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Abstract: Fujioka et al. proposed the first generic construction (FSXY construction) of exposure-resilient authenti-
cated key exchange (AKE) from a key encapsulation mechanism (KEM) without random oracles. However, the FSXY
construction implicitly assumes that some intermediate computation result is never exposed though other secret in-
formation can be exposed. This is a kind of physical assumption, and an implementation trick (i.e., some on-line
computation is executed in a special tamper-proof module) is necessary to achieve the assumption. Such a trick is
very costly and may be missed by human errors in implementation. From the viewpoint of the human factor, it is
desirable to avoid using complicated implementation tricks. In this paper, we introduce a new generic construction
without implementation tricks. Our construction satisfies the same security model as the FSXY construction with-
out increasing communication complexity. Moreover, it has another advantage that the protocol can be executed in
one-round while the FSXY construction is a sequential two-move protocol. Our key idea is to use KEM with public-
key-independent-ciphertext, which allows parties to be able to generate a ciphertext without depending on encryption
keys.
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1. Introduction

1.1 Background
Authenticated Key Exchange (AKE) is a cryptographic prim-

itive for sharing a common session key among multiple parties
through unauthenticated networks such as the Internet. In the or-
dinary PKI-based setting, each party locally keeps his own static

secret key (SSK) and publishes a static public key (SPK) corre-
sponding to the SSK. The validity of SPKs is guaranteed by a cer-
tificate authority. In a key exchange session, each party generates
some session-specific randomness. We call such a randomness
an ephemeral secret key (ESK) of the party. Using the ESK, each
party computes and sends an ephemeral public key (EPK) corre-
sponding to the ESK. A session key is derived from these keys
with a key derivation procedure. Parties can establish a secure
channel with the session key. For example, in the Diffie-Hellman
(DH) key exchange [9], the ESK of party A (resp. B) is random-
ness x (resp. y) and the EPK of party A (resp. B) is gx (resp. gy).
Note that the SSK and SPK are not used in the DH key exchange.

An important research target of this area is to achieve exposure-
resilience. That means, even if an adversary learns some of secret
keys of parties, generated session keys must be protected. For
example, SSKs may be exposed if a party is corrupted, or a de-
vice itself (e.g., a smart phone) that records a SSK is physically
stolen. In another scenario, ESKs may be exposed if computa-
tions inputting an ESK are executed in a memory area of a smart
phone, and a malicious developer steals it via a hidden malware
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that is embedded in some apps. Therefore, it is desirable to guar-
antee exposure-resilience in a provably secure way.

There are several studies about modeling exposure-resilience
in the AKE setting. Canetti and Krawczyk [4] defined the first
security model of AKE capturing exposure of SSKs and session
state, that is called the Canetti-Krawczyk (CK) model. Session
state contains all unprotected session-specific information. Thus,
if an intermediate computation is done in some protected area
(e.g., tamper-proof module, TPM), the output of the computation
is not included in session state. However, the CK model does not
allow an adversary to learn any SSKs nor the session state of the
target session (called the test session). LaMacchia et al. [17] also
proposed very strong security models capturing exposure of both
SSKs and ESKs, which is called the extended CK (eCK) model.
While the eCK model allows an adversary to directly learn SSKs
and ESKs of the test session, exposure of the session state is not
captured and exact information contained in ESKs is ambiguity.
The CK+ model [11], [16] combines these two models; that is, an
adversary can obtain SSKs and ESKs of the test session, and can
learn the session state of other sessions. Note that the eCK model
and the CK+ model are not comparable [6], [7].

Many concrete AKE schemes that are secure in these models
have been studied. HMQV [16] is one of the most efficient proto-
cols and satisfies the CK+ model. However, the security proof is
given in the random oracle model (ROM) under the knowledge-
of-exponent assumption [8] which is a widely criticized assump-
tion [20]. Boyd et al. [1], [2] propose a generic construction
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(BCGNP construction) of AKE from a key encapsulation mecha-
nism (KEM), that is secure in the CK model in the standard model
(StdM). The CK model does not capture exposure of ESKs in
the test session. Thus, unfortunately, it is unclear whether the
BCGNP construction is secure when the ESK of the test session
is exposed. Fujioka et al, [11] show that the BCGNP construction
is insecure in the CK+ model, and propose another generic con-
struction (FSXY construction) of AKE from KEM, that is secure
in the CK+ model in the StdM.

