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Algorithm for
Generalized Coloring Reconfiguration Problem

1,a) ,2,b) 1,2,c) d)

Hirok1 Osawa AKIRA Suzukr TAKEHIRO ITO X1a0 Zuoul:

Abstract: For an integek > 1, k-coLorING RECONFIGURATION iS one of the most well-studied reconfiguraiton prob-
lems, defined as follows: In the problem, we are given two (vertex-)colorings of a graphkusihgys, and asked to
transform one into the other by recoloring only one vertex at a time, while at all times maintaining a proper coloring.
The problem is known to be PSPACE-completé& if 4, and solvable for any graph in polynomial timekik 3. In

this paper, we introduce a recolorability constraint onkleelors, which forbids some pairs of colors to be recolored
directly each other. The recolorability constraint is given in terms of an undirected Brapth that each node R
corresponds to a color and each edgR nepresents a pair of colors that can be recolored directly. Then, we show that
this problem is solvable for any graphRfis of maximum degree at most two.

1. Introduction : -
Recently,reconfiguration problem§9] have been intensively (&) Z

studied in the field of theoretical computer science: The prob- ¢ 2

lem arises when we wish to find a step-by-step transformation (a) (b)

between two feasible solutions of a search problem such that all

intermediate results are also feasible and each step conforms to f 1 f, I

a fixed reconfiguration rule, that is, an adjacency relation defined
on feasible solutions of the original search problem. (See, e.g.,
the survey [13] and references in [6], [10].)

One of the most well-studied reconfiguration problems is based
on the (vertex-)coloring search problem [1], [2], [3], [4], [5], [7],
[8], [11], [14]. In thecoLorING RECONFIGURATION problem, we are
given two proper coloringdy and f; of the same grapls, and
asked to determine whether there is a sequérigdy, ..., f;)
of proper colorings ofG such thatf, = f; and f; can be ob- Fig. 1 (a) Input graphG, (b) a recolorability graplR with four colors 1, 2,
tained fromf;_; by recoloring only a single vertex i@ for all 3 and 4, and (c) anf¢— f;)-reconfiguration sequence.

i € {1,2,...,¢). The complexity status of this reconfiguration

problem has been clarified based on several “standard” measure3.1 Our problem

(e.g., the number of colors [3], [5] and graph classes [2], [8], [14])  For an integek > 1, letC be thecolor setconsisting ok col-
which are used well also for analyzing the original search prob- ors 1.2,...,k. LetG be a graph with vertex s#4(G) and edge set
lem. E(G). Recall that &-coloring f of G is a mappingf : V(G) — C

In this paper, to clarify what make®LORING RECONFIGURA- such thatf (v) # f(w) holds for each edgaw € E(G).

TIoN tractable/intractable, we propose a new measure which is In this paper, we introduce the concept of “recolorability” and
appropriately tailored for the reconfigurability of colorings. In- generalize the adjacency relationlenolorings. Theecolorabil-
terestingly, as we will explain below, our measure generalizes theity on the color seC is given in terms of an undirected graph
known results [3], [5], and gives new insights to the problem. R, called therecolorability graphon C, such thatV(R) = C;
each edgej € E(R) represents a “recolorable” pair of colors
1 Graduate School oinformation Sciences, Tohoku University, Aoba- L] € V(R) = C. Then, twok-coloringsf and ” of G aread-
yama 6-6-05, Aoba-ku, Sendai, 980_8579” Japan. ' jacent(under R) if the following two conditions (a) and (b) hold:
2 CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan. (a) |{v eV(G): f(v) # f’(u)}| = 1, that is,f’ can be obtained
Z; 2';%";?;%“@;?%25;32‘;‘?‘;aCJP from f by recoloringa single vertex € V(G); and
: : e if f(v) # f'(v) for avertex € V(G), thenf(v) f'(v) € E(R),

9 takehiro@ecei.tohoku.ac.jp (b)
9 zhou@ecei.tohoku.ac.jp that is, the colord (v) and f’(v) form a recolorable pair.
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Figure 1(c) shows eight fierent 4-colorings of the graph in 1 2 3
Fig. 1(a). Then, for eache {1,2,...,7}, two 4-coloringsfi_; and o—eo—o ®_® ®_®
f; are adjacent undé®. As defined above, the known adjacency (a) (b) (c)
relation in [1], [2], [3], [4], [B], [7], [8], [11], [14] only requires Fig. 2 (a) Recolorability grapiR with three colors 1, 2 and 3, and (b) and
the condition (a) above, that is, we can recolor a vertex from any (c) 3-coloringsfo and f; of a single edge, respectively.

color to any color directly. Observe that this corresponds to the
case whereR is a complete grapl, of sizek, and hence our  coLorasiLITY iS solvable in polynomial time if maximum degree

adjacency relation generalizes the known one. of Ris at most two.

