
Electronic Preprint for Journal of Information Processing Vol.24 No.1

Regular Paper

On the Redundancy of Delivery Time
in an In-Line Machine Model

Eishi Chiba1,a)

Received: April 15, 2015, Accepted: August 12, 2015

Abstract: In this paper, we focus on an in-line machine model. This model represents systems for the manufacturing
of a product in large quantities. Recently, studies relating to the collision probability between jobs have been conducted
in such models. In this paper, we extend the known models to a generalized version by considering delivery time be-
tween machines. We first present a method for computing a schedule of jobs in the generalized model. Then, we show
that the collision probability for the generalized model is the same as that for the model without delivery time. We call
this property the redundancy of delivery time. Next, we introduce two optimization problems with collision probability
for the generalized model. Using the redundancy of delivery time, it is shown that these optimization problems are
equivalent to simpler problems. This finding may prove to be very useful when considering optimization problems
with collision probability.

Keywords: production scheduling, operations research, in-line machine model, collision probability, delivery time

1. Introduction

In this paper, we focus on a simple model with applications in
the manufacturing of a product in large quantities. The following
model was introduced in Ref. [1]. The machines in this model
exist in series. Each job is fed into the first machine from the
entrance with a constant time interval between jobs. Each job is
processed in order from the first machine to the last, and is finally
delivered to the exit. Each machine can process only one job at a
time. The processing time at each machine is stochastic. Buffers
exist in front of each machine. These buffers are used as a tem-
porary housing for jobs waiting to be processed. For simplicity,
the delivery time between two machines is assumed to be nil.

In the above model, the phenomenon of a collision occurring
between jobs is the main subject of observation. A collision is
said to have occurred if a job is delivered to a machine when all
buffers in front of the machine are occupied. The phenomenon of
a collision occurring could cause the breakdown of a manufactur-
ing system and, therefore, can be considered to be one of the most
potentially damaging things that can happen in a production line.
In particular, the probability of a collision occurring is an impor-
tant evaluation item, and this has applications to the efficiency of
manufacturing systems (see Refs. [1], [2] and [3]).

In the field of scheduling research, blocking exists in flow
shops, this being similar to a collision. When considering block-
ing, the number of buffers is assumed to be limited (since if the
number of buffers is unlimited, no blocking occurs). Even when a
machine completes a job, if all buffers in front of the next machine
are occupied, the job stays in the current machine. Therefore, the

1 Department of Industrial and Systems Engineering, Hosei University,
Koganei, Tokyo 184–8584, Japan

a) e-chiba@hosei.ac.jp

machine cannot process subsequent jobs. At such a time, the ma-
chine is said to be blocked, or the job (staying in the machine)
is said to be blocked. Blocking is the phenomenon of a blocked
machine or a blocked job occurring (see Ref. [12]). Note that the
probability of a blocking occurring is equal to that of a collision
occurring for the model in Ref. [1]. Even if a machine is blocked,
the blocked job is delivered to the next machine as soon as a buffer
in front of that next machine becomes empty. Under such block-
ing conditions, manufacturing systems are still able to continue
operating. On the other hand, under collision conditions, manu-
facturing systems stop when a collision occurs. This concept is
the difference between blocking and collision. Regarding deter-
ministic processing time, the flow shop problem with blocking
was studied in detail by Refs. [9], [11] and [13], where the pur-
pose was to minimize the makespan. A survey paper on this prob-
lem is in Ref. [4]. A fair amount of research has also been done
on the development of heuristics for this problem (one popular
heuristics is in Ref. [10]). With regards to stochastic processing
time, study results are somewhat limited in comparison to their
deterministic counterparts. For example, see Refs. [6] and [11],
where the purpose was to minimize the expected makespan.

In queueing theory, there is a tandem queue model, this be-
ing similar to the model in Ref. [1]. In the tandem queue model,
depending on the rule for processing blockings (blocked calls
cleared, blocked calls delayed, etc.), analyses of performance
measures in the steady state are the main object of research. Ex-
amples of performance measures are the expected queue length,
the expected waiting time, etc. Collision probability relates to
loss probability, this being an important evaluation item in queue-
ing theory. Note that, loss probability is the probability of a
blocking occurring in the steady state, whereas collision proba-
bility is an evaluation item in an unsteady state. We can find, in

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

fact, that a wide range of literature in the field of queuing theory
has been addressed, for example in Refs. [5], [7] and [8].

