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Computational Complexity of Colored Token Swapping

Problem

Katsuhisa Yamanaka1,a) Takashi Horiyama2,b) David Kirkpatrick3,c) Yota Otachi4,d)

Toshiki Saitoh5,e) Ryuhei Uehara4,f) Yushi Uno6,g)

Abstract: We investigate the computational complexity of the following problem. We are given a graph in which
each vertex has the current and target colors. Each pair of adjacent vertices can swap their current colors. Our goal is
to perform the minimum number of swaps so that the current and target colors agree at each vertex. When the colors
are chosen from {1, 2, . . . , c}, we call this problem c-Colored Token Swapping since the current color of a vertex can
be seen as a colored token placed on the vertex. We show that c-Colored Token Swapping is NP-complete for every
constant c ≥ 3 even if input graphs are restricted to connected planar bipartite graphs of maximum degree 3. We then
show that 2-Colored Token Swapping can be solved in polynomial time for general graphs.

1. Introduction

Sorting problems are fundamental and important in computer

science. In this paper, we consider a problem of sorting on

graphs. Let G = (V, E) be an undirected unweighted graph with

vertex set V and edge set E. Suppose that each vertex in G has

a color in C = {1, 2, . . . , c}. A token is placed on each vertex in

G, and each token also has a color in C. Then, we wish to trans-

form the current token-placement into the one such that a token of

color i is placed on a vertex of color i for all vertices by swapping

tokens on adjacent vertices in G. See Fig.1 for an example. If

there exists a color i such that the number of vertices of color i is

not equal to the number of tokens of color i in the current token-

placement, then we cannot transform the current token-placement

into the target one. Thus, without loss of generality, we assume

that the number of vertices of color i for each i = 1, 2, . . . , c is

equal to the number of tokens of the same color. As we will see

in the next section, any token-placement can be transformed into

the target one by O(n2) token-swappings, where n is the number

of vertices in G. We thus consider the problem of minimizing the

number of token-swappings to obtain the target token-placement.

If vertices have distinct colors and tokens also have distinct

colors, then the problem is called Token Swapping [11]. This
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Fig. 1 An example of 4-Colored Token Swapping. Tokens of vertices are
written inside circles. We swap the two tokens along each thick
edge. (a) An initial token-placement. (b)–(d) Intermediate token-
placements. (e) The target token-placement.

has been investigated for several graph classes. Token Swap-

ping can be solved in polynomial time for paths [7], [8], cy-

cles [7], stars [10], complete graphs [1], [7], and complete bipar-

tite graphs [11]. Heath and Vergara [6] gave a polynomial-time

2-approximation algorithm for squares of paths, where the square

of a path is the graph obtained from the path by adding a new

edge between two vertices with distance exactly two in the path.

For squares of paths, some upper bounds of the minimum number

of token-swappings are known [3], [4], [6]. Yamanaka et al. [11]

gave a polynomial-time 2-approximation algorithm for trees. To-

ken Swapping is solved for only restricted graph classes. How-

ever no hardness result is known, even if input graphs are general

graphs, to the best of our knowledge.

The c-Colored Token Swapping problem is a generalization of

Token Swapping. We investigate c-Colored Token Swapping and

clarify its computational complexity in the sense that we found

the boundary of easy and hard cases with respect to the number

of colors. For c = 2, the problem can be solved in polynomial

time for general graphs. However, the problem for c = 3 is hard

even if input graphs are quite restricted. We show that the prob-
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lem is NP-complete for connected planar bipartite graphs with

maximum degree 3.

2. Preliminaries

In this paper, we assume without loss of generality that graphs

are simple and connected. Let G = (V, E) be an undirected un-

weighted graph with vertex set V and edge set E. We sometimes

denote by V(G) and E(G) the vertex set and the edge set of G,

respectively. We always denote |V | by n. For a vertex v in G, let

N(v) be the set of all neighbors of v. Each vertex of a graph G

has a color in C = {1, 2, . . . , c}. We denote by c(v) the color of a

vertex v ∈ V . In this paper, we assume that every color appears

at least once, that is the function c is a surjection from V to C.

A token is placed on each vertex in G, and each token also has a

color in C. For a vertex v, we denote by f (v) the color of the to-

ken placed on v. Then, we call the surjective function f : V → C

a token-placement of G. Two token-placements f and f ′ of G

are said to be adjacent if the following two conditions (a) and (b)

hold:

(a) there exists exactly one edge (u, v) ∈ E such that f ′(u) =

f (v) and f ′(v) = f (u); and

(b) f ′(w) = f (w) for all vertices w ∈ V \ {u, v}.