Given a graphG, a recolorability graptR on C, and twok- Since 3-COLORING RECONFIGURATION cOrresponds to the case
colorings fo and f; of G, the coLORING RECONFIGURATION prob- whereR is a complete grapK3; of size three (and hence it is of
lem unper REcoLORABILITY RS the decision problem of determin-  maximum degree two), our result generalizes the known one [5].
ing whether there exists a sequeriég fi, ..., f,) of k-colorings Indeed, we will nicely extend several techniques developed for 3-
of G such thatf, = f, and fi_; and f; are adjacent undeR COLORING RECONFIGURATION [5]. However, these extensions are not

for all i € {1,2,...,¢; such a desired sequence is called an so straightforward, because the concept of recolorability graphs
(fo — fy)-reconfiguration sequenceFor example, the sequence changes the situation drastically. For example, the— f;)-
(fo, f1,..., f7) in Fig. 1(c) is an §p — f7)-reconfiguration se-  reconfiguration sequence in Fig. 1(c) is a shortest one between

guence. Then, the well-studi&etoLoRING RECONFIGURATION prob- fo and f; under the recolorability grapR in Fig. 1(b). However,
lem is SIMplycOLORING RECONFIGURATION UNDER RECOLORABILITY R in 4-COLORING RECONFIGURATION (in other words, ifR would beK,
for the case wherRis a complete grapKy of sizek. and would have the edge joining colors 1 and 3), we can recolor
the vertex from 1 to 3 directly. As another example, the instance
1.2 Related results illustrated in Fig. 2 is a no-instance for our problem even if the
As we have mentioned aboegoLORING RECONFIGURATION has number of colors is larger than the number of vertices in an input
been studied intensively from various viewpoints. graph (a single edge), but is clearly a yes-instance fanaring

From the viewpoint of the numbdrof colors in the color set  RECONFIGURATION.
C, a sharp analysis has been obtained: Bonsma and Cereceda [
proved thatk-coLorING RECONFIGURATION iS PSPACE-complete if
k > 4. On the other hand, Cereceda et al. [5] proved Kdat Since we deal with (vertex-)coloring, we may assume without
COLORING RECONFIGURATION iS Solvable for any graph in polynomial  loss of generality that an input graghis simple, connected and
time if k < 3, despite the fact that the original search problem undirected. For a vertex subsét c V(G), we denote byG[V’]
(i.e., asking for the existence of one 3-coloring in a given graph) the subgraph of induced byv’.
is NP-complete. In addition, for any yes-instance on 3-coLoriné  For a graphG and a recolorability grapR on C, we define
RECONFIGURATION, an (fo— f;)-reconfiguration sequence with the theR-reconfiguration graplon G, denoted byCr(G), as follows:
shortest length can be found in polynomial time [5], [11]. Cr(G) is an undirected graph such that each nod€fs) cor-

From the viewpoint of graph classes, Wrochna [14] proved that responds to &-coloring of G, and two nodes i@r(G) are joined
k-coLoRrING RECONFIGURATION remains PSPACE-complete even for by an edge if their correspondirkgcolorings are adjacent under
graphs with bounded bandwidth (and hence bounded treewidthR. We sometimes call a noded&(G) simply ak-coloringif it is
and pathwidth). Hatanaka et al. [8] showed that, for any inte- clear from the context. A path ifr(G) from ak-coloring f to an-
gerk > 1, k-coLorING RECONFIGURATION Can be solved in polyno-  other onef’ is called an {— f’)-reconfiguration sequencélote
mial time for caterpillars. Bonamy et al. [2] gave somdisient that any ¢ — f’)-reconfiguration sequence risversible, that is,
condition with respect to graph structures so that any pak-of  the path inCr(G) forms an ¢’— f)-reconfiguration sequence, too.
colorings of a graph has a reconfiguration sequence: for example;Then, thecoLORING RECONFIGURATION Probl€MUNDER RECOLORABIL-
chordal graphs and chordal bipartite graphs satisfy théiicgent iy Ris the decision problem of determining whetka(G) con-
condition. tains an fo— f;)-reconfiguration sequence. Note that the problem