For the model in Ref. [1], when buffers are not considered (i.e.,
the number of buffers is zero), previous results relating to the
analysis of the collision probability exist. For example, it was
shown in Ref. [2] that the collision probability can be approxi-
mately expressed by a multiple integration, assuming that the pro-
cessing time of each machine follows general distribution. In the
special case that the processing time follows exponential distribu-
tion, a closed form formula of the approximate collision probabil-
ity is derived without using any multiple integration (see Ref. [2]).
Moreover, if the processing time follows Erlang distribution, a
closed form formula of the approximate collision probability is
derived (see Ref. [3]). On the other hand, for the model in Ref. [1]
(including buffers), although no analytical studies on the colli-
sion probability seem to exist, a computer simulation method for
computing the collision probability was presented therein. This
simulation method is applicable even when the processing time
follows general distribution.

In this paper, we extend the model in Ref. [1] to a general-
ized version by considering delivery time between two machines.
Since delivery time exists in real production lines, the general-
ized model seems to be reasonable. It is permitted to deliver an
arbitrary number of jobs at one time (Note that, if it is assumed
that we can deliver only one job at a time, then we can regard a
delivery as a machine.). This assumption might be reasonable for
applications that include delivery by machinery such as conveyor
belts. In addition, the delivery time is assumed to be determinis-
tic and independent of the jobs (Note that the delivery time is not
stochastic.).

First, we present a method for computing a schedule of jobs
in the generalized model. Using this schedule, we can compute
the collision probability by a computer simulation method. Con-
cretely speaking, by applying the idea of the simulation method
in Ref. [1], we can compute the probability. In addition, we show
that the collision probability can be computed without data on the
delivery time. This means that the delivery time is not an essen-
tial parameter when computing collision probability. We call this
property the redundancy of delivery time. Due to the redundancy
of delivery time, collision probability can be computed by a sim-
pler method. Next, we introduce two optimization problems for
the generalized model. The two optimization problems with col-
lision probability were originally presented in Refs. [1] and [2].
We rewrite these two optimization problems as the two optimiza-
tion problems for the generalized model. Moreover, it is shown
that we can get more understanding of those problems from the
redundancy of delivery time. The discussion in Section 5 of this
paper might be very useful when considering optimization prob-
lems with collision probability.

2. In-line Machine Model

We describe an in-line machine model with delivery time. This
is a generalized version of the model in Ref. [1], with considera-
tion of delivery time. The following notations are used:
• M1,M2, . . . ,Mm: m machines, which line in series.
• J1, J2, . . . , Jn: n jobs to be processed.

Fig. 1 Example of the in-line machine model.

• T (j)
i (> 0): Processing time of Ji at Mj.

• ttact (> 0): Tact time, i.e., the time difference between the
start time instants of Ji and Ji+1 for all 1 ≤ i ≤ n − 1 at the
entrance to the line.

• b(j) (∈ Z+): The number of buffers in front of Mj, where Z+
denotes the nonnegative integer set.

• d(j) (≥ 0): Delivery time between Mj and Mj+1.
The in-line machine model is illustrated in Fig. 1. With the

same time interval, ttact, jobs are fed one by one into the line at
the entrance. Each job Ji is fed i-th into the line. Each job is first
processed on a machine M1. It is then automatically delivered to
the next machine M2 after it has been finished on M1. The deliv-
ery time between M1 and M2 is d(1). As soon as M2 receives the
job, it starts processing. In this manner, each job is processed on
consecutive machines in the order M1,M2, . . . ,Mm, and then sent
to the exit. For convenience of notation, the entrance and exit are
denoted by M0 and Mm+1, respectively. Moreover, the processing
time T (j)

i is assumed to be a random variable. The delivery time
d(j) is assumed to be deterministic and independent of the jobs.

When job Ji arrives at Mj, the system dynamics are as follows.
If Mj is idle, it starts processing Ji. If Mj is processing another
job and an empty buffer exists in front of Mj, then Ji waits at the
buffer. When waiting, the queue discipline follows First-In-First-
Out (FIFO), where all jobs are processed in the same order as they
arrive in the queue. Since the number of buffers in front of Mj is
b j, the length of the queue can be, at most, b j. In Fig. 1, b1 = 2,
b2 = 3, and bm = 1. When all buffers in front of Mj are occupied
(i.e., the length of the queue in front of Mj is b j), if Ji arrives at
Mj, then a collision at Mj occurs. The collision probability is the
probability that there will be at least one collision at any machine.