1.2 Motivation
The FSXY construction uses a technique to resist exposure

of ESKs, which is called the twisted pseudo-random function
(PRF) trick [23]. This trick is essentially the same as the NAXOS
trick [17] except with/without random oracles (ROs). Roughly, a
party uses H(SSK,ESK) to compute an EPK instead of using the
ESK directly, where H is some intractable function like ROs. Un-
less both the SSK and the ESK are exposed, H(SSK,ESK) cannot
be computed by an adversary even if the ESK is exposed. Thus,
the FSXY construction guarantees the security against exposure
of ESKs.

However, such a trick has several problems. First, it needs
some implementation trick, because it is assumed that expo-
sure of H(SSK,ESK) never occurs while ESKs may be ex-
posed. A typical implementation is that all computations in-
putting H(SSK,ESK) are executed in a TPM such as a smart card.
Without the implementation trick (i.e., H(SSK,ESK) is handled
by the same manner as ESKs), the twisted PRF trick is not mean-
ingful, and it may lead to an exposure attack (i.e., H(SSK,ESK)
and ESKs are exposed simultaneously) to the FSXY construction
though it is proved in the CK+ model. Since some implementer
may miss setting the trick due to human errors, using the imple-
mentation trick causes potential vulnerability. The other is an
efficiency problem. As discussed above, computations inputting
H(SSK,ESK) must be executed in a TPM. In the FSXY construc-
tion, H(SSK,ESK) is used as randomness in generating a cipher-
text of chosen ciphertext secure (IND-CCA secure) KEM. This
computation must be done on-line (i.e., any pre-computation is
not possible) because the ciphertext is generated under the pub-
lic key of the peer of the session, and it can be computed after

the peer is determined. Therefore, the TPM must process a very
heavy on-line computation (i.e., an encryption algorithm of IND-
CCA secure KEM) for each session. It is clearly not desirable in
practice.

1.3 Our Contribution
First, we clarify that the FSXY construction is insecure in the

CK+ model if the implementation trick does not work (i.e., the
outputs of the twisted PRF are handled in the same manner as
ESKs) in Section 3. Specifically, we give a simple attack using
exposure of the outputs of the twisted PRF. This fact shows that
the FSXY construction essentially needs very heavy on-line com-
putations in a TPM or similar implementation tricks.

Next, we introduce a new generic construction of AKE from
KEM, that is secure in the CK+ model without relying on the
twisted PRF trick (i.e., no implementation trick is necessary)

in Section 4 *1. Our key idea is to use KEM with public-key-

independent-ciphertext (PKIC-KEM) [27]. PKIC-KEM allows
that a ciphertext can be generated independently from an encryp-
tion key, and a KEM key can be generated with the ciphertext,
the encryption key and randomness in generating the ciphertext.
While the previous work [27] uses a semantically secure (IND-
CPA secure) PKIC-KEM to obtain a one-round AKE scheme, we
use IND-CPA secure PKIC-KEM both to resist full ESK exposure
and to obtain one-round protocol *2. A typical example of IND-
CPA secure PKIC-KEM is the ElGamal KEM (i.e., an encryption
key is ga, a ciphertext is gr, and the KEM key is gar).