In other words, the token-placement f ′ is obtained from f by

swapping the tokens on the two adjacent vertices u and v. Note

that swapping two tokens of the same color gives the same token-

placement. Thus, to eliminate redundancy, we assume that tokens

of the same color are never swapped. For two token-placements f

and f ′ of G, a sequence S = ⟨ f0, f1, . . . , fh⟩ of token-placements

is a swapping sequence between f and f ′ if the following three

conditions (1)–(3) hold:

(1) f0 = f and fh = f ′;

(2) fk is a token-placement of G for each k = 0, 1, . . . , h; and

(3) fk−1 and fk are adjacent for every k = 1, 2, . . . , h.

The length of a swapping sequence S, denoted by len(S), is de-

fined to be the number of token-placements in S minus one, that

is, len(S) indicates the number of token swappings in S. For two

token-placements f and f ′ of G, we denote by OPT( f , f ′) the

minimum length of a swapping sequence between f and f ′. As

we will prove in Lemma 2.1, there always exists a swapping se-

quence between any two token-placements f and f ′ if the number

of vertices of color i for each i = 1, 2, . . . , c is equal to the number

of tokens of the same color. For the two token-placement f and

f ′, OPT( f , f ′) is well-defined.

Given two token-placements f and f ′ of a graph G and a non-

negative integer ℓ, the c-Colored Token Swapping problem is to

determine whether or not OPT( f , f ′) ≤ ℓ holds. From now on, we

always denote by f and f ′ the initial and target token-placements

of G, respectively, and we may assume without loss of generality

that f ′ is a token-placement of G such that f ′(v) = c(v) for all

vertices v ∈ V .

We show that the length of any swapping sequence need never

exceed n2. This claim is derived by slightly modifying the proof

of Theorem 1 in [11].

Lemma 2.1 For any pair of token-placements f and f ′ of a

graph G, OPT( f , f ′) ≤ n2.

Proof. Let T be any spanning tree of a graph G. Choose an ar-

bitrary leaf v of T . Then, we move a nearest token of color c(v)

in T from the current position u to its target position v. Note that

there is no token of color c(v) placed on a vertex of the path in T

from u to v except u. Let (p1, p2, . . . , pq) be a unique path in T

from p1 = u to pq = v. Then, we swap the tokens on pk and pk+1

for each k = 1, 2, . . . , q − 1 in this order, and obtain the token-

placement f of G such that f (v) = c(v). We then delete the vertex

v from G and T , and repeat the process until we obtain f ′.

Each vertex obtains a token of the same color via a swap-

ping sub-sequence of length in n. Therefore, the swapping se-

quence S above between f and f ′ satisfies len(S) ≤ n2. Since

OPT( f , f ′) ≤ len(S), we have OPT( f , f ′) ≤ n2. ! !

From Lemma 2.1, any token-placement for an input graph can be

transformed into the target one by O(n2) token-swappings, and a

swapping sequence of length O(n2) can be computed in polyno-

mial time.

3. Hardness results

In this section, we show that c-Colored Token Swapping prob-

lem is NP-complete for any constant c ≥ 3 by constructing a

polynomial-time reduction from Planar 3DM [2]. To define

Planar 3DM, we first introduce the following well-known NP-

complete problem.

Problem: 3-DimensionalMatching (3DM) [5], SP1

Instance: Set T ⊆ X × Y × Z, where X, Y , and Z are disjoint sets

having the same number m of elements.

Question: Does T contain a matching, i.e., a subset T ′ ⊆ T such

that |T ′| = m and it contains all elements of X, Y , and Z?

Planar 3DM is a restricted version of 3DM in which the fol-

lowing bipartite graph G is planar. The graph G has the vertex set

V(G) = T ∪ X ∪ Y ∪ Z with a bipartition (T,X ∪ Y ∪ Z). Two

vertices t ∈ T and w ∈ X ∪ Y ∪ Z are adjacent in G if and only

if w ∈ t. Planar 3DM is NP-complete even if G is a connected

graph of maximum degree 3 [2].

Theorem 3.1 3-Colored Token Swapping is NP-complete even

for connected planar bipartite graphs of maximum degree 3.

Proof. By Lemma 2.1, there is a polynomial-length swapping

sequence for any initial token-placement, and thus 3-Colored To-

ken Swapping is in NP.