3. Scheduling When the Number of Buffers Is
Infinite

We consider a schedule under the assumption that the number
of buffers in front of each machine is infinite. In this paper, a
schedule is defined by the three functions a, s, and f . Each func-
tion is defined as follows:
• a(j)

i : Time instant when job Ji arrives at Mj,
• s(j)

i : Time instant when job Ji is started on Mj,
• f (j)

i : Time instant when job Ji is finished on Mj.
From the assumption that the number of buffers in front of each
machine is infinite, no collisions will occur. Therefore, the sched-
ule (a(j)

i , s
(j)
i , f (j)

i : 1 ≤ i ≤ n, 1 ≤ j ≤ m) can exist (Note
that, if we do not make this assumption, a system stoppage could
occur due to a collision, and after any such stoppage a sched-
ule cannot exist.). Note that, when considering the schedule
(a(j)

i , s
(j)
i , f (j)

i : 1 ≤ i ≤ n, 1 ≤ j ≤ m), the number of buffers
in front of each machine is assumed to be infinite.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

In the concrete computation of the schedule, the random vari-
able T (j)

i is generated randomly from a distribution. The variable
t(j)
i is assumed to be the generated value derived from T (j)

i . After
the generation of t(j)

i , we can regard t(j)
i as a constant. Given the

number of jobs n, the number of machines m, the processing time
t(j)
i , the tact time ttact, and the delivery time d(j), we consider the

computation of an optimal schedule.
After Ji is finished on Mj−1, it arrives at Mj in d(j−1) unit time.

Ji is started on Mj after the completion of two events, these be-
ing (i) Ji arrives at Mj and (ii) Ji−1 is finished on Mj. After Ji is
started on Mj, it is finished in t(j)

i unit time. Each Ji is assumed to
be finished on M0 at the time instant (i − 1)ttact since each job is
fed into the line at the entrance with ttact time interval. Moreover,
J0 is assumed to be finished on Mj at time instant 0. Therefore,
the following recursive expressions hold:

a(j)
i = f (j−1)

i + d(j−1) (1 ≤ i ≤ n, 1 ≤ j ≤ m + 1), (1)

s(j)
i = max

{
a(j)

i , f (j)
i−1

}
(1 ≤ i ≤ n, 1 ≤ j ≤ m), (2)

f (j)
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s(j)
i + t(j)

i (1 ≤ i ≤ n, 1 ≤ j ≤ m),
(i − 1)ttact (1 ≤ i ≤ n, j = 0),
0 (i = 0, 1 ≤ j ≤ m).

(3)

From Eqs. (1), (2), and (3), the time complexity for computing
the schedule is O(mn), as filling each entry requires O(1) time.

Definition 1 A waiting sequence in front of Mj is a sequence
(Jp, Jp+1, . . ., Jq) for some 2 ≤ p ≤ q ≤ n such that

a(j)
k < f (j)

p−1

for all k = p, p + 1, . . . , q.
Note that the waiting sequence is defined under the assumption
that the number of buffers is infinite.

Next, using the schedule, we explain that it is possible to de-
termine whether a collision occurs or not in the in-line machine
model with finite buffers. Namely, if the length of the waiting
sequence in front of Mj is larger than the number of buffers b(j),
a collision at Mj occurs in the in-line machine model with finite
buffers.

4. Theorem

The recursive expressions on the schedule that does not con-
sider delivery time are derived from the consideration of d(j−1) =

0 in Eqs. (1), (2), and (3). Therefore, when the schedule that does
not consider delivery time is denoted by ã, s̃, and f̃ , the following
recursive expressions hold:

ã(j)
i = f̃ (j−1)

i (1 ≤ i ≤ n, 1 ≤ j ≤ m + 1),

s̃(j)
i = max

{
ã(j)

i , f̃ (j)
i−1

}
(1 ≤ i ≤ n, 1 ≤ j ≤ m),

f̃ (j)
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s̃(j)
i + t(j)

i (1 ≤ i ≤ n, 1 ≤ j ≤ m),
(i − 1)ttact (1 ≤ i ≤ n, j = 0),
0 (i = 0, 1 ≤ j ≤ m).

We prove that the time difference between the two schedules
(a, s, f) and (ã, s̃, f̃) remains constant. In fact, we can prove that
the three functions (a, s, and f) are shifted by a constant related
to delivery time.

Lemma 1 For all i, j (1 ≤ i ≤ n, 1 ≤ j ≤ m), the following
proposition P(i, j) holds:

a(j)
i − ã(j)

i = s(j)
i − s̃(j)

i = f (j)
i − f̃ (j)

i =

j−1∑

l=0

d(l).

