
IPSJ SIG Technical Report

Algorithm for
Generalized Coloring Reconfiguration Problem

Hiroki Osawa1,a) Akira Suzuki1,2,b) Takehiro Ito1,2,c) Xiao Zhou1,d)

Abstract: For an integerk ≥ 1, k-coloring reconfiguration is one of the most well-studied reconfiguraiton prob-
lems, defined as follows: In the problem, we are given two (vertex-)colorings of a graph usingk colors, and asked to
transform one into the other by recoloring only one vertex at a time, while at all times maintaining a proper coloring.
The problem is known to be PSPACE-complete ifk ≥ 4, and solvable for any graph in polynomial time ifk ≤ 3. In
this paper, we introduce a recolorability constraint on thek colors, which forbids some pairs of colors to be recolored
directly each other. The recolorability constraint is given in terms of an undirected graphR such that each node inR
corresponds to a color and each edge inR represents a pair of colors that can be recolored directly. Then, we show that
this problem is solvable for any graph ifR is of maximum degree at most two.

1. Introduction

Recently,reconfiguration problems[9] have been intensively
studied in the field of theoretical computer science: The prob-
lem arises when we wish to find a step-by-step transformation
between two feasible solutions of a search problem such that all
intermediate results are also feasible and each step conforms to
a fixed reconfiguration rule, that is, an adjacency relation defined
on feasible solutions of the original search problem. (See, e.g.,
the survey [13] and references in [6], [10].)

One of the most well-studied reconfiguration problems is based
on the (vertex-)coloring search problem [1], [2], [3], [4], [5], [7],
[8], [11], [14]. In thecoloring reconfiguration problem, we are
given two proper coloringsf0 and fr of the same graphG, and
asked to determine whether there is a sequence⟨ f0, f1, . . . , fℓ⟩
of proper colorings ofG such that fℓ = fr and fi can be ob-
tained from fi−1 by recoloring only a single vertex inG for all
i ∈ {1,2, . . . , ℓ}. The complexity status of this reconfiguration
problem has been clarified based on several “standard” measures
(e.g., the number of colors [3], [5] and graph classes [2], [8], [14])
which are used well also for analyzing the original search prob-
lem.

In this paper, to clarify what makescoloring reconfigura-
tion tractable/intractable, we propose a new measure which is
appropriately tailored for the reconfigurability of colorings. In-
terestingly, as we will explain below, our measure generalizes the
known results [3], [5], and gives new insights to the problem.

1 Graduate School ofInformation Sciences, Tohoku University, Aoba-
yama 6-6-05, Aoba-ku, Sendai, 980-8579, Japan.

2 CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
a) hiroki.osawa.r3@dc.tohoku.ac.jp
b) a.suzuki@ecei.tohoku.ac.jp
c) takehiro@ecei.tohoku.ac.jp
d) zhou@ecei.tohoku.ac.jp

4 3

1

4 2

1

4 3

2

1 3

2

4 2

3

1 2

3

1 4

2

1 4

3

1 2

4 3
(b)(a)

(c)

f
0

f
1

f
6

f
7

f
3

f
2

f
5

f
4

Fig. 1 (a) Input graphG, (b) a recolorability graphR with four colors 1, 2,
3 and 4, and (c) an (f0→ f7)-reconfiguration sequence.

1.1 Our problem
For an integerk ≥ 1, letC be thecolor setconsisting ofk col-

ors 1,2, . . . ,k. LetG be a graph with vertex setV(G) and edge set
E(G). Recall that ak-coloring f of G is a mappingf : V(G)→ C

such thatf (v) , f (w) holds for each edgevw ∈ E(G).
In this paper, we introduce the concept of “recolorability” and

generalize the adjacency relation onk-colorings. Therecolorabil-

ity on the color setC is given in terms of an undirected graph
R, called therecolorability graphon C, such thatV(R) = C;
each edgei j ∈ E(R) represents a “recolorable” pair of colors
i, j ∈ V(R) = C. Then, twok-colorings f and f ′ of G aread-

jacent(under R) if the following two conditions (a) and (b) hold:
(a)

∣∣∣{v ∈ V(G) : f (v) , f ′(v)}
∣∣∣ = 1, that is, f ′ can be obtained

from f by recoloringa single vertexv ∈ V(G); and
(b) if f (v) , f ′(v) for a vertexv ∈ V(G), then f (v) f ′(v) ∈ E(R),

that is, the colorsf (v) and f ′(v) form a recolorable pair.

1ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.1
2016/1/21

IPSJ SIG Technical Report

Figure 1(c) shows eight different 4-colorings of the graph in
Fig. 1(a). Then, for eachi ∈ {1,2, . . . ,7}, two 4-coloringsfi−1 and
fi are adjacent underR. As defined above, the known adjacency
relation in [1], [2], [3], [4], [5], [7], [8], [11], [14] only requires
the condition (a) above, that is, we can recolor a vertex from any
color to any color directly. Observe that this corresponds to the
case whereR is a complete graphKk of size k, and hence our
adjacency relation generalizes the known one.

Given a graphG, a recolorability graphR on C, and twok-
colorings f0 and fr of G, the coloring reconfiguration prob-
lemunder recolorability R is the decision problem of determin-
ing whether there exists a sequence⟨ f0, f1, . . . , fℓ⟩ of k-colorings
of G such that fℓ = fr and fi−1 and fi are adjacent underR
for all i ∈ {1,2, . . . , ℓ}; such a desired sequence is called an
(f0→ fr)-reconfiguration sequence. For example, the sequence
⟨ f0, f1, . . . , f7⟩ in Fig. 1(c) is an (f0 → f7)-reconfiguration se-
quence. Then, the well-studiedk-coloring reconfiguration prob-
lem is simplycoloring reconfiguration under recolorability R

for the case whereR is a complete graphKk of sizek.