As a natural measure tailored for reconfiguration problems, the does not ask for an actualy(~ f;)-reconfiguration sequence as
length¢ of a desired sequence is taken as a parameter in the conthe output.
text of the parameterized complexity [12]. Bonsma et al. [4] and  We introduce the concept of “frozen” vertices from the view-
Johnson et al. [11] independently developed a fixed-parameter alpoint of recoloring, which plays an important role in the paper.
gorithm to solvek-coLorING RECONFIGURATION When parameterized  For ak-coloring f of a graphG and a recolorability graptR
by k + ¢, wherek is the number of colors anflis the length of onC, a vertexv € V(G) is said to befrozen on f(under R) if
an (fo— f;)-reconfiguration sequence. In contrast, if the problem f(v) = f’(v) holds for any coloringf’ of G such thatCr(G) has
is parameterized only b, then it is W[1]-hard wheik is an in- an (f—f’)-reconfiguration sequence.
put [4] and does not admit a polynomial kernelization wihkes
fixed unless the polynomial hierarchy collapses [11].

3 S
é. Preliminaries

3. Polynomial-Time Algorithm

The main result of this paper is the following theorem.
1.3 Our contribution Theorem 1. Suppose that the maximum degree of a given recol-
In this paper, we show thabLoRING RECONFIGURATION UNDER RE- orability graph R is at most two. ThetgLORING RECONFIGURATION
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UNDER RECOLORABILITY R for any graph G can be solved in poly-
nomial time.

Due to the page limitation, we only prove Theorem 1 when re-
stricted to the case where a given recolorability grRjigha cycle,
as in the following theorem.

Theorem 2. Suppose that a given recolorability graph R is a cy-
Cle. Then LOLORING RECONFIGURATION UNDER RECOLORABILITY R for
any graph G can be solved in(@m)time, where n= [V(G)| and

m = |[E(G).

Recall thatk-coLORING RECONFIGURATION iS SIMpPlY COLORING RE-
CONFIGURATION UNDER RECOLORABILITY R for whichRis a complete
graphKj of sizek. SinceKj is a cycle, Theorem 2 immediately
implies the following corollary which has been shown by Cere-
ceda et al. [5].

Corollary 3. 3-coLoRrING RECONFIGURATION for any graph G can
be solved in O(nmiime, where n= |V(G)| and m= |E(G)|.

Fig. 3 Characterizationf frozen vertices.

In the remainder of this section, we prove Theorem 2 as fol- c—1 ifcs 1
lows: In Section 3.2, we first give a simple necessary condition c = ‘ " 1'
for ayes-instance based on the concept of frozen vertices; the idea re==

is simple, but we need a nice characterization of frozen verticesNote that we use this notation also for a color assigned ky a
for checking the condition in polynomial time. In Section 3.3, we coloring: For ak-coloring f of a graphG and a vertex in G, we

then give a necessary andfstient condition for a yes-instance  denote byf (v)* and f(v)~ the successor and predecessor colors
by introducing a potential function which appropriately charac- for f(v), respectively. In this section, we callkecoloring of G
terizes the reconfigurability of colorings; this is the main contri- simply acoloring.

bution for our polynomial-time algorithm. However, the condi-

tion in Section 3.3 cannot be checked in polynomial time by a 3.2 Frozen vertices

naive way; we finally explain, in Section 3.4, how to check the |n this subsection, based on the concept of frozen vertices, we

condition in polynomial time. give a simple necessary condition for the existence of@n {;)-
reconfiguration sequence on tRereconfiguration grap8r(G).
3.1 Preliminaries For a coloringf of G, we denote byFrozen(f) the set of all
To describe our algorithms, we sometimes use the notion of yertices inG that are frozen otii. The following lemma gives our
digraphs (i.e., directed graphs). For an undirected gaptve simple necessary condition, which immediately follows from the

denote bﬁ a digraph whose underlying graphGs and also de- definition of frozen vertices.
note byA(G) the arc set ofs. We denote byw an edge joining  Lemma 4. Suppose that there exists &h— f')-reconfiguration
two vertices» andw in an undirected graph, while by, ) an arc sequence for two colorings f and bf a graph G. Then,

fromovtow ina digraph. In this paper, we say that a digr&pfs Frozen(f) = Frozen(f’), and f(v) = f’(v) holds for every ver-
connectedf G is weakly connected, that s, the underlying graph texy in Frozen(f). o
Gis connected. A vertexin a digraphG is called asourcevertex Note that it is not trivial to computErozen(f) for a coloringf

if the in-degree ob is zero, while it is called ainkvertex ifthe  in polynomial time. However, we will give a characterization of

out-degree o is zero. A sequenceaiviazvz .. au Of Vrtices  frozen vertices (in Lemma 5), which enables us to compute all of
v0,V1,...,0 and arcsay, a, ..., a in G is called aforward walk them in polynomial time (as proved in Lemma 6).