Furthermore, though the FSXY construction adapts a strong
randomness extractor as a part of the session key derivation pro-
cedure, we can replace it with a weaker building block, a com-

putational extractor (cExt). The cExt is a weaker and more effi-
cient primitive than the strong randomness extractor; the output
of the cExt is just guaranteed computationally indistinguishable
from random value but the strong randomness extractor guaran-
tees statistical indistinguishability. We can prove the security of
our construction only with the computational property; thus, we
can improve efficiency of the session key derivation procedure.
This technique is proposed in Refs. [28], [29]

The previous scheme [27] achieves a stronger security (i.e., in
the CK+-sFSNSR model) than our construction and the FSXY
construction. The CK+-sFSNSR model contains strong forward
secrecy while our construction and the FSXY construction only
satisfy weak forward secrecy. Strong forward secrecy guarantees
that an adversary cannot recover a session key of a completed ses-
sion (i.e., a session in which the session key was already estab-
lished) even if static secret keys are compromised and the adver-
sary is active in the target session. On the other hand, weak for-
ward secrecy only guarantees the case when the adversary is pas-
sive in the target session. However, the previous scheme [27] re-
lies on the implementation trick as the FSXY construction. Thus,
the TPM must process a very heavy on-line computation.

There are some related works [19], [26] that achieve exposure-
resilient AKE schemes in the StdM without implementation
tricks. However, these schemes are specific constructions (i.e.,
not generic construction), and rely on a strong building block,
PRFs with pairwise-independent random sources (πPRF). It is
not known how to construct πPRF concretely. Table 1 shows a
comparison of exposure-resilient AKE schemes without imple-
mentation tricks. HMQV is the most efficient but relies on RO.
The schemes in Refs. [19], [26] are secure in the StdM but relies
on πPRF. In addition, the scheme in Ref. [26] needs pairing op-
erations. Therefore, our scheme needs less communication cost
than the schemes in the StdM, and does not rely on πPRF.

In Section 4, we show the difference of implementation images
of the FSXY construction and our construction in Fig. 3.

*1 Though the attack to the FSXY construction does not work in our con-
struction, the security model is the same as the FSXY construction. The
reason is that exact information contained in ESKs is not clear in the
model of AKE, and it depends on implementations of schemes. Thus, it
is hard to define such an implementation issue in the security model.

*2 One-round means that parties can send their EPKs independently and
simultaneously in two-move protocols.
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Table 1 Comparison of exposure-resilient AKE.

Model implementation Resource Assumption Computational cost Communication
tricks? (#parings + #[multi,regular]-exp.) complexity

Ref. [16] CK+ no ROM gap DH & KEA1 0 + [2, 2] 2|p| 512
Ref. [19] eCK no StdM DDH & πPRF 0 + [2, 6] 9|p| 2304
Ref. [26] eCK no StdM DBDH & DLIN & πPRF 2 + [2, 8] 12|p| 3072
Ref. [11] CK+ yes StdM DDH 0 + [4, 12] 8|p| 2048
Ref. [27] CK+-sFSNSR yes StdM DDH & DBDH & q-SDH 4 + [2, 14] 10|p| 2560

Ours CK+ no StdM DDH 0 + [4, 12] 8|p| 2048

|p|means the size of a group element. For concreteness, the expected communication complexity for a 128-bit implementation is also given. Note that

computational costs are estimated without any pre-computation technique. The instantiation of our construction in this table uses the Cramer-Shoup

KEM [5] as IND-CCA secure KEM and the ElGamal KEM as IND-CPA secure PKIC-KEM.

2. CK+ Security Model

In this section, we recall the CK+ model [11], [16]. We slightly
modify the model to specify one-round protocols. It can be triv-
ially extended to any round protocol.

2.1 Notations
Throughout this paper we use the following notations. If M is a

set, then by m ∈R M we denote that m is sampled uniformly from
M. If R is an algorithm, then by y ← R(x; r) we denote that y is
output by R on input x and randomness r (if R is deterministic, r

is empty).
We denote a party by UP, and party UP and other parties are

modeled as probabilistic polynomial-time (PPT) Turing machines
w.r.t. security parameter κ. For party UP, we denote static secret
(public) key by S S KP (S PKP) and ephemeral secret (public) key
by ES KP (EPKP). Party UP generates its own keys, ES KP and
EPKP, and the static public key S PKP is linked with UP’s iden-
tifier in some systems like PKI *3.