Proof We prove it by double induction on i and j.
STAGE 1: ∀i, P(i, 1) is proved. First, for all i, the following
holds:

a(1)
i − ã(1)

i

= (f (0)
i + d(0)) − f̃ (0)

i (from Eq. (1))

= ((i − 1)ttact + d(0)) − (i − 1)ttact (from Eq. (3))

= d(0). (4)

f (1)
i − f̃ (1)

i

= (s(1)
i + t(1)

i) − (s̃(1)
i + t(1)

i) (from Eq. (3))

= s(1)
i − s̃(1)

i .

Next, we prove that s(1)
i − s̃(1)

i = d(0) for all i holds by induction
on i. When i = 1, the following holds:

s(1)
1 − s̃(1)

1

= max{a(1)
1 , f (1)

0 } −max{ã(1)
1 , f̃ (1)

0 } (from Eq. (2))

= a(1)
1 − ã(1)

1 (from Eq. (3))

= d(0). (from Eq. (4))

When i ≥ 2, the following holds from Eq. (2).

s(1)
i − s̃(1)

i = max{a(1)
i , f (1)

i−1} −max{ã(1)
i , f̃ (1)

i−1}. (5)

We consider four cases in Eq. (5).

(i) When a(1)
i ≥ f (1)

i−1, ã(1)
i ≥ f̃ (1)

i−1:

Eq. (5) = a(1)
i − ã(1)

i

= d(0). (from Eq. (4))

(ii) When a(1)
i ≥ f (1)

i−1, ã(1)
i < f̃ (1)

i−1:

a(1)
i ≥ f (1)

i−1

⇐⇒ ã(1)
i + d(0) ≥ s(1)

i−1 + t(1)
i−1 (from Eqs. (3) and (4))

⇐⇒ ã(1)
i + d(0) ≥ (s̃(1)

i−1 + d(0)) + t(1)
i−1

(from the induction hypothesis)

⇐⇒ ã(1)
i ≥ f̃ (1)

i−1 (from Eq. (3))

The last inequality contradicts the hypothesis in case (ii).
Therefore, case (ii) is impossible.

(iii) When a(1)
i < f (1)

i−1, ã(1)
i ≥ f̃ (1)

i−1: We can prove that case (iii) is
impossible using the same method as used in case (ii).

(iv) When a(1)
i < f (1)

i−1, ã(1)
i < f̃ (1)

i−1:

Eq. (5) = f (1)
i−1 − f̃ (1)

i−1

= (s(1)
i−1 + t(1)

i−1) − (s̃(1)
i−1 + t(1)

i−1) (from Eq. (3))

= d(0). (from the induction hypothesis)

Then, the induction finishes.
STAGE 2: ∀ j, P(1, j) is proved. First, for all j, the following
holds:

s(j)
1 − s̃(j)

1

= max{a(j)
1 , f (j)

0 } −max{ã(j)
1 , f̃ (j)

0 } (from Eq. (2))

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

= a(j)
1 − ã(j)

1 . (from Eq. (3)) (6)

f (j)
1 − f̃ (j)

1

= (s(j)
1 + t(j)

1) − (s̃(j)
1 + t(j)

1) (from Eq. (3))

= s(j)
1 − s̃(j)

1 . (7)

Next, we prove that a(j)
1 − ã(j)

1 =
∑ j−1

l=0 d(l) for all j holds by
induction on j. When j = 1, the following holds:

a(1)
1 − ã(1)

1

= (f (0)
1 + d(0)) − f̃ (0)

1 (from Eq. (1))

= d(0). (from Eq. (3))

When j ≥ 2, the following holds:

a(j)
1 − ã(j)

1

= (f (j−1)
1 + d(j−1)) − f̃ (j−1)

1 (from Eq. (1))

= (a(j−1)
1 − ã(j−1)

1) + d(j−1) (from Eqs. (6) and (7))

=

j−2∑

l=0

d(l) + d(j−1) (from the induction hypothesis)

=

j−1∑

l=0

d(l).

STAGE 3: We prove that P(i, j) holds if P(i, j − 1) and P(i − 1, j)
hold for all i, j (2 ≤ i ≤ n, 2 ≤ j ≤ m).