fromuo on G if it forms a directed path fromg to v, that is,a; is To characterize the frozen vertices, we introduce some notation
the arc fromu;_; to y; f% alli € {1,2,...,1}; whileitis calleda  and terms which will be used also in the next subsections. For a
backward walk tap on G if it is a directed path frona to v, that graphG and its coloringf, letH¢ be the digraph with vertex set
is, & is the arc fromy; tovi_1 foralli € {1,2,...,1}. V(ﬁf) = V(G) and arc set

We may assume without loss of generality that the colors N
1,2,...,kinthe color se€ are labeled in a numerical order along A(H¢) = {(v,w) : vw € E(G) and f ()" = f(w))}.

the cycleR. For notational convenience, we define shiecessor
color ¢* and thepredecessocolor ¢ for a colorc € V(R), as
follows:

Notice that an arco(w) € A(ﬁf) implies thatf(v) = f(w)~, and
represents that, if we wish to recolofrom f (v) to f(v)*, we need
to recolorw from f(w) (= f(v)*) to f(w)* in advance. Théor-
ward blocking graph frona on a coloring f, denoted by§+(u, f),
is the subgraph d—H)f consisting of all forward walks from on
1 ifc=k, ﬁf. Similarly, thebackward blocking graph to on a coloring
f, denoted byTB)*(u, f), is the subgraph oﬁf consisting of all
and backward walks te onﬁf. Then, we have the following lemma.

B c+1 ifc<k

C+
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(See also Fig. 3.)
Lemma 5. A vertexv € V(G) is frozen on f if and only if it
satisfies at least one of the following two conditigasand (b):
(a) vis contained in a directed cycle ﬁf; and
(b) ﬁf has both forward and backward walks fromgoeach
of which ends in a vertex contained in a directed cycle.

Proof. Let S be the set of all vertices i that satisfy at least
one of the two conditions (a) and (b) above. Then, we will prove
thatS = Frozen(f).

We first prove that c Frozen(f) holds. Letv be an arbitrary
vertex inS, then we show that € Frozen(f). Sincev € S, it
satisfies at least one of the two conditions (a) and (b). By the
definition of H, we haves € Frozen(f) if v satisfies the condi-
tion (a). Therefore, consider the case whematisfies only the
condition (b). Thenj_-if has a forward walk from» which ends
in a vertexw contained in a directed cycle. Note thats frozen
on f, because it satisfies the condition (a). This implies that any
vertexz (including v) cannot be recolored to its successor color
f(z)". Atthe same timeﬁf has a backward walk towhich ends
in a vertex contained in a directed cycle, and hemcannot be
recolored to its predecessor coliqp)~, too. Thusyp is frozen on
f, as claimed.

We then prove thaErozen(f) € S holds by taking its contra-
position. Let be any vertex which is not i8, then we show that
v ¢ Frozen(f). Sincev ¢ S, at least one o§+(v, f) andTB)‘(v, f)
is an acyclic digraph. Assume thﬁt*(v, f) is acyclic; it is sym-
metric to prove the case Whe_é?(v, f)is acyclic. Then, we show
thatv can be recolored to the successor cdl@)* by the induc-
tion on the number of arcs iB* (v, f). If JA(B* (v, f))| = O, then
v can be recolored immediately fdv)* because any neighbor of
v is not colored withf(v)*. Therefore, consider the case where
|A(T3Wu, f))l > 0. Then, we obtain a new colorinfj of G by
recoloring an arbitrary sink vertax in T?:*(v, f) to f(w)*. Note
that we can recolaw directly to f(w)*, since it has no out-going
arc inT3)+(u, f). Furthermore, sinc@*(u, f) is connectedy has
at least one in-coming arci_B)+(v, f); observe thaTB)*(v, f’) does
not have such an in-coming arc of becausev is colored with
f*+(w) in /. We thus havéA(B* (v, )| < |A(B* (v, f))| - 1, and
hence by applying the induction hypothesis the claim holds:

Based on Lemma 5, we now prove tiffabzen(f) can be com-
puted in polynomial time, as in the following lemma.
Lemma 6. For any coloring f of a graph GFrozen(f) can be
computed in @m)time, where n= |V(G)| and m= |[E(G)|.

