by J(w) = wT SBw

wT SWw
, where SB is the between-class covari-

ance matrix; SW is the within-class covariance matrix. Similar
as in Section 4.1.1, kernel method can also be applied in FLD to
handle the nonlinear classification problem by the nonlinear map-
ping ∅(X). This kernel-base FLD was termed as kernel Fisher
discriminant (KFD), the detailed descriptions can be found in
Refs. [83], [84] and [85].

Incremental KFD was also improved to solve the online up-
date issues in target tracking. Lin et al. [86] formulated the tar-
get/background problem as a multiclass problem. The sample
distribution of the target class was modeled by a single Gaussian
and the non-target background class was modeled by a mixture of
Gaussians. FLD was applied at each frame to solve this classifi-
cation problem and Sequential Karhunen-Loeve algorithm (SKL)
was used to incrementally update FLD based on the previous
results. Shen et al. [87] introduced a computationally efficient
nonlinear kernel learning strategy to find a discriminative model
which distinguishes the tracked target from the background. This
discriminative model was formed in KFD model and QR decom-
position made it possible to update the optimal nonlinear sub-
space in real-time.

The purpose of tracking-by-detection approach is to train
a classifier to distinguish the target form the surrounding back-
grounds, FLD and SVM are two typically linear classifiers used
in pattern recognition and machine learning. With the application
of kernel trick, kernel classifier (KFD and kernel-based SVM)
can deal with the nonlinear classification problem by mapping
the training data into a linear separable high dimensional feature
space. By assigning a specific form of kernel function, the direct
calculation in high (even infinite) dimensional feature space can
be avoided. However, this method needs large number of pos-
itive and negative samples for training the classifier and it will
be time consuming to detect the target in an image without the
prior information about the region and scale of target. Therefore,
in autonomous driving this tracking-by-detection method has to
be combined with some tracking algorithms such as optic-flow-
based tracker [75] or kernel-based mean shift [76] to satisfy the
real-time processing conditions. Additionally, in real applications
it will be more important to choose a suitable training dataset for
classifier learning than choose the learning algorithm. Generally
speaking, SVM performs well than KFD. However, Chakrabarti
et al. [88] and Cooke [89] have proved the equivalence between
SVM and FLD on support vectors classification. Typically, two
parts are necessary in tracking-by-detection approach: a) the gen-
eration of samples and labeled; b) update the classifier. This
increasing learning method ensures the template update of tar-
get and suitable for tracking deformable target with appearance
changes due to the unstable illumination and pose variation. It
should be noticed that boosting [90] is another widely used clas-
sification approach that is not outlined here. The connections be-
tween boosting and kernel method can be found in Ref. [73]. It
has been pointed in Ref. [79] that the SVM was more success-

ful than boosting-based classifier due to its good generalization
ability, robustness to label noise, and flexibility in target repre-
sentation by the application of kernels.

4.2 Kernel Subspace Learning
Subspace features have been widely used in tracking for many

years [89], [90], [91], [92], [93] due to its low-dimensional rep-
resentation on the appearance of tracking target. Under the re-
quirements of online and real-time applications, incremental sub-
space learning has been proposed recently [94]. In most of these
subspace methods, Principal Component Analysis (PCA) is the
prime dimension data feature extraction algorithm. Essentially,
PCA is a linear subspace method, which can only produce the lin-
ear subspace feature extraction. It is unsuitable for highly com-
plex and non-linear data distributions. In contrast, kernel sub-
space extraction method has shown its advantages in non-linear
feature extraction applications such as face recognition [95], sin-
gle frame super-resolution [96], image denoising [97], acquisition
of multiple view feature descriptors [98] and target tracking [99].