2.2 Session
An invocation of a protocol is called a session. Session ac-

tivation of party UP is done by an incoming message of the
form (Π,UP,UP̄), where we equate Π with a protocol identi-
fier, and UP̄ is the party identifier of the peer. Party UP outputs
(Π,UP,UP̄, EPKP), receives an incoming message of the form
(Π,UP̄,UP, EPKP̄) from the peer UP̄, and then computes the ses-
sion key S K.

A session of UP is identified by sid = (Π,UP,UP̄, EPKP) or
sid = (Π,UP,UP̄, EPKP, EPKP̄). We say that UP is the owner

of session sid, if the second coordinate of session sid is UP.
We say that UP is the peer of session sid, if the third coordi-
nate of session sid is UP. We say that a session is completed

if its owner computes the session key. The matching session of
(Π,UP,UP̄, EPKP, EPKP̄) is session (Π,UP̄,UP, EPKP, EPKP̄)
and vice versa.

2.3 Adversary
The adversaryA, which is modeled as a PPT machine, controls

all communications between parties including session activation
by performing the following adversary query.

*3 Static public keys must be known to both parties in advance. They can
be obtained by exchanging them before starting the protocol or by re-
ceiving them from a certification authority. This situation is common for
all PKI-based AKE schemes.

• Send(message): The message has one of the following
forms: (Π,UP,UP̄), or (Π,UP̄, UP, EPKP̄). The adversary
A obtains the response from the party.

To capture exposure of secret information, the adversary A is
allowed to issue the following queries.
• SessionKeyReveal(sid): The adversary A obtains the ses-

sion key S K for the session sid if the session is completed.
• SessionStateReveal(sid): The adversaryA obtains session

state of the owner of session sid if the session is not com-
pleted (i.e., the session key is not established yet). Session
state includes all ESKs and intermediate computation results
except for immediately erased information but does not in-
clude the SSK. Concrete contents of session state is specified
in each protocol.

• Corrupt(UP): This query allows the adversary A to obtain
all information of the party UP. If a party is corrupted by a
Corrupt(UP) query issued by the adversary A, then we call
the party UP dishonest. If not, we call the party honest.

2.4 Freshness
For the security definition, we need the notion of freshness.
Definition 2.1 (Freshness) Let sid∗ = (Π,UP,UP̄, EPKP,

EPKP̄) be a completed session between honest users UP and UP̄.
If the matching session exists, then let sid∗ be the matching ses-
sion of sid∗. We say session sid∗ is fresh if none of the following
conditions hold:
( 1 ) The adversaryA issues SessionKeyReveal(sid∗), or

SessionKeyReveal(sid∗) if sid∗ exists,
( 2 ) sid∗ exists and the adversaryAmakes either of the following

queries
• SessionStateReveal(sid∗) or

SessionStateReveal(sid∗),
( 3 ) sid∗ does not exist and the adversaryA makes the following

query
• SessionStateReveal(sid∗).

2.5 Security Experiment
For the security definition, we consider the following security

experiment. Initially, the adversary A is given a set of honest
users and makes any sequence of the queries described above.
During the experiment, the adversary A makes the following
query at once.
• Test(sid∗): Here, sid∗ must be a fresh session. Select ran-

dom bit b ∈R {0, 1}, and return the session key held by sid∗
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Fig. 1 FSXY construction.

if b = 0, and return a random key if b = 1.
The experiment continues until the adversaryAmakes a guess

b′. The adversary A wins the game if the test session sid∗ is still
fresh and if the guess of the adversary A is correct, i.e., b′ = b.
The advantage of the adversary A in the AKE experiment with
the PKI-based AKE protocol Π is defined as

AdvAKE
Π (A) = Pr[A wins] − 1

2
.

We define the security as follows.
Definition 2.2 (Security) We say that a PKI-based AKE pro-

tocol Π is secure in the CK+ model if the following conditions
hold:
( 1 ) If two honest parties complete matching sessions, then, ex-

cept with negligible probability, they both compute the same
session key.