1.2 Related results
As we have mentioned above,k-coloring reconfiguration has

been studied intensively from various viewpoints.
From the viewpoint of the numberk of colors in the color set

C, a sharp analysis has been obtained: Bonsma and Cereceda [3]
proved thatk-coloring reconfiguration is PSPACE-complete if
k ≥ 4. On the other hand, Cereceda et al. [5] proved thatk-
coloring reconfiguration is solvable for any graph in polynomial
time if k ≤ 3, despite the fact that the original search problem
(i.e., asking for the existence of one 3-coloring in a given graph)
is NP-complete. In addition, for any yes-instance on 3-coloring
reconfiguration, an (f0→ fr)-reconfiguration sequence with the
shortest length can be found in polynomial time [5], [11].

From the viewpoint of graph classes, Wrochna [14] proved that
k-coloring reconfiguration remains PSPACE-complete even for
graphs with bounded bandwidth (and hence bounded treewidth
and pathwidth). Hatanaka et al. [8] showed that, for any inte-
gerk ≥ 1, k-coloring reconfiguration can be solved in polyno-
mial time for caterpillars. Bonamy et al. [2] gave some sufficient
condition with respect to graph structures so that any pair ofk-
colorings of a graph has a reconfiguration sequence: for example,
chordal graphs and chordal bipartite graphs satisfy their sufficient
condition.

As a natural measure tailored for reconfiguration problems, the
lengthℓ of a desired sequence is taken as a parameter in the con-
text of the parameterized complexity [12]. Bonsma et al. [4] and
Johnson et al. [11] independently developed a fixed-parameter al-
gorithm to solvek-coloring reconfigurationwhen parameterized
by k + ℓ, wherek is the number of colors andℓ is the length of
an (f0→ fr)-reconfiguration sequence. In contrast, if the problem
is parameterized only byℓ, then it is W[1]-hard whenk is an in-
put [4] and does not admit a polynomial kernelization whenk is
fixed unless the polynomial hierarchy collapses [11].

1.3 Our contribution
In this paper, we show thatcoloring reconfiguration under re-

1 2 3
1 2

(a) (b)

3 2

(c)

Fig. 2 (a) Recolorability graphR with three colors 1, 2 and 3, and (b) and
(c) 3-coloringsf0 and fr of a single edge, respectively.

colorability is solvable in polynomial time if maximum degree
of R is at most two.

Since 3-coloring reconfiguration corresponds to the case
whereR is a complete graphK3 of size three (and hence it is of
maximum degree two), our result generalizes the known one [5].
Indeed, we will nicely extend several techniques developed for 3-
coloring reconfiguration [5]. However, these extensions are not
so straightforward, because the concept of recolorability graphs
changes the situation drastically. For example, the (f0→ f7)-
reconfiguration sequence in Fig. 1(c) is a shortest one between
f0 and f7 under the recolorability graphR in Fig. 1(b). However,
in 4-coloring reconfiguration (in other words, ifR would beK4

and would have the edge joining colors 1 and 3), we can recolor
the vertex from 1 to 3 directly. As another example, the instance
illustrated in Fig. 2 is a no-instance for our problem even if the
number of colors is larger than the number of vertices in an input
graph (a single edge), but is clearly a yes-instance for 3-coloring

reconfiguration.

2. Preliminaries

Since we deal with (vertex-)coloring, we may assume without
loss of generality that an input graphG is simple, connected and
undirected. For a vertex subsetV′ ⊆ V(G), we denote byG[V ′]
the subgraph ofG induced byV′.

For a graphG and a recolorability graphR on C, we define
theR-reconfiguration graphonG, denoted byCR(G), as follows:
CR(G) is an undirected graph such that each node ofCR(G) cor-
responds to ak-coloring ofG, and two nodes inCR(G) are joined
by an edge if their correspondingk-colorings are adjacent under
R. We sometimes call a node inCR(G) simply ak-coloring if it is
clear from the context. A path inCR(G) from ak-coloring f to an-
other onef ′ is called an (f→ f ′)-reconfiguration sequence. Note
that any (f→ f ′)-reconfiguration sequence isreversible, that is,
the path inCR(G) forms an (f ′→ f)-reconfiguration sequence, too.
Then, thecoloring reconfiguration problemunder recolorabil-
ity R is the decision problem of determining whetherCR(G) con-
tains an (f0→ fr)-reconfiguration sequence. Note that the problem
does not ask for an actual (f0→ fr)-reconfiguration sequence as
the output.

We introduce the concept of “frozen” vertices from the view-
point of recoloring, which plays an important role in the paper.
For a k-coloring f of a graphG and a recolorability graphR
on C, a vertexv ∈ V(G) is said to befrozen on f (under R) if
f (v) = f ′(v) holds for any coloringf ′ of G such thatCR(G) has
an (f→ f ′)-reconfiguration sequence.

3. Polynomial-Time Algorithm

The main result of this paper is the following theorem.
Theorem 1. Suppose that the maximum degree of a given recol-

orability graph R is at most two. Then,coloring reconfiguration

2ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.1
2016/1/21

IPSJ SIG Technical Report

under recolorability R for any graph G can be solved in poly-

nomial time.