Kernel Principal Component Analysis (KPCA) [100] is the
main process of kernel subspace extraction, which applies the
non-linear mapping function ∅(X) to form a high dimensional
feature space (Hilbert space) for linear feature extraction. The
covariance matrix in KPCA to be eigen-decomposed is C =
1
N

∑N
i=1 ∅(Xi)∅(Xi)T , with the kernel trick it can be calculated im-

plicitly. Chin and Suter [99] have pointed that there were high
costs for storage resources and computational load during run-
time applications of KPCA and the incremental KPCA was pro-
posed to maintain constant update speed and memory usage under
target’s appearance and surrounding illumination changes. Typ-
ically, a positive definite kernel (e.g., polynomial or Gaussian
RBF) is demanded in KPCA. Liwicki et al. [101] proposed an ex-
act framework for online learning with a family of indefinite (not
positive) kernels for tracking. This algorithm is applied in Krein
space instead of Hilbert space, which does not require the calcu-
lation of pre-images and therefore is both efficient and accurate.
The indefinite kernels are gradient-based, which directly calcu-
late the scalar product in 4 ∗ D-dimensional feature space (D is
the dimension of input vector) instead of using the kernel trick,
thus it cannot run in real time. Zhang et al. [102] approximated
the calculation of standard PCA and KPCA algorithms. These ap-
proximations discard data points that are close to the mean center
and apply the rest data points to approximate the standard PCA
and KPCA, by applying this few partial data points the proposed
algorithm costs less memory and time consuming.

In short, KPCA is the extension of standard PCA by apply-
ing it in kernel feature space. KPCA can effectively extract the
non-linear features of target and is often combined with particle
filter for tracking. This robustness performance made it a good
choice for tracking the target in autonomous driving especially
in complicated environment or non-rigid target. However, in
each iteration of KPCA or increasing KPCA, it calculates the
singular value decomposition of the feature covariance matrix
(often of high-dimensioned), which leads to high computation
cost and unsuitable for real-time tracking (4 frames/s in Ref. [94],
3 frames/s in Ref. [101], 0.7-1 frames/s in Ref. [99]). Another
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Table 4 A qualitative comparison of the algorithms in kernel-based-learning.

challenge in online learning is that the support set may grow to
arbitrarily large size over time, some strategies as truncation and
shrinking can be applied [103]. Some other dimensionality reduc-
tions as Fisher criteria [104], [105] and kernel entropy component
analysis (kernel ECA) [106], [107] are also proposed.

Table 4 lists some qualitative comparison of the algorithms
mentioned in this section.

5. Algorithm Implementation and Discussion

In this section a quantitative comparison of a few representa-
tive algorithms that mentioned above are tested for tracking vehi-
cle, pedestrian and human face in autonomous driving or driving
assistance system situations. We first present the trackers and
the datasets for experimental comparison, and then the results are
discussed.

5.1 Trackers and Dataset
Five tracking approaches with different methods are imple-

mented to evaluate their performances on target tracking. GKT
(Generalized Kernel-based tracking) [76] was proposed with the
KBOT and SVM framework, Struck [79] was realized with SVM
theory, On-line Boosting [90] utilized the boosting method for
tracking, IPCA [94] performed the tracking by increasing PCA
and DIKT [101] by incremental KPCA framework.

Seven video sequences V1-7 have been used to evaluate the
algorithm performances (V1-3 are from pedestrian detection se-
quences in Ref. [8] and V4-7 have been used in Refs. [79], [90],
[94] and [101] for target tracking). These video sequences
nearly contain the practical application environment of illumina-
tion change, scale variation, large pose change, local deformation
and temporary occlusion. The tracking performance of vehicle
and pedestrian in autonomous driving and driver face in driving
assistance system can be evaluated with these videos. Table 5
summarizes the main characteristics of these test sequences.

5.2 Tracking Result and Discussion
The representative tracking results of these sequences are il-

lustrated in Fig. 5. All the trackers are initialized with the same
target template in the initial frame, the tracking results are plotted
as rectangle with different colors and line types for each tracker.