( 2 ) For any PPT bounded adversaryA, AdvAKE
Π (A) is negligible

in security parameter κ for the test session sid∗,
( a ) if sid∗ does not exist, and the static secret key of the

owner of sid∗ is given toA.
( b ) if sid∗ does not exist, and the ephemeral secret key of

sid∗ is given toA.
( c ) if sid∗ exists, and the static secret key of the owner of

sid∗ and the ephemeral secret key of sid∗ are given to
A.

( d ) if sid∗ exists, and the ephemeral secret key of sid∗ and
the ephemeral secret key of sid∗ are given toA.

( e ) if sid∗ exists, and the static secret key of the owner of
sid∗ and the static secret key of the peer of sid∗ are given
toA.

( f ) if sid∗ exists, and the ephemeral secret key of sid∗ and
the static secret key of the peer of sid∗ are given toA.

3. Exposure Attack to FSXY Construction:
Case of No Implementation Trick

In this section, we show an attack to the FSXY construction if
an adversary can expose the output of the twisted PRF of parties.
Therefore, it is a realistic attack when the FSXY construction is
implemented without a special TPM.

3.1 Protocol of FSXY Construction
First, we recall the protocol of the FSXY construction.
It is a general construction from IND-CCA secure KEM

(KeyGen, EnCap, DeCap) and IND-CPA secure KEM
(wKeyGen, wEnCap, wDeCap), where the randomness space
of encapsulation algorithms is RSE , the randomness space of
key generation algorithms is RSG and the KEM key space is
KS. Other building blocks are PRFs and a strong randomness
extractor. For a security parameter κ, let F : {0, 1}∗×FS → RSE ,
F′ : {0, 1}∗ × FS → RSE , and G : {0, 1}∗ × FS → {0, 1}κ
be PRFs, where FS is the key space of PRFs (|F S| = κ). Let
Ext : SS × KS → FS be a strong randomness extractor with
randomly chosen seed s ∈ SS, where SS is the seed space.

Party UP randomly selects σP ∈R FS and r ∈R RSG, and
runs (ekP, dkP) ← KeyGen(1κ, r). Party UP’s SSK and SPK are
((dkP, σP), ekP). Fig. 1 shows the protocol.

Here, we recall the definition of security for KEM, and min-
entropy of KEM keys as follows.

Definition 3.1 (Syntax of KEM) A KEM scheme consists of
the following 3-tuple (KeyGen, EnCap, DeCap):

(ek, dk)← KeyGen(1κ, rg) : a key generation algorithm which
on inputs 1κ and rg ∈ RSG, where κ is the security parameter and
RSG is a randomness space, outputs a pair of keys (ek, dk).
(K,CT ) ← EnCapek(re) : an encryption algorithm which

takes as inputs encapsulation key ek and re ∈ RSE , outputs
session key K ∈ KS and ciphertext CT ∈ CS, where RSE is
a randomness space, KS is a session key space, and CS is a
ciphertext space.

K ← DeCapdk(CT ) : a decryption algorithm which takes as
inputs decapsulation key dk and ciphertext CT ∈ CS, and out-
puts session key K ∈ KS.
Definition 3.2 (IND-CCA Security for KEM) A KEM

scheme is IND-CCA secure for KEM if the following prop-
erty holds for security parameter κ; For any PPT adversary
A = (A1,A2), Advind−cca = | Pr[rg ← RSG; (ek, dk) ←
KeyGen(1κ, rg); (state) ← ADO(dk,·)

1 (ek); b ← {0, 1};
re ← RSE ; (K∗0 ,CT ∗0 ) ← EnCapek(re); K∗1 ← K ; b′ ←
ADO(dk,·)

2 (ek, (K∗b ,CT ∗0 ), state); b′ = b] − 1/2| ≤ negl, where DO
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is the decryption oracle, K is the space of session key and state

is state information that A wants to preserve from A1 to A2. A
cannot submit the ciphertext CT = CT ∗0 toDO.
We say a KEM scheme is IND-CPA secure for KEM if A does
not accessDO.

Definition 3.3 (Min-Entropy of KEM Key) A KEM
scheme is k-min-entropy KEM if for any ek, distribution DKS of
variable K defined by (K,CT )← EnCapek(re), distribution Dother

of public information and random re ∈ RSE , H∞(DKS|Dother) ≥ k

holds, where H∞ denotes min-entropy.