Due to the page limitation, we only prove Theorem 1 when re-
stricted to the case where a given recolorability graphR is a cycle,
as in the following theorem.
Theorem 2. Suppose that a given recolorability graph R is a cy-

cle. Then,coloring reconfiguration under recolorability R for

any graph G can be solved in O(nm) time, where n= |V(G)| and

m= |E(G)|.
Recall thatk-coloring reconfiguration is simplycoloring re-
configuration under recolorability R for which R is a complete
graphKk of sizek. SinceK3 is a cycle, Theorem 2 immediately
implies the following corollary which has been shown by Cere-
ceda et al. [5].
Corollary 3. 3-coloring reconfiguration for any graph G can

be solved in O(nm)time, where n= |V(G)| and m= |E(G)|.
In the remainder of this section, we prove Theorem 2 as fol-

lows: In Section 3.2, we first give a simple necessary condition
for a yes-instance based on the concept of frozen vertices; the idea
is simple, but we need a nice characterization of frozen vertices
for checking the condition in polynomial time. In Section 3.3, we
then give a necessary and sufficient condition for a yes-instance
by introducing a potential function which appropriately charac-
terizes the reconfigurability of colorings; this is the main contri-
bution for our polynomial-time algorithm. However, the condi-
tion in Section 3.3 cannot be checked in polynomial time by a
naive way; we finally explain, in Section 3.4, how to check the
condition in polynomial time.

3.1 Preliminaries
To describe our algorithms, we sometimes use the notion of

digraphs (i.e., directed graphs). For an undirected graphG, we
denote by

−→
G a digraph whose underlying graph isG, and also de-

note byA(
−→
G) the arc set of

−→
G. We denote byvw an edge joining

two verticesv andw in an undirected graph, while by (v, w) an arc
from v to w in a digraph. In this paper, we say that a digraph

−→
G is

connectedif
−→
G is weakly connected, that is, the underlying graph

G is connected. A vertexv in a digraph
−→
G is called asourcevertex

if the in-degree ofv is zero, while it is called asinkvertex if the
out-degree ofv is zero. A sequencev0a1v1a2v2 . . . alvl of vertices
v0, v1, . . . , vl and arcsa1,a2, . . . , al in

−→
G is called aforward walk

from v0 on
−→
G if it forms a directed path fromv0 to vl , that is,ai is

the arc fromvi−1 to vi for all i ∈ {1,2, . . . , l}; while it is called a
backward walk tov0 on

−→
G if it is a directed path fromvl to v0, that

is, ai is the arc fromvi to vi−1 for all i ∈ {1,2, . . . , l}.
We may assume without loss of generality that the colors

1,2, . . . ,k in the color setC are labeled in a numerical order along
the cycleR. For notational convenience, we define thesuccessor

color c+ and thepredecessorcolor c− for a colorc ∈ V(R), as
follows:

c+ =

c+ 1 if c < k;

1 if c = k,

and

1
2

3

i

k

1
2

k

2
3

i

k

1

1

k

i+ j j

j+

-

j -

(a)

(b)

Fig. 3 Characterizationof frozen vertices.

c− =

c− 1 if c > 1;

k if c = 1.

Note that we use this notation also for a color assigned by ak-
coloring: For ak-coloring f of a graphG and a vertexv in G, we
denote byf (v)+ and f (v)− the successor and predecessor colors
for f (v), respectively. In this section, we call ak-coloring ofG
simply acoloring.

3.2 Frozen vertices
In this subsection, based on the concept of frozen vertices, we

give a simple necessary condition for the existence of an (f0→ fr)-
reconfiguration sequence on theR-reconfiguration graphCR(G).

For a coloring f of G, we denote byFrozen(f) the set of all
vertices inG that are frozen onf . The following lemma gives our
simple necessary condition, which immediately follows from the
definition of frozen vertices.
Lemma 4. Suppose that there exists an(f→ f ′)-reconfiguration

sequence for two colorings f and f′ of a graph G. Then,

Frozen(f) = Frozen(f ′), and f(v) = f ′(v) holds for every ver-

texv in Frozen(f). □
Note that it is not trivial to computeFrozen(f) for a coloring f

in polynomial time. However, we will give a characterization of
frozen vertices (in Lemma 5), which enables us to compute all of
them in polynomial time (as proved in Lemma 6).

To characterize the frozen vertices, we introduce some notation
and terms which will be used also in the next subsections. For a
graphG and its coloringf , let

−→
H f be the digraph with vertex set

V(
−→
H f) = V(G) and arc set

A(
−→
H f) = {(v, w) : vw ∈ E(G) and f (v)+ = f (w)}.

Notice that an arc (v, w) ∈ A(
−→
H f) implies that f (v) = f (w)−, and

represents that, if we wish to recolorv from f (v) to f (v)+, we need
to recolorw from f (w) (= f (v)+) to f (w)+ in advance. Thefor-

ward blocking graph fromv on a coloring f, denoted by
−→
B+(v, f),

is the subgraph of
−→
H f consisting of all forward walks fromv on

−→
H f . Similarly, thebackward blocking graph tov on a coloring

f , denoted by
−→
B−(v, f), is the subgraph of

−→
H f consisting of all

backward walks tov on
−→
H f . Then, we have the following lemma.

3ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.1
2016/1/21

IPSJ SIG Technical Report

(See also Fig. 3.)
Lemma 5. A vertexv ∈ V(G) is frozen on f if and only if it

satisfies at least one of the following two conditions(a) and(b):
(a) v is contained in a directed cycle in

−→
H f ; and

(b)
−→
H f has both forward and backward walks from/tov, each

of which ends in a vertex contained in a directed cycle.

Proof. Let S be the set of all vertices inG that satisfy at least
one of the two conditions (a) and (b) above. Then, we will prove
thatS = Frozen(f).