Proof. One can construct the digraro‘I)f in O(m) time, by
checking each edgev in G. Then, for each vertex € V(G),
one can check ib satisfies at least one of the conditions (a)
and (b) in Lemma 5 irD(n + m) time, by executing the breath-
first search or1_-|> ¢ starting fromo twice; we traverse arcs ﬁf

in the opposite direction in oder to find backward walksvto
Therefore, all frozen vertices oh can be found irO(r? + nm)
time. SinceG is connected in this papem > n - 1 and hence
O(r? + nm) = O(nm). o
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3.3 Necessary and dfficient condition

In the remainder of this section, by Lemma 4 we assume
Frozen(fy) = Frozen(f;) and fo(v) = f(v) for each vertex
v € Frozen(fp); otherwise it is a no-instance. In this subsec-
tion, we will give a necessary andffigient condition for a yes-
instance.

We introduce some new notation to describe the condition. Let
G be an undirected graph, and létbe any digraph whose under-
lying graph is a subgraph @. For a coloringf of G and each
arc U,v) € A(ﬁ), we define theootentialp;((u, v)) of (u,v) on f,
as follows:

f(v) - f(u)
f(v) — f(u)+k

if f(0) > f(u):

if f(0) < f(u). W

prm={
Note thatf (u) # f(v) holds sincaw € E(G). In addition, observe
that

pr((U.v) +pr((v.u)) =k @)

holds for any pair of parallel arcs,@p) and (v,u) if H has such
a pair. Then, thepotentialpf(ﬁ) of H on f is defined to be
the sum of potentials of all arcs & on f, that is, pf(ﬁ) =
2 wyeah P (U, ).

Let C be a cycle in an undirected gra@h Then, there are only
two possible orientations & such that they form directed cycles,
that is, either the clockwise direction or the anticlockwise direc-
tion; we always denote b?z‘f and € such the two possible ori-
entations ofC. The following lemma immediately follows from
Eq. (2).

Lemma 7. Let f be a coloring of an undirected graph G. Then,
pf(E)) + pf(<C_:) = KIE(C)| for every cycle C in G. O

For a coloringf of an undirected grapts, we define a new
(undirected) grapis’ as follows: letV(G') = V(G), and we add
new edges td@s so that the subgraph of the resulting graph in-
duced by all the vertices iRrozen(f) is connected. Then, since
there are at mogV(G)| frozen verticesG' has|V(G)| vertices
and at mostE(G)| + [V(G)| — 1 edges. Note thas’ = G if
Frozen(f) = 0. Recall that two given coloringfy and f, of G are
assumed to satisfiyrozen(fy) = Frozen(f,) and fo(v) = f;(v) for
every vertex in Frozen(f;). We can thus suppo&&® = G, and
hence simply denote it b@'. Furthermore, since newly added
edges join only frozen vertices, we clearly have the following
lemma.

Lemma 8. There exists alffo— f;)-reconfiguration sequence on
Cr(G) if and only if there exists affy— f;)-reconfiguration se-
quence orCr(G). |

We are now ready to claim our necessary anticent condi-
tion.

Theorem 9. Let f; and § be any pair of colorings of a graph G
such thatFrozen(fo) = Frozen(f;), and {(v) = f;(v) for all ver-
ticesv € Frozen(fo). Then, an(fo— f;)-reconfiguration sequence
exists onCr(G) if and only ifpfo(_C)) = pfr(E)) holds for every
cycle CinG.

Lemma 7 implies thapfo(?f) = pfr(E)) holds if and only if
pfo((C_:) = pfr((C_:) holds. Therefore, Theorem 9 is independent
from the choice of the orientations of a cy&e

In the remainder of this subsection, we prove Theorem 9. Note
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that Theorem 9 does not directly yield a polynomial-time algo-
rithm to solve the problem. However, we will give a polynomial-
time algorithm in Section 3.4, based on this theorem.