First, the following holds for all i, j.

a(j)
i − ã(j)

i

= (f (j−1)
i + d(j−1)) − f̃ (j−1)

i (from Eq. (1))

=

j−2∑

l=0

d(l) + d(j−1) (from the hypothesis P(i, j − 1))

=

j−1∑

l=0

d(l). (8)

f (j)
i − f̃ (j)

i

= (s(j)
i + t(j)

i) − (s̃(j)
i + t(j)

i) (from Eq. (3))

= s(j)
i − s̃(j)

i .

Next, the following holds from Eq. (2).

s(j)
i − s̃(j)

i = max{a(j)
i , f (j)

i−1} −max{ã(j)
i , f̃ (j)

i−1}. (9)

We consider four cases in Eq. (9).

(i) When a(j)
i ≥ f (j)

i−1, ã(j)
i ≥ f̃ (j)

i−1:

Eq. (9) = a(j)
i − ã(j)

i

=

j−1∑

l=0

d(l). (from Eq. (8))

(ii) When a(j)
i ≥ f (j)

i−1, ã(j)
i < f̃ (j)

i−1:

a(j)
i ≥ f (j)

i−1

⇐⇒ ã(j)
i +

j−1∑

l=0

d(l) ≥ s(j)
i−1 + t(j)

i−1 (from Eqs. (3) and (8))

⇐⇒ ã(j)
i +

j−1∑

l=0

d(l) ≥
⎛⎜⎜⎜⎜⎜⎜⎝s̃

(j)
i−1 +

j−1∑

l=0

d(l)

⎞⎟⎟⎟⎟⎟⎟⎠ + t(j)
i−1

(from the hypothesis P(i − 1, j))

⇐⇒ ã(j)
i ≥ f̃ (j)

i−1 (from Eq. (3))

The last inequality contradicts the hypothesis in case (ii).
Therefore, case (ii) is impossible.

(iii) When a(j)
i < f (j)

i−1, ã(j)
i ≥ f̃ (j)

i−1: We can prove that case (iii) is
impossible using the same method as used in case (ii).

(iv) When a(j)
i < f (j)

i−1, ã(j)
i < f̃ (j)

i−1:

Eq. (9) = f (j)
i−1 − f̃ (j)

i−1

=

j−1∑

l=0

d(l). (from the hypothesis P(i − 1, j))

From the four cases,

s(j)
i − s̃(j)

i =

j−1∑

l=0

d(l)

holds.
Theorem 1 The collision probability that considers delivery

time is equal to the collision probability that does not consider
delivery time.
Proof We assume that (Jp, Jp+1, . . ., Jq) is the waiting sequence
in front of Mj, where 2 ≤ p ≤ q ≤ n. From the definition
of the waiting sequence, a(j)

k < f (j)
p−1 holds for all k = p, . . . , q.

From Lemma 1, this inequality becomes ã(j)
k +
∑ j−1

l=0 d(l) < f̃ (j)
p−1 +∑ j−1

l=0 d(l). When delivery time is not considered, ã(j)
k = f̃ (j−1)

k

holds. Therefore, this inequality becomes f̃ (j−1)
k < f̃ (j)

p−1. This in-
equality means that (Jp, Jp+1, . . ., Jq) is the waiting sequence in
front of Mj in the case that delivery time is not considered (see
Ref. [1]).

Therefore, the waiting sequence is the same as that found in
the case when delivery time is not considered. Thus, a collision
occurs at Mj in cases that consider delivery time only when a col-
lision occurs at Mj in cases that do not consider delivery time.
The converse of this is also true.

5. Optimization Problems with Collision Prob-
ability

We first consider the tact time minimization problem with col-
lision probability, which was presented in Ref. [2]. For the in-line
machine model with delivery time, this problem is rewritten as
follows.
Tact time minimization problem
Input: The number of jobs n, the number of machines m, the

distributions of processing times, the number of buffers b(j),
the delivery time d(j), and α (0 ≤ α ≤ 1) (specifying the
collision probability).

Output: Tact time, such that the collision probability is less
than or equal to α.

Objective function: ttact −→ min.
The constraint condition in this problem only relates to col-

lision probability. Therefore, we obtain the following corollary
from Theorem 1.

Corollary 1 The tact time minimization problem is equiva-
lent to that which does not consider delivery time.

Next, we consider the buffer allocation problem with collision

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.1

probability, which was presented in Ref. [1]. For the in-line ma-
chine model with delivery time, this problem is rewritten as fol-
lows.
Buffer allocation problem
Input: The number of jobs n, the number of machines m, the

tact time ttact, the distributions of processing times, the de-
livery time d(j), and α (0 ≤ α ≤ 1) (specifying the collision
probability).