3.2 Implementation Trick of FSXY Construction
The FSXY construction uses the twisted PRF trick to com-

pute randomness in generating ciphertext CTA and CTB. For in-
stance, randomness is computed as FσA (rA) ⊕ F′r′A (σA) for party
UA. This trick allows that randomness is indistinguishable from
a uniformly random value if either of SSK σA and ESK rA is not
exposed.

The FSXY construction assumes that the output of the twisted
PRF is never exposed. Indeed, though the CK+ model allows
an adversary to learn ESKs, the output of the twisted PRF is not
contained in the ESK (i.e., The ESK of UA is only (rA, r′A, rT A).)
in the security analysis. In order to implement this assumption
in the real world, all computations related to the twisted PRF
must be executed in a protected area such as a TPM. Specif-
ically, party UA (resp. UB) must execute the computation of
(CTA, KA)← EnCapekB

(FσA (rA) ⊕ F′r′A (σA)) (resp. (CTB, KB)←
EnCapekA

(FσB (rB) ⊕ F′r′B (σB))) in his TPM on-line. The boxed
part of Fig. 1 is computed in TPM. Note that to run a complex
operation like encryption algorithms in a TPM is generally very
costly and should be avoided. For example, if the Cramer-Shoup
KEM [5] is used as IND-CCA secure KEM, the TPM must pro-
cess 4 exponentiations on-line for each session.

Remark 3.1 In the case of the twisted PRF, all computations
related to SSKs must not be exposed from the session state be-
cause SSKs are also assumed not to be learned with ESKs si-
multaneously. In the FSXY construction, such computations cor-
respond to KB ← DeCapdkA

(CTB) and KA ← DeCapdkB
(CTA).

However, it is not necessary to execute these computations in
TPM. After receiving the message from the peer, all compu-
tations are executed without stopping, and the session state is
immediately erased on finishing the session. Thus, the com-
putations which must be executed in TPM on-line are only the
part related to the twisted PRF and the derivation of S K. On
the other hand, before receiving the message from the responder,
the session state of the initiator contains all unprotected inter-
mediate values. Hence, if an implementation trick is not used,
FσA (rA) ⊕ F′r′A (σA) is contained in the session state of the initia-
tor because it is erased just on finishing the session. Moreover,
we note that exposure of ESKs is distinguished from exposure
of the session state in the CK+ model (i.e., ESKs are automati-
cally given to the adversary, and the session state is obtained via
the SessionStateReveal query. ). It means that ESKs may be ex-
posed independently from the session state, and FσB (rB)⊕F′r′B (σB)
of the responder can be also exposed when an implementation
trick is not used even if the session state of the responder is im-

mediately erased on finishing the session.

3.3 Our Attack
If an implementer misses this assumption, computations re-

lated to the twisted PRF may be executed not in a TPM. Then,
FσA (rA)⊕F′r′A (σA) and FσB (rB) ⊕ F′r′B (σB) can be exposed as same
as ESKs (rA, r′A, rT A) and (rB, r′B, rT B). We show an attack to the
FSXY construction when we assume that any implementation
trick is not used.

An adversary plays the experiment of the CK+ model in the
event corresponding to 2.d in Definition 2.2 (i.e., Both parties’
ESKs are exposed.). In this attack, FσA (rA)⊕F′r′A (σA) and FσB (rB)
⊕ F′r′B (σB) is regarded as a part of ESKs. The procedure of the ad-
versary is as follows.
( 1 ) specify a session between UA and UB as the test session, and

learn ES KA = (rA, r′A, rT A, FσA (rA) ⊕ F′r′A (σA)) and ES KB =

(rB, r′B, rT B, FσB (rB) ⊕ F′r′B (σB)).
( 2 ) compute KA, KB and KT as (CTA, KA)← EnCapekB

(FσA (rA)
⊕F′r′A (σA)), (CTB, KB)← EnCapekA

(FσB (rB) ⊕ F′r′B (σB)) and
(CTT , KT )← wEnCapekT

(rT B).
( 3 ) execute the same key derivation procedure as a party with

KA, KB and KT , and derive the session key S K.
Therefore, unless the output of the twisted PRF is strictly pro-

tected with an implementation trick, the FSXY construction is
insecure against such an exposure attack.

