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ああ 近年，小標数の体におけるDLPを解くアルゴリズムの進化に大きなブレークスルーがあり，
対称 (type 1)ペアリングの暗号としてのセキュリティレベルが著しく低下してしまった．本研究で
は種数 2の ordinaryな超楕円曲線に注目し，その上の高 (192-bit) セキュリティレベルな optimal

ペアリングの構成を目的とする．本稿において，我々は川添と高橋による曲線族に対する optimal

ペアリングの構成を示し，コスト評価を行い同セキュリティレベルにおける楕円曲線上のペアリ
ングとの比較を行う．
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Abstract Recently, there were major breakthroughs in computing DL in finite fields of small

characteristics, as a result the symmetric pairings which is defined by using such finite fields

became unsuitable for cryptography. We focus on the ordinary hyperelliptic curves of genus 2

and the optimal (ate) pairing algorithms at high (192-bit) security level on such curves. In this

paper, we show the method to construct optimal pairings over the family of pairing-friendly

curves of genus 2 by Kawazoe and Takahashi, and we provide the cost estimates to compare

with the result of the pairings on elliptic curve at same security level.

1 Introduction

Pairings on hyperelliptic curves (including

elliptic curves) have been applied to many cryp-

tographic schemes (functional encryption and

its varieties), and the various optimization meth-

ods that increase the speed of the algorithm

of pairings and their arithmetic of curves have

been exploited.

Recently, major theoretical and practical break-

through in computing discrete logarithms in fi-

nite fields of small characteristic and also other

fields have been made [5, 4]. As a result, the

type 1 (symmetric) pairings have been almost
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dead since these pairings are defined on the

supersingular curves of high embedding degree

over finite fields of small characteristic to use

their distortion maps. We should also improve

the security level of pairings for the complexity

of the discrete logarithm algorithm in other fi-

nite fields. Since type 1 pairings are still useful

for constructing some cryptographic protocols,

some authors offered the type 1 pairing on the

curves not defined over finite fields of small

characteristic in elliptic case [17, 20] and in

genus 2 case [8]. Their pairings, however, are

not suitable for the situation required high se-

curity level because of their small embedding

degree.

Aranha et al. [2] showed optimal asymmet-

ric pairings on Kachisa-Schaefer-Scott (KSS),

Barreto-Naehrig (BN), and Barreto-Lynn-Scott

(BLS) elliptic curves at the 192-bit security

level and their cost estimates and implemen-

tation result. They constructed the optimal

(ate) pairings and Weil type ones [11, 18] on

each elliptic curve family. The BLS pairings is

the most efficient and the result of serial im-

plementation of BLS pairings is more than 3

times faster than the result of [15].

In this paper, we focus on the ordinary hy-

perelliptic curves of genus 2 at high i.e. 192-

bit security level. We show the method to

construct the optimal pairing its twisted ver-

sion over the family of pairing-friendly curves

of genus 2 by Kawazoe and Takahashi [13]

The remainder of this paper is organized

as follows. We recall background on several

pairings on hyperelliptic curves in section 2.

Section 3 describes the method of construct-

ing Kawazoe-Takahashi curves and the curve

parameter we used to evaluate the pairing in

practice. We show how to construct optimal

pairings derived from Hess [11] and Vercauteren

[18] on the curve and its twisted version in

section 4, after that the cost estimates and its

comparison are described in section 5. Finally,

we present conclusions and suggestions for fu-

ture work in section 6.

2 Preliminary

In this section, we describe the pairings on

hyperelliptic curves, especially, Hess-Vercauteren

(HV) pairings [3] given by Hess [11] and Ver-

cauteren [18] as general framework for pairings

on Frobenius eigenspaces.

Let C be a hyperelliptic curve defined over

Fq and let JacC(≃ Pic0C) denote Jacobian of

C. Let r be a positive integer and suppose

that Fqk is an extension field of Fq such that

r|(qk − 1) and JacC(Fqk) contains no elements

of order r2. The smallest integer k which holds

the avobe condition is called embedding de-

gree of JacC with respect to r. For a divisor

class D ∈ JacC(Fqk)[r], fr,D denotes a rational

function associated the principal divisor rD.

Let E =
∑

nPP be a divisor class disjoint

from D. Then we call Tr the modified Tate-

Lichtenbaum pairing as follows

Tr : JacC(Fqk)[r]× JacC(Fqk)[r]

→ µr ⊂ Fqk

(D,E) 7→ fr,D(E) =

(∏
P

fr,D(P )nP

)(qk−1)/r

.