Now we present a reduction from Planar 3DM. Let (X,Y, Z; T )

be an instance of Planar 3DM and m = |X| = |Y | = |Z|. As men-

tioned above, we construct a bipartite graph G = (T,X∪Y∪Z; E)

from (X,Y, Z; T ). We set c(x) = 1 and f (x) = 2 for every x ∈ X,

set c(y) = 2 and f (y) = 3 for every y ∈ Y , set c(z) = 3 and

f (z) = 1 for every z ∈ Z, and set c(t) = 1 and f (t) = 1 for

every t ∈ T . See Fig.2. From the assumptions, G is a planar bi-

partite graph of maximum degree 3. The reduction can be done

in polynomial time. We prove that the instance (X,Y, Z; T ) is a

yes-instance if and only if OPT( f , f ′) ≤ 3m.

To show the only-if part, assume that there exists a subset T ′

of T such that |T ′| = m and T ′ contains all elements of X, Y , and

Z. Since the elements of T ′ are pairwise disjoint, we can cover

the subgraph of G induced by T ′ ∪X∪Y ∪Z with m disjoint stars

of four vertices, where each star is induced by an element t of T ′

and its three elements. To locally move the tokens on the target
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Fig. 2 (a) The initial token-placement and (b) the target token-placement
of the graph constructed from an instance (X = {x1, x2, x3}, Y =
{y1, y2, y3}, Z = {z1, z2 , z3}, T = {t1 = (x1, y1, z3), t2 =
(x3, y2, z1), t3 = (x1, y1, z2), t4 = (x3, y3, z2), t5 = (x2, y2, z1)}).
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Fig. 3 A swapping sequence to resolve the token-placement of a triple.

place in such a star, we need only three swappings. See Fig.3.

This implies that a swapping sequence of length 3m exists.

To show the if part, assume that there is a swapping sequence

S from f to f ′ with at most 3m token-swappings. Let T ′ ⊆ T

be the set of vertices such that the tokens on them are moved in

S. Let G′ be the subgraph of G induced by T ′ ∪ X ∪ Y ∪ Z.

Let w ∈ X ∪ Y ∪ Z. Since c(w) ! f (w) and N(w) ⊆ T , the se-

quence S swaps the tokens on w and on a neighbor t ∈ T ′ of w at

least once. This implies that w has degree at least 1 in G′. Since

each t ∈ T ′ has degree at most 3 in G′, we can conclude that

|T ′| ≥ 1
3 |X ∪ Y ∪ Z| = m. In S, the token placed on a vertex in

X∪Y in the initial token-placement is moved at least twice, while

the token placed on a vertex in Z ∪ T ′ is moved at least once. As

a token-swapping moves two tokens at the same time,

len(S) ≥
1

2
(2 |X| + 2 |Y | + |Z| +

∣

∣

∣T ′
∣

∣

∣) ≥ 3m.

From the assumption that len(S) ≤ 3m, it follows that |T ′| = m,

and hence each w ∈ X ∪ Y ∪ Z has degree exactly 1 in G′. There-

fore, G′ consists of m disjoint stars centered at the vertices of T ′

which form a solution of Planar 3DM. ! !

The proof above can be extended for any constant number of

colors. It is known that we can assume that G has a degree-2 ver-

tex [2]. We add a path (p4, p5, . . . , pc) to G, and connect p4 to a

degree-2 vertex in G. We set c(pi) = i and f (pi) = i. The proof

still works for the new graph, and hence we obtain the following

corollary.

Corollary 3.2 For every constant c ≥ 3, c-Colored Token

Swapping is NP-complete even for connected planar bipartite

graphs of maximum degree 3.

Note that the degree bound in the corollary above is tight. If

a graph has maximum degree 2, then we can solve c-Colored

Token Swapping in polynomial time for every constant c as fol-

lows. A graph of maximum degree 2 consists of disjoint paths

and cycles. Observe that a shortest swapping sequence does not

swap tokens of the same color. This immediately gives a unique

matching between tokens and target vertices for a path compo-

nent. For a cycle component, observe that each color class has

at most n candidates for such a matching restricted to the color
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Fig. 4 (a) An initial token-placement. (b) The target token-placement. (c)
The weighted complete bipartite graph constructed from (a) and (b)
(the weight of each edge is omitted).

class. This is because after we guess the target of a token in a

color class, the targets of the other tokens in the color class can

be uniquely determined. In total, there are at most nc matchings

between tokens and target vertices. By guessing such a matching,

we can reduce c-Colored Token Swapping to Token Swapping.

Now we can apply Jerrum’s O(n2)-time algorithms for solving

Token Swapping on paths and cycles [7]. Therefore, we can solve

c-Colored Token Swapping in O(nc+2) time for graphs of maxi-

mum degree 2.