4. One-Round AKE without Implementation
Tricks

In this section, we propose a new generic construction of CK+-
secure AKE from KEM. Our scheme is secure against exposure
of all randomness in generating ciphertexts for KEM by avoiding
using the twisted PRF trick beside the FSXY construction. More-
over, while the FSXY construction is not one-round protocol, our
scheme is one-round protocol by using PKIC-KEM [27].

4.1 Preliminaries
4.1.1 Security Notions of KEM with public-key-

independent-ciphertext [27]
Here, we recall the syntax for PKIC-KEM, and definitions of

IND-CPA security for PKIC-KEM and min-entropy of KEM keys
as follows.

Definition 4.1 (Syntax of PKIC-KEM) A PKIC-KEM
scheme consists of the following 4-tuple (wKeyGen, wEnCapC,

wEnCapK, wDeCap):
(ek, dk) ← wKeyGen(1κ; rg) : a key generation algorithm

which on inputs 1κ, where κ is the security parameter and rg
is randomness in space RSG, outputs a pair of keys (ek, dk).
CT ← wEnCapC(re) : a ciphertext generation algorithm

which outputs ciphertext CT ∈ CS on inputs public parameters,
where re is randomness in space RSE , and CS is a ciphertext
space.

K ← wEnCapKek(CT ; re) : an encryption algorithm which
takes as inputs encapsulation key ek, ciphertext CT , and ran-
domness re, outputs KEM key K ∈ KS, where re is randomness
used in wEnCapC, and KS is a KEM key space.

K ← wDeCapdk(CT ) : a decryption algorithm which takes

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.1

as inputs decapsulation key dk and ciphertext CT ∈ CS, and
outputs KEM key K ∈ KS.
Definition 4.2 (IND-CPA Security for PKIC-KEM)

A PKIC-KEM scheme is IND-CPA secure if the fol-
lowing property holds for security parameter κ; For any
PPT adversary A = (A1,A2), Advind−cpa = |Pr[rg ∈R

RSG; (ek, dk) ← wKeyGen(1κ; rg); state ← A1(ek); b ∈R {0, 1};
re ∈R RSE ; CT ∗0 ← wEnCapC(re); K∗0 ← wEnCapKek(CT ∗0 ; re);
K∗1 ∈R KS; b′ ← A2(ek, (K∗b ,CT ∗0 ), state); b′ = b]− 1/2| ≤ negl,
where state is the state information that A wants to preserve
fromA1 toA2.

Definition 4.3 (Min-Entropy of KEM Key) We say a
PKIC-KEM scheme is k-min-entropy PKIC-KEM if for any ek,
distribution DKS of variable K defined by CT ← wEnCapC(re)
and K ← wEnCapKek(CT ; re), distribution Dother of public
information and random re ∈ RSE , H∞(DKS|Dother) ≥ k holds,
where H∞ denotes min-entropy.
4.1.2 Security Notion of Computational Extractor

Let cExt : S alt × Dom → Rng be a function with finite do-
main Dom, finite range Rng, and a space of non-secret random
salt S alt.

Definition 4.4 (Computational Extractor [21]) We say a
function cExt is a computational extractor (cExt) if the following
condition holds for a security parameter κ: For any PPT adver-
sary A, any salt s ∈R S alt and any distribution DRng over Rng

with H∞(DRng) ≥ κ, | Pr[y ∈R Rng; 1 ← A(s, y)] − Pr[x ∈R Dom;
y← cExt(s, x); 1←A(s, y)]| ≤ negl.
4.1.3 Security Notion of Pseudo-Random Function

Let κ be a security parameter and F = {Fκ : Domκ × FSκ →
Rngκ}κ be a function family with a family of domains {Domκ}κ, a
family of key spaces {F Sκ}κ and a family of ranges {Rngκ}κ.