The map Tr is bilinear, non-degenerate and

the value of Tr is independent of representa-

tion of the divisor classes.

By limiting the domains of pairings to eigenspaces

of the Frobenius map, more efficient pairings

which have shorter Miller loop were exploited,

called Ate pairings [9] and twisted Ate pair-

ings [19]. These pairings are special case of

HV pairings.

Let π be the q-th Frobenius map, we take

G1 and G2 which are subgroups of JacC(Fqk)
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as follows,

G1 := JacC(Fk
q )[r] ∩ ker (π − [1])

G2 := JacC(Fk
q )[r] ∩ ker (π − [q]).

We consider h(x) =
n∑

i=0
hix

i ∈ Z[x] such

that h(x) ≡ 0 (mod r) and generalized Miller

function fs,h,D (D ∈ JacC(Fqk)[r]) which is

any function with

n∑
i=0

hiρ(s
iD),

where ρ(D) is the reduced divisor which is

equivalent to D. Let s ≡ qj (mod r) for some

j ∈ Z. We then obtaion the bilinear pairing

(HV pairing) [3, Theorem 4.1]

as,h : G2 ×G1 → µr

(D2, D1) 7→ fs,h,D2(D1)
(qk−1)/r,

satisfying

as,h(D2, D1) = Tr(D2, D1)
h(s)/r.

as,h is non-degenerate if and only if h(s) ̸≡ 0

(mod r2).

If C has the twist C ′ of degree d, i.e. d is the

minimal integer satisfying that there exists an

isomorphism ϕ : C ′ → C over Fqd , a twisted

version of the HV pairing exists [3, Remark

4.4]. We suppose that gcd(k, ♯Aut(C)) ̸= 1,

then

atwist
s,h : G1 ×G2 → µr

is also a bilinear and non-degenerate (under

same condition of HV pairings) pairing [11,

Theorem 1].

In twisted case, we remark that the auto-

morphism [ξ]πk/m plays an important role where

m = gcd(k, d) and [ξ] ∈ Aut(C) defined by the

twist (see [19]). This map acts on G1 as [qm]

and acts on G2 as [1], therefore we can reverse

the roles of G1 and G2 in HV pairings.

3 Kawazoe-Takahashi curves and

security level

Many researcher has exploited the pairing-

friendly curves of genus 2 [13, 12, 7, 10]. In

this paper, we focus on Kawazoe-Takahashi

curve [13] of embedding degree 16 for efficient

field size at 192-bit security level. By using the

method to construct the cyclotomic family of

type I [13, Section 6.1], we can obtain a family

of curves

C : y2 = x5 + ax

defined over Fp such that the parameter p and

r (prime factor of the order of JacC(Fp)) are

parametrized by t ∈ Z as follows:

r(t) = Φ16(t)/2 = (t8 + 1)/2,

p(t) = (1 + 2t+ t2 + 2t4 + 4t5 + 2t6 + t8

+ 2t9 + t10 + 2t12 − 4t13 + 2t14)/8.

Therefore, rho value ρ = g log q/ log r ≈ 3.5

(q is the size of finite field which the curve is

defined, so now q = p) since p ≈ r14/8.

For 192-bit security level, we should choose

r over 2384 and pk over 27936 [1]. We can find

the following curve by using [13, Theorem 2]:

C : y2 = x5 + 13x,

r = 9700533808334518216174654349355\
= 3975722641205509784926585751605\
= 8134577424215839556839419926677\
= 69788763002584662060161 (386 bits),

p = 7973240423164945405139753557957\
= 1923186557924883257817942454628\
= 8472183294710094579504614608606\
= 7860386993938676815956563667189\
= 0011942106404774124819235507950\
= 3875253987455020945360692220598\
= 88176854760162721 (675 bits),

t = 343540705870559 (49 bits),

where ρ ≈ 3.497.
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4 Construction of the pairing

Here we construct the optimal HV pairing

and its twisted version on the Kawazoe-Takahashi

curve of embedding degree 16 as described pre-

vious section. First we consider optimal pair-

ings as offered in elliptic case by [2], then we

focus twisted version of the pairing in order

to reduce the cost of computing the pairing

since the cost of arithmetic on Jacobian over

extension field become extremely high.