Output: The number of buffers b(j) in front of each machine,
such that the collision probability is less than or equal to α.

Objective function: Total number of buffers
∑m

j=1 b(j) −→min.
The constraint condition in this problem only relates to col-

lision probability. Therefore, we obtain the following corollary
from Theorem 1.

Corollary 2 The buffer allocation problem is equivalent to
that which does not consider delivery time.

Theorem 1, Corollaries 1 and 2 are concrete examples which
show the redundancy of delivery time in the in-line machine
model.

6. Conclusions

In this paper, we considered the in-line machine model with
delivery time. We proved that collision probability is the same as
when delivery time is not considered. Therefore, when comput-
ing collision probability, delivery time is a redundant parameter.

Moreover, we considered the tact time minimization problem
and the buffer allocation problem. We showed that these prob-
lems are equivalent to those which do not consider delivery time.
Therefore, when considering these problems, delivery time is,
again, a redundant parameter.

In Section 3, the variable t(j)
i was derived. The variable t(j)

i

could be regarded as a constant. Therefore, without using random
variables, we could easily show the result in Section 4. When an-
alyzing similar stochastic cases to that in this paper via determin-
istic cases, our approach may be effective.

Acknowledgments The author would like to thank anony-
mous reviewers for their comments and suggestions from various
viewpoints. The author also would like to thank Kengo Okamura,
Akihito Niwa, and Sou Hukuoka for their discussions.

References

[1] Chiba, E.: Heuristics for the Buffer Allocation Problem with Colli-
sion Probability Using Computer Simulation, Mathematical Problems
in Engineering, Vol.2015, Article ID 424370, 7 pages (2015).

[2] Chiba, E., Asano, T., Miura, T., Katoh, N. and Mitsuka, I.: Collision
Probability in an In-Line Machines Model, Trans. Computational Sci-
ence XIII, LNCS 6750, pp.1–12 (2011).

[3] Chiba, E., Fujiwara, H., Sekiguchi, Y. and Ibaraki, T.: Collision Prob-
ability in an In-Line Equipment Model under Erlang Distribution,
Trans. IEICE, Vol.E96-D, No.3, pp.400–407 (2013).

[4] Hall, N.G. and Sriskandarajah, C.: A Survey of Machine Schedul-
ing Problems with Blocking and No-Wait in Process, Operations Re-
search, Vol.44, No.3, pp.510–525 (1996).

[5] Heyman, D.P. and Sobel, M.J. (Eds.): Stochastic Models: Hand-
books in Operations Research and Management Science, Vol.2, North-
Holland, Amsterdam (1990).

[6] Kijima, M., Makimoto, N. and Shirakawa, H.: Stochastic Minimiza-
tion of the Makespan in Flow Shops with Identical Machines and
Buffers of Arbitrary Size, Operations Research, Vol.38, No.5, pp.924–
928 (1990).

[7] Kleinrock, L.: Queueing Systems, Volume I: Theory, Wiley Inter-
science (1975).

[8] Kunisawa, K. and Honma, T. (Eds.): Applied Queueing Dictionary,
Hirokawa Shoten (1971).

[9] Levner, E.M.: Optimal Planning of Parts Machining on a Number
of Machines, Automation and Remote Control, Vol.12, pp.1972–1978
(1969).

[10] McCormick, S.T., Pinedo, M.L., Shenker, S. and Wolf, B.: Sequenc-
ing in an Assembly Line with Blocking to Minimize Cycle Time, Op-
erations Research, Vol.37, No.6, pp.925–935 (1989).

[11] Pinedo, M.: Minimizing the Expected Makespan in Stochastic Flow
Shops, Operations Research, Vol.30, No.1, pp.148–162 (1982).

[12] Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems,
Springer, 4th edition (2012).

[13] Reddi, S.S. and Ramamoorthy, C.V.: On the Flow-Shop Sequencing
Problem with No Wait in Process, Operational Research Quarterly,
Vol.23, No.3, pp.323–331 (1972).

Eishi Chiba received a B.E. degree from
Tohoku University in 2001, and an M.S.
degree and a Ph.D. degree from the Japan
Advanced Institute of Science and Tech-
nology in 2003 and 2006, respectively. He
is currently a lecturer in the Department
of Industrial & Systems Engineering at
Hosei University, Japan. His research in-

terests include operations research and their applications.

c© 2016 Information Processing Society of Japan