3.3.1 The necessity of Theorem 9.

We first prove the only-if direction of Theorem 9. Suppose that
there exists anf{— f;)-reconfiguration sequence 6a(G). Then,
Lemma 8 implies tha€r(G") contains an{y— f,)-reconfiguration
sequenceéfy, fy,..., f;), wheref, = f;, and hence the only-if di-
rection of Theorem 9 follows from the following lemma:

Lemma 10. Suppose that two colorings f anddre adjacent on
Cr(G"). Thenp;(C) = p-(C) holds for every cycle C inG

Proof. Let C be any cycle inG'. Sincef and f’ are adjacent
on Cr(G"), there exists exactly one vertexe V(G such that
f(u) # f'(u). If vis not contained irC, thenp(C) = p (C)
trivially holds. We thus consider the case wheie contained in
C. Let (u,v) and ¢, w) be the in-coming and out-going arcswdh
E), respectively. Then, for any other ace A(E:))\{(u, v), (v, w)},
we have

pi(A) = pr(A). 3

Note that the colorf’(v) is either the successor or predecessor
color for f(v). We may assume thdt (v) is the successor color
for f(v), that is, f’(v) = f(v)*; the proof for the other case is
symmetric. Then, in order to showpy (C) = p¢(C), it suffices to
prove that both

pr((U.v) = pr((u.0) -1 (4)

and
pi((v.w)) = pr-((v,w)) + 1
hold, because Egs. (3), (4) and (5) yield that

®)

p+(C) = pr((u.1)) + ps((v.w))
+ 3 pi(@) @ € AC) \ {(U0). (. w)}}
= (pr () = 1) + (Pr-((v.w)) + 1)
+ 2 [pr(@) B e AR\ (U, 0), (0, )}
= p (. ) + pr((v.w)
+ > 4pe (@) 18 € AC) \ {(u0), (v w)))
= p(©)

as claimed. We consider the following two cases:

Case l f(v) = k.

In this case,f’(v) = f(v)* = 1. Sinceu is adjacent withy in
G, both f"(u) # f’(v) and f(u) # f(v) hold. Therefore, we have
1=1f'(v) < f’(u) = f(u) < f(v) = k. Then, Eq. (4) follows from
Eq. (1) as follows:

pr((u,v)) = f) - f(u)
=k-f(uy+1-1
=f'(v)- f'(uy+k-1
=pr(Uv) -1

Similarly, 1 = f’(v) < f’(w) = f(w) < f(v) = k holds, and
hence Eq. (5) follows from Eq. (1) as follows:
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pt((v,w)) = f(w) - f() + Kk
= f(w)—k+k—l+l
=f'(w)-f@+1
= b w) + 1.

Case 2 f(v) < k.

In this casef’(v) = f(v)* = f(v) + 1. We verify only Eq. (4);
one can similarly verify Eq. (5). Furthermore, we consider only
the case wheré’(u) = f(u) < f(v) holds; the proof is similar for
the case wheré’(v) < f’(u) = f(u) holds. Then, Eq. (4) follows
from Eq. (1) as follows:

pr((U.v) = f(v) - f(u) = f'(0) - 1 - F'(u) = pr-((u.0)) - 1.
This completes the proof of the lemma. O

3.3.2 The sifficiency of Theorem 9.

We then prove the if direction of Theorem 9: pffo(_C)) =
Py, (©) holds for every cycleC in G, then an § — f.)-
reconfiguration sequence exists@(G"); Lemma 8 then implies
thatCr(G) contains an fp— f;)-reconfiguration sequence.

Our proof is constructive, that is, we give an algorithm which
indeed finds anfg— f;)-reconfiguration sequence. We say that a
vertexuv is fixedif it is colored with f,(v) and our algorithm de-
cides not to recolor anymore. Thus, all frozen vertices are fixed.
Our algorithm maintains the set of fixed vertices, denotedr by
We first transformfy into a coloringf of G' so thatF # 0, as the
initialization of our main procedure, as follows.

Algorithm 1 (Initialization for Algorithm 2)

1. If Frozen(fo) # 0, then letF = Frozen(fo) andfj = fo.

2. Otherwise lef- = {v} for an arbitrarily chosen vertex €
V(G). Let f = fo, and obtainf] such thatf(v) = f;(v), as
follows:

2-1. If f(v) = f;(v), thenletf] = f and stop the algorithm.

2-2. Otherwise recolor a sink vertax(possiblyv itself)
ofT3>+(v, f) to f(w)*. Let f be the resulting coloring,
and go to Step 2-1.

Note that we can always find a sink veriexn Step 2-2 of Algo-
rithm 1, because otherwiﬁ*(v, f) contains a directed cycle; by
Lemma 5 the vertices in the directed cycle are frozen, and hence
this contradicts the assumption thazen(fo) = 0 holds in
Step 2. Furthermore, since afy-{ f;)-reconfiguration sequence
exists onCgr(G"), by Lemma 10 we havpfé(f:)) = pfO(E)) =
pt, () for any cycleC in G'.

Before describing Algorithm 2, we give the following lemma.
Lemma 11. Let F be the vertex subset obtained by Algorithm
Then, the induced subgrapH[E] is connected.