We first prove thatS ⊆ Frozen(f) holds. Letv be an arbitrary
vertex inS, then we show thatv ∈ Frozen(f). Sincev ∈ S, it
satisfies at least one of the two conditions (a) and (b). By the
definition of

−→
H f , we havev ∈ Frozen(f) if v satisfies the condi-

tion (a). Therefore, consider the case wherev satisfies only the
condition (b). Then,

−→
H f has a forward walk fromv which ends

in a vertexw contained in a directed cycle. Note thatw is frozen
on f , because it satisfies the condition (a). This implies that any
vertexz (including v) cannot be recolored to its successor color
f (z)+. At the same time,

−→
H f has a backward walk tov which ends

in a vertex contained in a directed cycle, and hencev cannot be
recolored to its predecessor colorf (v)−, too. Thus,v is frozen on
f , as claimed.

We then prove thatFrozen(f) ⊆ S holds by taking its contra-
position. Letv be any vertex which is not inS, then we show that
v < Frozen(f). Sincev < S, at least one of

−→
B+(v, f) and

−→
B−(v, f)

is an acyclic digraph. Assume that
−→
B+(v, f) is acyclic; it is sym-

metric to prove the case where
−→
B−(v, f) is acyclic. Then, we show

thatv can be recolored to the successor colorf (v)+ by the induc-
tion on the number of arcs in

−→
B+(v, f). If |A(

−→
B+(v, f))| = 0, then

v can be recolored immediately tof (v)+ because any neighbor of
v is not colored withf (v)+. Therefore, consider the case where
|A(
−→
B+(v, f))| > 0. Then, we obtain a new coloringf ′ of G by

recoloring an arbitrary sink vertexw in
−→
B+(v, f) to f (w)+. Note

that we can recolorw directly to f (w)+, since it has no out-going
arc in

−→
B+(v, f). Furthermore, since

−→
B+(v, f) is connected,w has

at least one in-coming arc in
−→
B+(v, f); observe that

−→
B+(v, f ′) does

not have such an in-coming arc ofw, becausew is colored with
f +(w) in f ′. We thus have|A(

−→
B+(v, f ′))| ≤ |A(

−→
B+(v, f))| − 1, and

hence by applying the induction hypothesis the claim holds.□

Based on Lemma 5, we now prove thatFrozen(f) can be com-
puted in polynomial time, as in the following lemma.
Lemma 6. For any coloring f of a graph G,Frozen(f) can be

computed in O(nm)time, where n= |V(G)| and m= |E(G)|.

Proof. One can construct the digraph
−→
H f in O(m) time, by

checking each edgevw in G. Then, for each vertexv ∈ V(G),
one can check ifv satisfies at least one of the conditions (a)
and (b) in Lemma 5 inO(n+ m) time, by executing the breath-
first search on

−→
H f starting fromv twice; we traverse arcs in

−→
H f

in the opposite direction in oder to find backward walks tov.
Therefore, all frozen vertices onf can be found inO(n2 + nm)
time. SinceG is connected in this paper,m ≥ n − 1 and hence
O(n2 + nm)= O(nm). □

3.3 Necessary and sufficient condition
In the remainder of this section, by Lemma 4 we assume

Frozen(f0) = Frozen(fr) and f0(v) = fr (v) for each vertex
v ∈ Frozen(f0); otherwise it is a no-instance. In this subsec-
tion, we will give a necessary and sufficient condition for a yes-
instance.

We introduce some new notation to describe the condition. Let
G be an undirected graph, and let

−→
H be any digraph whose under-

lying graph is a subgraph ofG. For a coloringf of G and each
arc (u, v) ∈ A(

−→
H), we define thepotentialp f ((u, v)) of (u, v) on f,

as follows:

p f ((u, v)) =

 f (v) − f (u) if f (v) > f (u);

f (v) − f (u)+ k if f (v) < f (u).
(1)

Note thatf (u) , f (v) holds sinceuv ∈ E(G). In addition, observe
that

p f ((u, v)) + p f ((v,u)) = k (2)

holds for any pair of parallel arcs (u, v) and (v,u) if
−→
H has such

a pair. Then, thepotential p f (
−→
H) of

−→
H on f is defined to be

the sum of potentials of all arcs of
−→
H on f , that is, p f (

−→
H) =∑

(u,v)∈A(
−→
H)

p f ((u, v)).
LetC be a cycle in an undirected graphG. Then, there are only

two possible orientations ofC such that they form directed cycles,
that is, either the clockwise direction or the anticlockwise direc-
tion; we always denote by

−→
C and

←−
C such the two possible ori-

entations ofC. The following lemma immediately follows from
Eq. (2).
Lemma 7. Let f be a coloring of an undirected graph G. Then,

p f (
−→
C) + p f (

←−
C) = k|E(C)| for every cycle C in G. □

For a coloring f of an undirected graphG, we define a new
(undirected) graphG f as follows: letV(G f) = V(G), and we add
new edges toG so that the subgraph of the resulting graph in-
duced by all the vertices inFrozen(f) is connected. Then, since
there are at most|V(G)| frozen vertices,G f has |V(G)| vertices
and at most|E(G)| + |V(G)| − 1 edges. Note thatG f = G if
Frozen(f) = ∅. Recall that two given coloringsf0 and fr of G are
assumed to satisfyFrozen(f0) = Frozen(fr) and f0(v) = fr (v) for
every vertexv in Frozen(f0). We can thus supposeG f0 = G fr , and
hence simply denote it byGf. Furthermore, since newly added
edges join only frozen vertices, we clearly have the following
lemma.
Lemma 8. There exists an(f0→ fr)-reconfiguration sequence on

CR(G) if and only if there exists an(f0→ fr)-reconfiguration se-

quence onCR(Gf). □
We are now ready to claim our necessary and sufficient condi-

tion.
Theorem 9. Let f0 and fr be any pair of colorings of a graph G

such thatFrozen(f0) = Frozen(fr), and f0(v) = fr (v) for all ver-

ticesv ∈ Frozen(f0). Then, an(f0→ fr)-reconfiguration sequence

exists onCR(G) if and only if p f0(
−→
C) = p fr (

−→
C) holds for every

cycle C in Gf.