4.1 Optimal HV pairing

According to the optimal conjecture by Ver-

cauteren [18], we can take the total loop length

of the Miller function as (log2 r)/φ(k) where φ

is the Euler’s totient function and this length

is optimal. In order to construct optimal HV

pairings, we need to choose h(x) =
n∑

i=0
hix

i ∈

Z[x] so that the total loop length h(x) =
n∑

i=0
log2 hi

is optimal. Vercauteren showed the several

optimal HV pairings on elliptic curve fami-

lies by finding the shortest vectors in a lattice

[18]. Specifically, for a φ(k)-dimensional lat-

tice (spanned by the rows)

L =


r 0 0 · · · 0

−s (mod r) 1 0 · · · 0

−s2 (mod r) 0 1 · · · 0
...

...
. . .

−sφ(k)−1 (mod r) 0 1 · · · 0

 ,

he used the function ShortestVectors() or

ShortVectors() in Magma [6] for specific in-

put integers, and he found parametrized the

shortest vectors by interpolating for parametrized

r and s.

We can obtain the shortest vectors for HV

pairing ap,h on the Kawazoe-Takahashi curve

defined in previous section in the same man-

ner. The prameters p, r should be represented

as polynomials over integer ring, we substitute

t = 2x+ 1 to p, r and obtain

r(x) = 128x8 + 512x7 + 896x6

+ 896x5 + 560x4 + 224x

+ 56x2 + 8x+ 1,

p(x) = 4096x14 + 24576x13 + 67584x12

+ 112640x11 + 126848x10 + 102144x9

+ 61184x8 + 28544x7 + 11184x6

+ 4064x5 + 1432x4 + 456x3

+ 115x2 + 20x+ 2.

Now we can calculate shortest vectors for

the lattice L (s = p) using Magma, we obtain

the vector

V (x) = [2x+ 1, 0, 0, 0, 0, 1, 0, 0]

= [t, 0, 0, 0, 0, 1, 0, 0],

therefore it holds 2x+1+p(x)5 ≡ 0 (mod r(x)).

We then compute the Miller function except

for final exponentiation of HV pairing ap,h as

ft+p5,D2
= ft,D2fp5,D2

c(x, y)

d(x, y)

where

div

(
c(x, y)

d(x, y)

)
= [t]D2 + [p5]D2 − [t+ p5]D2

is a rational function. Now we consider Frobe-

nius eigenspace G1, G2 as the domain of the

pairing, it holds fp5,D2
= fp5

1,D2
and f1 is con-

stant, therefore we can write

ap,h(D2, D1) = ft,D2 ·
c(x, y)

d(x, y)
(D1)

(qk−1)/r.

4.2 Twisted optimal HV pairing

As described in the beginning of this section,

arithmetic on Jacobian over the extension field

(Fp16) costs very high, we consider twisted ver-

sion of the HV pairings
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Since p ≡ 1 (mod 8), C has a twist of degree

d = 8

C ′ : y2 = x5 + 13λx,

ϕ : C ′ → C

(x, y) 7→ (λ
1
4x, λ

5
8 y)

where λ ∈ Fp is not l-th power residue in Fp

for l ∈ {1, 2, 4, 8}.
In our case, since m = gcd(k, d) = 8 and

e = k/m = 2 we can represent G2 as

G2 = JacC(Fk
q )[r] ∩ ker ([ξm]π2 − 1).

Therefore, we should search short vectors for

h(x) where the coefficients of pi (i : odd) to

reduce the Miller function in the same manner

as HV pairings. For a lattice

L =


r 0 0 0

−p2 (mod r) 1 0 0

−p4 (mod r) 0 1 0

−p6 (mod r) 0 0 1

 ,

We can find the vector

W (x) = [(2x+ 1)2, 1, 0, 0] = [t2, 1, 0, 0]

by using ShortVectors() and it holds (2x +

1)2 + p(x)2 ≡ 0 (mod r(x)). In this case, the

Miller loop length is twise the one of optimal

pairing. We couldn’t find essentially shorter

vectors such that the coefficients of pi (i : odd)

is 0. The twisted HV pairing can be computed

as follows:

atwist
p,h (D1, D2) = ft2,D1

· c(x, y)
d(x, y)

(D2)
(qk−1)/r,

where

div

(
c(x, y)

d(x, y)

)
= [t2]D1 + [p2]D1 − [t2 + p2]D1.