Proof. If Frozen(fo) = 0, thenF consists of a single vertax

and hence the lemma clearly holds. Therefore, consider the case
whereFrozen(fy) # 0. In this caseG[F] = G'[Frozen(fo)].
Recall thatG' was obtained by adding new edgesGaso that
G'[Frozen(fo)] is connected. ThusGf[F] is connected also in

this case. O

We now give our main procedure, called Algorithm 2, which
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finds an ¢, — f,)-reconfiguration sequence @x(G'). The al-
gorithm attempts to extend the vertex §eto V(G so that any
vertexv in F is fixed (and hence is colored with(v)); we even-
tually obtain the target coloring whenF = V(G). Recall that
our algorithm never recolors any vertein F, and all frozen ver-
tices are contained iff. Let f = f/, and apply the following
procedure.

Algorithm 2 (Finding an ¢ — f;)-reconfiguration sequence on
Cr(G").)
1. If F = V(G") holds, then stop the algorithm.
2. Otherwise pick an arbitrary vertexe V(G \ F which is
adjacent with at least one vertexe F, and add to F.
2-1. If f(v) = f.(v), then go to Step 1.
2-2. Otherwise
o if ps((u,v)) < ps,((u,v)), then recolor a sink ver-
texw (possiblyv itself) ofﬁ*(u, f)to f(w)*; and
o if ps((u,v)) > ps,((u,v)), then recolor a source
vertexw (possiblyv itself) ofT3>*(u, f)to f(w)".
Let f be the resulting coloring, and go to Step 2-1.

To prove that Algorithm 2 correctly finds anfj( — f;)-
reconfiguration sequence Gr(G'), it suffices to show that there
always exists a non-fixed sifdource vertex in Step 2-2 under the
condition thatpy (—C)) = pfo(f:)) = ps, (Tf) holds for any cycleC in
G'. Therefore, the following lemma completes the proof of the if
direction of Theorem 9.

Lemma 12. Let F and f be a pair of a fixed-vertex set and a col-
oring of G, respectively, obtained at some step of Algoritam
Let uvbe an edge in Gsuch that ue F andv ¢ F. Then, the
following (a) and (b) hold:

(@) ifps((u,v)) < pr.((u,v)), then_B)+(u, f)is adirected acyclic
graph such that no vertex iﬁ*(v, f) is contained in F
and

(b) if ps((u,v)) > pr,((u,v)), then—B)‘(u, f)is a directed acyclic
graph such that no vertex E’:*(v, f) is contained in F.

Proof. By Lemma 10 we first note that

p1(©) = pr,(©) = p;,(©) )

holds for any cycleC in G. We prove only the claim (a); the
proof for the claim (b) is similar.

We first prove that no vertex iﬁ*(u, f) is contained inF if
ps((u,v)) < pr,((u,v)). Suppose for a contradiction thﬁt*(u, f)
contains a vertex i, and letw be a fixed vertex irﬁ*(v, f)
which is closest ta, that is,TB)*(u, f) contains a directed path
from v to w which passes through only non-fixed vertices except
for w. Then, consider a directed cyc?bconsisting of the follow-
ing three directed paths (i)—(iii):

() TD)UU is a directed path consisting of the single arcy.

By the assumption, we hayrs (_P)u,)) < ps, (—F;uu).

TD)U,,, is the directed path iﬁ*(v, f) from o to w.
By the definition of a forward blocking graph, notice that
—
pi(@) = 1 holds for any ar& in P,,. Equation (1) im-
plies thatpf,(E;) > 1 holds for any coloring’ of G' and
— — —
any arca’. Therefore, we havp; (P.,) < pt, (Puw)-

(ii)
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Bwu is a directed path frorw to u such that\/(Bwu) cF.
-

Lemma 11 ensures that such a pd&l, exists. Since

V(T3>wu) c F, we havef(z) = f;(2 for any vertexz in

- — —

Pwu- ThUS,pf(Pwu) = pfr(Pwu) holds.

(iii)

Then, we have the following inequality:

— — — —
pf(c) = pf(PUU) + pf(Puw) + pf(Pwu)
— — — —
< pfr(Puv) + pf,(Puw) + pf,(Pwu) = pf,(C)~

This inequality contradicts Eq. (6), and hence we can conclude
—
that no vertex inB*(v, f) is contained inF if ps((u,v)) <

Py, (. v)).