As in Refs. [94] and [101], the root mean square (RMS) error
between the estimated location and the ground truth of feature
points is adopted as the criterion of quantitative performance eval-

Table 5 The characteristics of the test sequences.

uation. In V1-3 sequences the vertexes of target location are se-
lected as the feature points and the ground truth of feature points
in V4-7 sequences can be found in the dataset of DIKT. This eval-
uation criterion is a pixel error and affected by the size of target
or video sequences. Therefore, for each sequence the range of
the RMS is different. However, this criterion can be used to com-
pare the results of different trackers in the same sequence. The
RMS errors are plotted in Fig. 6 and the color of each RMS error
corresponds to the color of the tracking results in Fig. 5. As can
be observed in Fig. 5, GKT lost the target in the sequences of V4

and V5, so its RMS error is not plotted for comparison in Fig. 6.
All the algorithms lost the target in V1 when the target is com-

pletely occluded after frames 329. DIKT exhibits the best per-
formance in all the rest of six video sequences. IPCA and Struck
can track the target in the whole sequences of V2-6. However, they
lost the target in V7 when the target suffers from large pose change
and illumination change in simultaneous. On-line Boosting is less
stable than other trackers and lost the target when it encounters il-
lumination change. GKT tracks the target in most frames of V1,
V6 and V7. However, it lost the target in other videos due to the
quality of sequences (grayscale-only and the target color feature
is similar with the background). What’s more, Struck, On-line
Boosting and GKT cannot deal with the scale variation and ori-
entation change of target, which made these algorithms have poor
performances in V2 and V7 when the scale of target changes.

Real-time processing is another important requirement for tar-
get tracking in autonomous driving. The computational efficiency
of each tracker is listed in Table 6. All these results are obtained
on a desktop with Intel Core E2160 at 1.8 GHz with 2 GB of
RAM.

Considering the computational efficiency of each tracker, we
can conclude that online subspace learning algorithms (IPCA and
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Fig. 5 The tracking result of video sequences V1-V7 (up to bottom) by applied On-line Boost-
ing ( ), IPCA ( ), GKT ( ), Struck ( ) and DIKT
( ). The ground truth is indicated by yellow crosses. V1-V3 are sequences of pedes-
trian tracking; V4 and V5 are of moving vehicle tracking in day-time and night-time; V6 and V7 are
sequences of facial tracking indoor and outdoor.

Table 6 The computational efficiency (frames/second) of each algorithm
for video sequences V1-V7.

DIKT) achieve a good trade-off between the stability and real-
time working. The subspace tracking based on PCA and KPCA
can handle the illumination change, large pose change and non-
rigid movement by subspace update, the scale variation of the
target can be solved by considering the noise disturbance in the
variables of particle filter. The additional information of subspace
can improve the stability of trackers. IPCA fails after frames
310 in the sequence of V7 because of the drastic pose and illu-

mination changes. DIKT utilizes the additional information of
gradient-based kernel for tracking, which increases the robust-
ness of the tracker with the cost of reduce computational effi-
ciency. Moreover, the multiple subspace temples in IPCA and
DIKT also strengthen the stability of trackers. GKT is a com-
bination of kernel mean-shift and SVM, which is a color feature
based tracking so it mostly fails in sequences V4 (grayscale-only)
and V2,3,5 (the target color feature is similar with the background).
This color feature is easily affected by illumination change but
more stability for facial expressions in face tracking. Struck and
On-line Boosting are the kind of tracking by detection method
respectively based on SVM and boosting. Struck performs well
than boosting in sequences V1-V7 for illumination change, how-
ever, it costs the highest computational efficiency in all these five
algorithms due to the structured output prediction process. More-
over, the computational efficiency of On-line Boosting and GKT
are affected by the size of target region, with the highest com-
putational efficiency in V6 for the smallest target region and the
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Fig. 6 The RMS errors between the estimated location and the ground truth of feature points for each
frame in video sequence V1-V7. On-line Boosting ( ), IPCA ( ), GKT
( ), Struck ( ) and DIKT ( ), GKT lost the target in sequence
V4 and V5 so we doesn’t plot its RMS error these two sequences.

lowest computational efficiency in V4 for the largest target region.