Lemma 7 implies thatp f0(
−→
C) = p fr (

−→
C) holds if and only if

p f0(
←−
C) = p fr (

←−
C) holds. Therefore, Theorem 9 is independent

from the choice of the orientations of a cycleC.
In the remainder of this subsection, we prove Theorem 9. Note

4ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.1
2016/1/21

IPSJ SIG Technical Report

that Theorem 9 does not directly yield a polynomial-time algo-
rithm to solve the problem. However, we will give a polynomial-
time algorithm in Section 3.4, based on this theorem.
3.3.1 The necessity of Theorem 9.

We first prove the only-if direction of Theorem 9. Suppose that
there exists an (f0→ fr)-reconfiguration sequence onCR(G). Then,
Lemma 8 implies thatCR(Gf) contains an (f0→ fr)-reconfiguration
sequence⟨ f0, f1, . . . , fℓ⟩, where fℓ = fr , and hence the only-if di-
rection of Theorem 9 follows from the following lemma:
Lemma 10. Suppose that two colorings f and f′ are adjacent on

CR(Gf). Then,p f (
−→
C) = p f ′ (

−→
C) holds for every cycle C in Gf.

Proof. Let C be any cycle inGf. Since f and f ′ are adjacent
on CR(Gf), there exists exactly one vertexv ∈ V(Gf) such that
f (v) , f ′(v). If v is not contained inC, thenp f (

−→
C) = p f ′ (

−→
C)

trivially holds. We thus consider the case wherev is contained in
C. Let (u, v) and (v, w) be the in-coming and out-going arcs ofv in
−→
C, respectively. Then, for any other arc−→a ∈ A(

−→
C)\{(u, v), (v, w)},

we have
p f (
−→a) = p f ′ (

−→a). (3)

Note that the colorf ′(v) is either the successor or predecessor
color for f (v). We may assume thatf ′(v) is the successor color
for f (v), that is, f ′(v) = f (v)+; the proof for the other case is
symmetric. Then, in order to showp f (

−→
C) = p f ′ (

−→
C), it suffices to

prove that both

p f ((u, v)) = p f ′ ((u, v)) − 1 (4)

and
p f ((v, w)) = p f ′ ((v, w)) + 1 (5)

hold, because Eqs. (3), (4) and (5) yield that

p f (
−→
C) = p f ((u, v)) + p f ((v, w))

+
∑{

p f (
−→a) : −→a ∈ A(

−→
C) \ {(u, v), (v, w)}}

=
(
p f ′ ((u, v)) − 1

)
+
(
p f ′ ((v, w)) + 1

)
+
∑{

p f ′ (
−→a) : −→a ∈ A(

−→
C) \ {(u, v), (v, w)}}

= p f ′ ((u, v)) + p f ′ ((v, w))

+
∑{

p f ′ (
−→a) : −→a ∈ A(

−→
C) \ {(u, v), (v, w)}}

= p f ′ (
−→
C)

as claimed. We consider the following two cases:

Case 1: f (v) = k.
In this case,f ′(v) = f (v)+ = 1. Sinceu is adjacent withv in

Gf, both f ′(u) , f ′(v) and f (u) , f (v) hold. Therefore, we have
1 = f ′(v) < f ′(u) = f (u) < f (v) = k. Then, Eq. (4) follows from
Eq. (1) as follows:

p f ((u, v)) = f (v) − f (u)

= k− f (u) + 1− 1

= f ′(v) − f ′(u)+ k− 1

= p f ′ ((u, v)) − 1.

Similarly, 1 = f ′(v) < f ′(w) = f (w) < f (v) = k holds, and
hence Eq. (5) follows from Eq. (1) as follows:

p f ((v, w)) = f (w) − f (v) + k

= f (w) − k+ k− 1+ 1

= f ′(w) − f ′(v) + 1

= p f ′ ((v, w)) + 1.

Case 2: f (v) < k.
In this case,f ′(v) = f (v)+ = f (v) + 1. We verify only Eq. (4);

one can similarly verify Eq. (5). Furthermore, we consider only
the case wheref ′(u) = f (u) < f (v) holds; the proof is similar for
the case wheref ′(v) < f ′(u) = f (u) holds. Then, Eq. (4) follows
from Eq. (1) as follows:

p f ((u, v)) = f (v) − f (u) = f ′(v) − 1− f ′(u) = p f ′ ((u, v)) − 1.

This completes the proof of the lemma. □

3.3.2 The sufficiency of Theorem 9.
We then prove the if direction of Theorem 9: Ifp f0(

−→
C) =

p fr (
−→
C) holds for every cycleC in Gf, then an (f0 → fr)-

reconfiguration sequence exists onCR(Gf); Lemma 8 then implies
thatCR(G) contains an (f0→ fr)-reconfiguration sequence.