Finally, we prove thaTB)*(u, f) is a directed acyclic graph. Sup-
pose for a contradiction thﬁ*(u, f) contains a directed cyc—@).
Then, by Lemma 5 any vertexn Cis frozen onf. By Lemma 4
such a vertex is frozen also orfy. Thereforep must be included
in F initially. This contradicts the fact that no vertex_E?)r*(v, f)
is contained irF if p¢((u,v)) < p, ((u, v)). |

We note that our constructive proof of thefstiency of Theo-
rem 9 yields the following lemma.
Lemma 13. For any yes-instance, there is affy — f;)-
reconfiguration sequence @i(G") of length O(kR).

Proof. Consider the recoloring of a verteXrom f(v) to f(v)*;

it is similar for the case where we wish to recoloto f(v)~.
Then, both Algorithms 1 and 2 compute the forward blocking
graphT?;*(v, f), and indeed recolor all verticesin T3)+(v, f) to
f(w)* for recoloringu to f(v)*. Sinceﬁ*(v, f) is acyclic, we can
recolorv to f(v)* by recoloringO(|V(§*(v, f))) = O(n) vertices.
Since there ar& colors, we can thus recolorto f;(v) by O(kn)
recoloring steps. Therefore, all vertices can be fixed (and hence
f, can be obtained) b@(kr?) recoloring steps. O

Cereceda et al. [5] showed that there exists an infinite family
of yes-instances for 3-coLorING RECONFIGURATIOWhOSE shortest
(fo— f,)-reconfiguration sequence requidén?) length, wheren
is the number of vertices in an input graph. Thus, Lemma 13
gives an asymptotically tight bound on the length & -6 f)-
reconfiguration sequences.

3.4 Proof of Theorem 2

We finally prove Theorem 2. We indeed give @mnm)-time
algorithm which sOlVE€0LORING RECONFIGURATION UNDER RECOL-
oraBILITY Rfor any graphG if Ris a cycle.

This algorithm first checks the simple necessary condition de-
scribed in Lemma 4. By Lemma 6 this step can be dor@(imm)
time. Note that we can obtain the vertex subsetzen(fy) and
Frozen(f;) in this running time. Then, we determine whether a
given instance is a yes-instance or not, based on the necessary
and sufitient condition described in Theorem 9. However, recall
that the condition in Theorem 9 cannot be checked in polynomial
time by a naive way. We here give a way to check the condition
in O(nm) time.

Let T be an arbitrary spanning tree of the gragihFor an edge
e € E(G") \ E(T), we denote byCr, the unique cycle obtained
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g p1,(C1) + p1.(C2) = p;,(CL U CR)
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\\\\éluulu,&\\ >§ ™ 9,,,, =p(C) +p1,(P,2) + p1,(Pz)
vo' %, Ow — —
g ) & G, I =P, (C) + KA(P)l.

", Z a” By the induction hypothesis, we thus havg(C) = pt,(C), as
RELTI "I“"o ........ Clalmed 5

V4
Fig. 4 lllustrationfor Lemma 14, where the edges in a spanning Treee Recall tha{E(G')| < [E(G)| + (IV(G)| - 1) = O(n+ m). There-
depicted by (green) dotted thick lines and the edges(®) \ E(T) fore, using Lemma 14, we can check the necessary afidient
by thin fines. condition in Theorem 9 i©(nm) time, by computings,(C) and
pt, (C) only for |E(G') \ E(T)| = O(n+ m) cyclesC. Thus,coL-
ORING RECONFIGURATION UNDER RECOLORABILITY R can be solved for
any graph inO(n? + nm) time in total. Sincé is connected in
this paperm > n — 1 and henc®(r? + nm)= O(nm).
This completes the proof of Theorem 2.

by adding the edgeto T. The following lemma shows that it
suffices to check the necessary anflicient condition only for

the numbefE(G") \ E(T)| of cycles.

Lemma 14. Let T be any spanning tree of‘.GThen,pfo(E))
pfr(ff) holds for every cycle C of 'Gf and only ifpfo((?),e)
o3 ((TT_;) holds for every edge e E(G") \ E(T).

4. Conclusion

In this paper, we generalized the known results [3], [5]Keor
COLORING RECONFIGURATION from the viewpoint of recolorability
Proof. The only-if direction clearly holds, and hence we prove constraints, and gave a polynomial-time algorithm to solve the
the if direction by the induction on the number of edges in problem for any graph if a given recolorability graBfis of max-
E(C) \ E(T) for a cycleC of G. imum degree at most two.

We first consider any cyclé of G’ such thatE(C) \ E(T)| = 1.
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