6. Conclusions and Feature Directions

Fully autonomous driving in urban traffic is still an extremely
difficult problem in the near future. The most difficult challenge
of autonomous driving in urban traffic encounters is the target
detection and tracking in visual image. These paper reviews the
kernel based target tracking strategies that can be utilized in au-
tonomous driving with visual sensors. Kernel-based target track-
ing has become a hot topic in visual tracking and gained approval
due to its succinct description and computational efficiency. In
this paper, we introduce the basic concepts of kernel density es-
timation (KDE) and kernel trick and survey the kernel method
that applied in target tracking of autonomous driving. The appli-
cations of kernel-based techniques are divided into two aspects,
namely, kernel-based target tracking and kernel online learning.
In kernel-based tracking, kernel function is used for adding the
spatial position information into the weighted-histogram repre-
sentation of the target. Mean-shift approach works on this rep-
resentation for tracking the target in continuous frames. Single
and multiple kernel tracking approaches are reviewed. In kernel
online learning, kernel function implicitly calculates the scalar
product in some high dimensional feature space and solves the
non-linear problem. Some kernel learning machines (e.g., SVM,
KFD and KPCA) are briefly introduced for tracking. A qualita-
tive and quantitative comparison is given. Five trackers are eval-
uated with seven test sequences, the theoretical and experimen-
tal analysis allow us to conclude that the online subspace learn-

ing algorithm achieves a good trade-off between the stability and
real-time working for target tracking in autonomous driving en-
vironments. From the survey, a few promising directions are rec-
ommended as follows, hoping to improve the flexibility of track-
ing approach in autonomous driving.

Error estimation is an important problem that has been ne-
glected in the development of tracking algorithms. In tracking
process, errors may occur in the projection of 3D world onto
a 2D image, feature points extracted from the blurred image cased
by the complex surroundings, state parameters of the transition
model and observation model in tracking framework, etc. In clas-
sical approaches, Gaussian noise model is suggested for error es-
timation and propagation, this Gaussian model is a probabilistic
model, which guarantees the most probabilistic value that the re-
sult is the truth-value. However, sometimes, a guaranteed result
that certainly contains the truth-value is preferred but not with
the largest probability. Interval analysis (IA) is a kind of this strat-
egy. Telle and Ramdani [108] have utilized IA for camera calibra-
tion and 3D reconstruction, in which pixel coordinates were seen
as two unknown but bounded variables (interval number), inter-
val constraint propagation method was applied to propagate this
uncertainties. IA can also be applied in auto-calibration [109],
deformable image registration [110] and design of 2D image fil-
ter [111]. Considering the application of IA in the tracking frame-
work (e.g., interval kernel function) can guarantee the truth-value
of the tracking results and improve the robustness of tracking al-
gorithm in autonomous driving.

In the practical application of tracking system, auto-
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registration and re-initialization are two important issues should
be considered. Auto-registration needs the online learning of the
target, as mentioned above, many online learning algorithm have
been proposed. However, re-initialization is seldom considered.
In some special conditions, target may be occluded by the
background scene structure for a second and reappears in any
directions. So far, none tracking methods can handle this prob-
lem. Though there has been methods for re-initialization based
on multiple cameras [41], [112], the re-initialization criterion for
single camera is still an open challenge.

In general, nearly all the tracking approach only utilized the
image information from 2D image plane; this 2D-based tracking
is computational efficiency but less robustness due to the loss of
information caused by projection of the 3D world on a 2D im-
age. Multiple cameras have been used to obtain the 3D informa-
tion of the tracking target [113], [114], however, the calculation
of the relationship between multiple cameras and the depth esti-
mation is a lot of computational cost. With the development of
hardware devices in camera manufacturers, many depth cameras
(e.g., kinect or Creative Senz3D provide by Microsoft) are avail-
able. We can directly obtain the depth information from these
cameras, avoiding the complex calculation by ourselves. The ad-
vantages of using depth information for tracking arise for two
reasons. One is the depth information increases the feature rep-
resentation of tracking target. The other is that the coordinates
of 3D points which we interested can be directly obtained; with
these coordinates in word coordinate system the dynamical model
and motion constraints can be estimated.
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