Our proof is constructive, that is, we give an algorithm which
indeed finds an (f0→ fr)-reconfiguration sequence. We say that a
vertexv is fixed if it is colored with fr (v) and our algorithm de-
cides not to recolorv anymore. Thus, all frozen vertices are fixed.
Our algorithm maintains the set of fixed vertices, denoted byF.
We first transformf0 into a coloringf ′0 of Gf so thatF , ∅, as the
initialization of our main procedure, as follows.

Algorithm 1 (Initialization for Algorithm 2)
1. If Frozen(f0) , ∅, then letF = Frozen(f0) and f ′0 = f0.
2. Otherwise letF = {v} for an arbitrarily chosen vertexv ∈

V(G). Let f = f0, and obtainf ′0 such thatf ′0(v) = fr (v), as
follows:
2-1. If f (v) = fr (v), then letf ′0 = f and stop the algorithm.
2-2. Otherwise recolor a sink vertexw (possiblyv itself)

of
−→
B+(v, f) to f (w)+. Let f be the resulting coloring,

and go to Step 2-1.

Note that we can always find a sink vertexw in Step 2-2 of Algo-
rithm 1, because otherwise

−→
B+(v, f) contains a directed cycle; by

Lemma 5 the vertices in the directed cycle are frozen, and hence
this contradicts the assumption thatFrozen(f0) = ∅ holds in
Step 2. Furthermore, since an (f0→ f ′0)-reconfiguration sequence

exists onCR(Gf), by Lemma 10 we havep f ′0
(
−→
C) = p f0(

−→
C) =

p fr (
−→
C) for any cycleC in Gf.

Before describing Algorithm 2, we give the following lemma.
Lemma 11. Let F be the vertex subset obtained by Algorithm1.

Then, the induced subgraph Gf[F] is connected.

Proof. If Frozen(f0) = ∅, thenF consists of a single vertexv
and hence the lemma clearly holds. Therefore, consider the case
whereFrozen(f0) , ∅. In this case,Gf[F] = Gf[Frozen(f0)].
Recall thatGf was obtained by adding new edges toG so that
Gf[Frozen(f0)] is connected. Thus,Gf[F] is connected also in
this case. □

We now give our main procedure, called Algorithm 2, which

5ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.1
2016/1/21

IPSJ SIG Technical Report

finds an (f ′0→ fr)-reconfiguration sequence onCR(Gf). The al-
gorithm attempts to extend the vertex setF to V(Gf) so that any
vertexv in F is fixed (and hence is colored withfr (v)); we even-
tually obtain the target coloringfr whenF = V(Gf). Recall that
our algorithm never recolors any vertexv in F, and all frozen ver-
tices are contained inF. Let f = f ′0, and apply the following
procedure.

Algorithm 2 (Finding an (f ′0→ fr)-reconfiguration sequence on
CR(Gf).)
1. If F = V(Gf) holds, then stop the algorithm.
2. Otherwise pick an arbitrary vertexv ∈ V(Gf) \ F which is

adjacent with at least one vertexu ∈ F, and addv to F.
2-1. If f (v) = fr (v), then go to Step 1.
2-2. Otherwise

• if p f ((u, v)) < p fr ((u, v)), then recolor a sink ver-

texw (possiblyv itself) of
−→
B+(v, f) to f (w)+; and

• if p f ((u, v)) > p fr ((u, v)), then recolor a source

vertexw (possiblyv itself) of
−→
B−(v, f) to f (w)−.

Let f be the resulting coloring, and go to Step 2-1.

To prove that Algorithm 2 correctly finds an (f ′0 → fr)-
reconfiguration sequence onCR(Gf), it suffices to show that there
always exists a non-fixed sink/source vertex in Step 2-2 under the
condition thatp f ′0

(
−→
C) = p f0(

−→
C) = p fr (

−→
C) holds for any cycleC in

Gf. Therefore, the following lemma completes the proof of the if
direction of Theorem 9.
Lemma 12. Let F and f be a pair of a fixed-vertex set and a col-

oring of Gf, respectively, obtained at some step of Algorithm2.

Let uvbe an edge in Gf such that u∈ F and v < F. Then, the

following (a) and(b) hold:
(a) if p f ((u, v)) < p fr ((u, v)), then

−→
B+(v, f) is a directed acyclic

graph such that no vertex in
−→
B+(v, f) is contained in F;

and

(b) if p f ((u, v)) > p fr ((u, v)), then
−→
B−(v, f) is a directed acyclic

graph such that no vertex in
−→
B−(v, f) is contained in F.

Proof. By Lemma 10 we first note that

p f (
−→
C) = p f0(

−→
C) = p fr (

−→
C) (6)

holds for any cycleC in Gf. We prove only the claim (a); the
proof for the claim (b) is similar.

We first prove that no vertex in
−→
B+(v, f) is contained inF if

p f ((u, v)) < p fr ((u, v)). Suppose for a contradiction that
−→
B+(v, f)

contains a vertex inF, and letw be a fixed vertex in
−→
B+(v, f)

which is closest tov, that is,
−→
B+(v, f) contains a directed path

from v to w which passes through only non-fixed vertices except
for w. Then, consider a directed cycle

−→
C consisting of the follow-

ing three directed paths (i)–(iii):
(i)
−→
Puv is a directed path consisting of the single arc (u, v).
By the assumption, we havep f (

−→
Puv) < p fr (

−→
Puv).

(ii)
−→
Pvw is the directed path in

−→
B+(v, f) from v to w.

By the definition of a forward blocking graph, notice that
p f (
−→a) = 1 holds for any arc−→a in

−→
Pvw. Equation (1) im-

plies thatp f ′ (
−→
a′) ≥ 1 holds for any coloringf ′ of Gf and

any arc
−→
a′. Therefore, we havep f (

−→
Pvw) ≤ p fr (

−→
Pvw).