Theorem 3.3 For every constant c ≥ 1, c-Colored Token Swap-

ping is solvable in polynomial time for graphs of maximum de-

gree 2.

4. Polynomial-time algorithms

In this section, we give some positive results. We show that

2-Colored Token Swapping for general graphs can be solved in

polynomial time.

Let C = {1, 2} be the color set. Let G = (V, E) be a graph, and

let f and f ′ be an initial token-placement and the target token-

placement. We construct a weighted complete bipartite graph

GB = (X, Y, EB, w), as follows. The vertex sets X, Y and the edge

set EB are defined as follows:

X = {xv | v ∈ V and f (v) = 1}

Y = {yv | v ∈ V and c(v) = 1}

EB = {(x, y) | x ∈ X and y ∈ Y}.

Intuitively, X is the copies of vertices in V having tokens of color

1, and Y is the copies of vertices in V of color 1. The weight

function w is a mapping from EB to positive integers. For x ∈ X

and y ∈ Y , the weight w(e) of the edge e = (x, y) is defined as the

length of a shortest path from x to y in G. Fig.4 gives an example

of an initial token-placement, the target token-placement, and the

associated weighted complete bipartite graph.

We bound OPT( f , f ′) from below, as follows. Let S be a swap-

ping sequence between f and f ′. The swapping sequence gives a

perfect matching of GB, as follows. For each token of color 1, we

choose an edge (x, y) of GB if the token is placed on x ∈ X in f

and on y ∈ Y in f ′. The obtained set is a perfect matching of GB.

A token corresponding to an edge e in the matching needs w(e)

token-swappings, and two tokens of color 1 are never swapped in

S. Therefore, for a minimum weight matching M of GB, we have

the following lower bound:

OPT( f , f ′) ≥
∑

e∈M

w(e).

Now we describe our algorithm. First we find a minimum
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weight perfect matching M of GB. We choose an edge e in M.

Let Pe = ⟨p1, p2, . . . , pq⟩ of G be a shortest path corresponding

to e. We have the following lemma.

Lemma 4.1 Suppose that the two tokens on endpoints of Pe

have different colors. The two tokens can be swapped by w(e)

token-swappings such that the color of the token on each internal

vertex does not change.

Proof. Without loss of generality, we assume that f (p1) = 2

and f (pq) = 1 hold. We first choose the minimum i such that

f (pi) = 1 holds. We next move the token on pi to p1 by i − 1

token-swappings. We repeat the same process to the subpath

⟨pi, pi+1, . . . , pq⟩. Finally, we obtain the desired token-placement.

Recall that there are only two colors on graphs, and so the above

“color shift” operation works. Since each edge of Pe is used

by one token-swapping, the total number of token-swapping is

w(e) = q − 1. ! !

This lemma permits to move the two tokens on the two end-

points p1 and pq of Pe to their target positions in w(e) token-

swappings. Let g be the token-placement obtained after the

token-swappings. We can observe that f (v) = g(v) for every

v ∈ V \ {p1, pq} and g(v) = c(v) for v ∈ {p1, pq}. Then we re-

move e from the matching M. We repeat the same process until

M becomes empty. Our algorithm always exchanges tokens on

two vertices using a shortest path between the vertices. Hence,

the length of the swapping sequence constructed by our algorithm

is equal to the lower bound.

Now we estimate the running time of our algorithm. The al-

gorithm first constructs the weighted complete bipartite graph.

This can be done using Floyd-Warshall algorithm in O(n3) time.

Then, our algorithm constructs a minimum weight perfect match-

ing. This can be done in O(n3) time [9], p.252. Finally, for each

of the O(n) paths in the matching, our algorithm moves the tokens

on the endpoints of the path in linear time. We have the following

theorem.

Theorem 4.2 2-Colored Token Swapping is solvable in O(n3)

time. Furthermore, a swapping sequence of the minimum length

can be constructed in the same running time.

5. Conclusions

We have investigated computational complexity of c-Colored

Token Swapping. We first showed the NP-completeness for 3-

Colored Token Swapping by a reduction from Planar 3DM, even

for connected planar bipartite graphs of maximum degree 3. We

next showed that 2-Colored Token Swapping can be solved in

O(n3) time for general graphs.

We showed that c-Colored Token Swapping for every constant

c can be solved in polynomial time for graphs of maximum de-

gree 2 (disjoint paths and cycles). If c is not a constant, can we

solve c-Colored Token Swapping for such graphs in polynomial

time? For Token Swapping on cycles, Jerrum [7] proposed an

O(n2)-time algorithm. As mentioned in [7], the proof of the cor-

rectness of the algorithm needs complex discussions.
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