4.3 Twisted ate pairing

Zhang [19] proposed the hyperelliptic twisted

Ate pairing. Here we confirm that previous

twisted HV pairing corresponds to a twisted

Ate pairing. Zhang showed that

fqei (mod r),D1
(D2)

(qk−1)/r

is a bilinear pairing [19, Theorem 4] where e is

same as the above. We want to take the small-

est ei (mod r), now it holds p10 (mod r) = t2.

Therefore, we can compute simply

atwist(D1, D2) = ft2,D1
(D2)

(qk−1)/r,

and the most efficient pairing on this curve is

the twisted Ate pairing.

5 Cost estimates

In this section we provide the cost estimate

of the pairing on the Kawazoe-Takahashi curve

of embedding degree 16. As described previ-

ous section, the twisted Ate pairing seems to

be the fastest one, we only focus on this pair-

ing. We have not implemented the pairing and

arithmetic on the field Fp and Fp16 yet. The

cost we show here is somewhat rough and the

cost of final exponentiation is only described

its estimated upper limit.

The extension field F16
p should be constructed

the tower of quadratic extension fields

Fp16/Fp8/Fp4/Fp2/Fp.

We denote a multiplication in Fpi by Mi. We

assume to use Karatsuba method for multipli-

cation in each field, so M16 = 81M1. We also

suppose that the cost of a squaring equal to

one of a multiplication.

5.1 Miller loop

For the parameter we described in section

3, the Miller loop computation of ft2,D1
(D2)

requires 96 doublings and 53 addition on Ja-

cobian. We use the algorithm to do arithmetic

on the divisor group by Lange [14] so the cost

－262－



of a doubling is I1 + 5S1 + 22M1 = 37M1 and

the one of an addition is I1 + 3S1 + 22M1 =

35M1 where we assume that I1 = 10M1.

In the Cantor’s algorithm and Miller loop,

we need to evaluate the auxiliary rational func-

tion by substituting the points associated D2.

The rational function can be obtained as

y − v(x)

u′(x)

where degree of v(x) is at most 3. Since the

elements of D2 can be represented by twist

C ′ over Fp2 we can use denominator elimina-

tion so we need not to evaluate u′(x). Let f

be the intermidiate pairing value, in each dou-

bling step we compute

f2(y1 − v(x1))(y2 − v(x2))

requiring 2 · 78M1 + 3M16 = 399M1, and in

each addition step computing

f(y1 − v(x1))(y2 − v(x2))

requires 2 · 78M1 + 2M16 = 318M1. Therefore

the Miller loop requires totally {96(37+399)+

53(35 + 318)}M1 = 60565M1.

5.2 Final exponentiation

For efficient computation of the final expo-

nentiation, we should use the method by Scott

et al. [16]. In their method, we should esti-

mate the cost of computing Φ8(p)/r where

(p16−1)/r = (p−1)(p+1)(p2+1)(p4+1)(p8+1)/r.

By using the parametrization of p(x) and

r(x), we can compute the coefficients as poly-

nomial of the following polynomial

(p(x)8 + 1)r(x) =

7∑
i=0

li(x)p(x)
i.

The degree of each coefficient li(x) is at most

13, and the total number of coefficients which

are not zero in all li(x) is 84. For an element

f ∈ Fp16 , we need to compute f := fx at 13

times and in worst case we must act 284 Frobe-

nius map to the element of Fp16 . In addition

we estimate the size of coefficients of li(x) to

be as a larger ones, we should 84 · 15 multi-

plications in Fp16 . Therefore, we suppose the

cost of the final exponentiation does not ex-

ceed 2196M16 + 284Fr = 177876M1 + 284Fr.

5.3 Comparison

In [2], BLS12 pairing is the most efficient

and the Miller loop requires 19329m640. In our

case the Miller loop required 60565m704 (as-

suming implementation on 64-processor) and

it costs about 3 times as high as elliptic case.

The estimated cost of final exponentiation

is extremely high, we need to apply the op-

timization method to this in order to obtain

accurate estimates.

6 Conclusion

As future works, we should construct ex-

tension fields and optimize the arithmetic on

these field to obtain detailed cost estimate.

Furthermore, we will implement the pairing

on Haswell CPU using the SIMD instructions

(AVX2) and show experimental result in prac-

tice.
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