(iii)
−→
Pwu is a directed path fromw to u such thatV(

−→
Pwu) ⊆ F.

Lemma 11 ensures that such a path
−→
Pwu exists. Since

V(
−→
Pwu) ⊆ F, we have f (z) = fr (z) for any vertexz in

−→
Pwu. Thus,p f (

−→
Pwu) = p fr (

−→
Pwu) holds.

Then, we have the following inequality:

p f (
−→
C) = p f (

−→
Puv) + p f (

−→
Pvw) + p f (

−→
Pwu)

< p fr (
−→
Puv) + p fr (

−→
Pvw) + p fr (

−→
Pwu) = p fr (

−→
C).

This inequality contradicts Eq. (6), and hence we can conclude
that no vertex in

−→
B+(v, f) is contained inF if p f ((u, v)) <

p fr ((u, v)).

Finally, we prove that
−→
B+(v, f) is a directed acyclic graph. Sup-

pose for a contradiction that
−→
B+(v, f) contains a directed cycle

−→
C.

Then, by Lemma 5 any vertexv in
−→
C is frozen onf . By Lemma 4

such a vertexv is frozen also onf0. Therefore,vmust be included
in F initially. This contradicts the fact that no vertex in

−→
B+(v, f)

is contained inF if p f ((u, v)) < p fr ((u, v)). □

We note that our constructive proof of the sufficiency of Theo-
rem 9 yields the following lemma.
Lemma 13. For any yes-instance, there is an(f0 → fr)-
reconfiguration sequence onCR(Gf) of length O(kn2).

Proof. Consider the recoloring of a vertexv from f (v) to f (v)+;
it is similar for the case where we wish to recolorv to f (v)−.
Then, both Algorithms 1 and 2 compute the forward blocking
graph

−→
B+(v, f), and indeed recolor all verticesw in

−→
B+(v, f) to

f (w)+ for recoloringv to f (v)+. Since
−→
B+(v, f) is acyclic, we can

recolorv to f (v)+ by recoloringO(|V(
−→
B+(v, f))|) = O(n) vertices.

Since there arek colors, we can thus recolorv to fr (v) by O(kn)
recoloring steps. Therefore, all vertices can be fixed (and hence
fr can be obtained) byO(kn2) recoloring steps. □

Cereceda et al. [5] showed that there exists an infinite family
of yes-instances for 3-coloring reconfigurationwhose shortest
(f0→ fr)-reconfiguration sequence requireΩ(n2) length, wheren
is the number of vertices in an input graph. Thus, Lemma 13
gives an asymptotically tight bound on the length of (f0→ fr)-
reconfiguration sequences.

3.4 Proof of Theorem 2
We finally prove Theorem 2. We indeed give anO(nm)-time

algorithm which solvescoloring reconfiguration under recol-
orability R for any graphG if R is a cycle.

This algorithm first checks the simple necessary condition de-
scribed in Lemma 4. By Lemma 6 this step can be done inO(nm)
time. Note that we can obtain the vertex subsetsFrozen(f0) and
Frozen(fr) in this running time. Then, we determine whether a
given instance is a yes-instance or not, based on the necessary
and sufficient condition described in Theorem 9. However, recall
that the condition in Theorem 9 cannot be checked in polynomial
time by a naive way. We here give a way to check the condition
in O(nm) time.

Let T be an arbitrary spanning tree of the graphGf. For an edge
e ∈ E(Gf) \ E(T), we denote byCT,e the unique cycle obtained

6ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.1
2016/1/21

IPSJ SIG Technical Report

u

v w

x

y

z

C~ 1

C~ 2

Fig. 4 Illustrationfor Lemma 14, where the edges in a spanning treeT are
depicted by (green) dotted thick lines and the edges inE(C) \ E(T)
by thin lines.

by adding the edgee to T. The following lemma shows that it
suffices to check the necessary and sufficient condition only for
the number|E(Gf) \ E(T)| of cycles.
Lemma 14. Let T be any spanning tree of Gf. Then,p f0(

−→
C) =

p fr (
−→
C) holds for every cycle C of Gf if and only if p f0(

−−→
CT,e) =

p fr (
−−→
CT,e) holds for every edge e∈ E(Gf) \ E(T).

Proof. The only-if direction clearly holds, and hence we prove
the if direction by the induction on the number of edges in
E(C) \ E(T) for a cycleC of Gf.

We first consider any cycleC of Gf such that|E(C) \E(T)| = 1.
Let e′ be the edge inE(C) \ E(T), thenCT,e′ = C. By the as-
sumption, we havep f0(

−−−→
CT,e′) = p fr (

−−−→
CT,e′) and hencep f0(

−→
C) =

p f0(
−−−→
CT,e′) = p fr (

−−−→
CT,e′) = p fr (

−→
C), as claimed.

We then consider any cycleC of Gf such that|E(C)\E(T)| > 1.
Then,C contains at least two edges inE(C) \ E(T). Pick an arbi-
trary edgeuv in E(C)\E(T), and letwx be the edge inE(C)\E(T)
that first appears afteruvwhen we traverseC along the direction
−→
C; note thatv = w may hold, and that all edges betweenv and
w are contained inE(T) if exist. (See Fig. 4.) For two vertices
a,b ∈ V(C), we denote by

−→
Pab the directed path in

−→
C from a to

b. We divide
−→
C into four directed paths

−→
Puv,
−→
Pvw,

−→
Pwx and

−→
Pxu.

Then, since bothuv andwx are contained inE(C) \ E(T), there
exist two verticesy ∈ V(

−→
Pvw) andz ∈ V(

−→
Pxu) such that the unique

path onT betweeny andz does not pass through any edge inC.
(See Fig. 4.) Let

−→
Pyz be the orientation fromy to z for such a

path, while let
−→
Pzy be the other orientation of the path. Then, we

define two directed cycles
−→
C1 and

−→
C2, as follows:

• −→C1 =
−→
Puv ∪

−→
Pvy ∪

−→
Pyz ∪

−→
Pzu; and

• −→C2 =
−→
Pwx ∪

−→
Pxz∪

−→
Pzy ∪

−→
Pyw.

Since
−→
C1 and

−→
C2 pass through the unique path inT betweeny and

z in the opposite directions, the arcs in
−→
C1 and

−→
C2 are all mutually

disjoint. Now both|E(C1) \ E(T)| and|E(C2) \ E(T)| are strictly
smaller than|E(C)\E(T)|. We thus apply the induction hypothesis
to
−→
C1 and

−→
C2, and havep f0(

−→
C1) = p fr (

−→
C1) andp f0(

−→
C2) = p fr (

−→
C2).

Therefore, by Eq. (2) we have

p f0(
−→
C1) + p f0(

−→
C2) = p f0(

−→
C1 ∪

−→
C2)

= p f0(
−→
C) + p f0(

−→
Pyz) + p f0(

−→
Pzy)

= p f0(
−→
C) + k|A(

−→
Pyz)|

and

p fr (
−→
C1) + p fr (

−→
C2) = p fr (

−→
C1 ∪

−→
C2)

= p fr (
−→
C) + p fr (

−→
Pyz) + p fr (

−→
Pzy)

= p fr (
−→
C) + k|A(

−→
Pyz)|.

By the induction hypothesis, we thus havep f0(
−→
C) = p fr (

−→
C), as

claimed. □

Recall that|E(Gf)| ≤ |E(G)| + (|V(G)| − 1) = O(n+m). There-
fore, using Lemma 14, we can check the necessary and sufficient
condition in Theorem 9 inO(nm) time, by computingp f0(

−→
C) and

p fr (
−→
C) only for |E(Gf) \ E(T)| = O(n+ m) cyclesC. Thus,col-

oring reconfiguration under recolorability R can be solved for
any graph inO(n2 + nm) time in total. SinceG is connected in
this paper,m≥ n− 1 and henceO(n2 + nm)= O(nm).

This completes the proof of Theorem 2.

4. Conclusion

In this paper, we generalized the known results [3], [5] fork-
coloring reconfiguration from the viewpoint of recolorability
constraints, and gave a polynomial-time algorithm to solve the
problem for any graph if a given recolorability graphR is of max-
imum degree at most two.

References

[1] Bonamy, M., Bousquet, N.: Recoloring bounded treewidth graphs.
Electronic Notes in Discrete Mathematics 44, 257–262 (2013)

[2] Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Recon-
figuration graphs for vertex colourings of chordal and chordal bipartite
graphs. J. Combinatorial Optimization 27, pp. 132–143 (2014)

[3] Bonsma, P., Cereceda, L.: Finding paths between graph colourings:
PSPACE-completeness and superpolynomial distances. Theoretical
Computer Science 410, 5215–5226 (2009)

[4] Bonsma, P., Mouawad, A.E., Nishimura, N., Raman, V.: The com-
plexity of bounded length graph recoloring and CSP reconfiguration.
Proc. of IPEC 2014, LNCS 8894, pp. 110–121 (2014)

[5] Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between
3-colourings. J. Graph Theory 67, 69–82 (2011)

[6] Demaine, E.D., Demaine, M.L., Fox-Epstein, E., Hoang, D.A., Ito, T.,
Ono, H., Otachi, Y., Uehara, R., Yamada, T.: Linear-time algorithm
for sliding tokens on trees. Theoretical Computer Science, to appear.

[7] Feghali, C., Johnson, M., Paulusma, D.: A reconfigurations analogue
of Brooks’ Theorem. Proc. of MFCS 2014, LNCS 8635, pp. 287–298
(2014)

[8] Hatanaka, T., Ito, T., Zhou, X.: The list coloring reconfiguration prob-
lem for bounded pathwidth graphs. IEICE Trans. on Fundamentals of
Electronics, Communications and Computer Sciences E98-A, 1168–
1178 (2015)

[9] Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri,
M., Uehara, R., Uno, Y.: On the complexity of reconfiguration prob-
lems. Theoretical Computer Science 412, pp. 1054–1065 (2011)

[10] Ito, T., Ono, H., and Otachi, Y.: Reconfiguration of cliques in a graph.
Proc. of TAMC 2015, LNCS 9076, pp. 212–223 (2015)

[11] Johnson, M., Kratsch, D., Kratsch, S., Patel, V., Paulusma, D.: Finding
shortest paths between graph colourings. Proc. of IPEC 2014, LNCS
8894, pp. 221–233 (2014)

[12] Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki,
A.: On the parameterized complexity of reconfiguration problems.
Proc. of IPEC 2013, LNCS 8246, pp. 281–294 (2013)

[13] van den Heuvel, J.: The complexity of change. Surveys in Combina-
torics 2013, London Mathematical Society Lecture Notes Series 409,
pp. 127–158 (2013)

[14] Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth.
arXiv:1405.0847 (2014)

7ⓒ 2016 Information Processing Society of Japan

Vol.2016-AL-156 No.1
2016/1/21