Definition 4.5 (Pseudo-Random Function) We say that
function family F = {Fκ}κ is the PRF family, if for any PPT
distinguisher D, Advprf = |Pr[1 ← DFκ(·)] − Pr[1 ← DRFκ(·)]|
≤ negl, where RFκ : Domκ → Rngκ is a truly random function.

4.2 Our Construction
4.2.1 Design Principle

The goal is to avoid the twisted PRF trick. In the FSXY con-
struction, parties share KA, KB and KT . KA is protected even if
S S KA and ES KB are exposed, KB is protected even if S S KB and
ES KA are exposed, and KT is protected even if both S S KA and
S S KB are exposed. The case that both ES KA and ES KB are ex-
posed is solved thanks to the power of the twisted PRF trick; that
is, FσA (rA) ⊕ F′r′A (σA) and FσB (rB) ⊕ F′r′B (σB) look random for
an adversary even in this case. To handle this case without the
twisted PRF trick, parties must share an additional value that is
protected even if both ES KA and ES KB are exposed.

Our solution is to change the way to generate SSKs and SPKs.
In the FSXY construction, a SSK contains decryption key dkP

of IND-CCA secure KEM and σP, and a SPK contains encryp-
tion key ekP. In our construction, party UP runs (ekS P, dkS P) ←
wKeyGen(1κ, r′) and CTS P ← wEnCapC(rS P) of IND-CPA se-
cure PKIC-KEM, where r′ and rS P are randomly chosen. dkS P

and rS P are added to the SSK (σP is not necessary and is re-
moved), and ekS P and CTS P are added to the SPK. Because

wEnCapC can be executed without knowing an encryption key,
this key generation phase works correctly.

In each session, parties share KS in addition to KA, KB and KT .
Party UA generates KS ← wDeCapdkS A

(CTS B), and party UB gen-
erates KS ← wEnCapKekS A

(CTS B; rS B). The lexicographic or-
der of party identities determines which party is to run wDeCap.
From the syntax of PKIC-KEM, KS is shared non-interactively,
and is protected even if both ES KA and ES KB are exposed. The
generation of KT corresponds to the DH key exchange if PKIC-
KEM is instantiated by the ElGamal KEM.

We note that, from the definition of freshness, the adversary
cannot pose SessionStateReveal query for the test session. Also,
session state does not contain computation results that are imme-
diately erased on finishing the session as the FSXY construction.

Our construction has another advantage that it is one-round
protocol. The FSXY construction is not one-round because the
responder’s EPK depends on the initiator’s EPK. We use the tech-
nique in Ref. [27] using PKIC-KEM to generate KT .

Also, the session key derivation procedure is more efficient
than the FSXY construction because a cExt is used instead of
a strong randomness extractor. On input a value having sufficient
min-entropy, a strong randomness extractor outputs a value which
is statistically indistinguishable from a uniformly chosen random
value. Indeed, such statistical indistinguishability is not neces-
sary to prove the security of our construction. Computational in-

distinguishability is sufficient, and the cExt is suitable. Naturally,
the FSXY construction is also secure with the implementation
trick if the strong randomness extractor is replaced with the cExt.
Indeed, in the full version of Ref. [11], the FSXY construction is
proved with the cExt. [12].
4.2.2 Protocol

The protocol of our generic construction is shown in Fig. 2.
Public Parameters. Let (KeyGen, EnCap, DeCap) be an
IND-CCA secure KEM and (wKeyGen, wEnCapC,wEnCapK,

wDeCap) be an IND-CPA secure PKIC-KEM, where the ran-
domness space of encapsulation algorithms is RSE , the random-
ness space of key generation algorithms is RSG and the KEM key
space isKS. Let G : {0, 1}∗ ×FS → {0, 1}κ be a PRF, where FS
is the key space of PRFs (|F S| = κ). Let cExt : S alt×KS → FS
be a cExt with a non-secret random salt s ∈ S alt, where S alt is
the salt space.
Static Secret and Static Public Keys. Party UP selects
r, r′ ∈R RSG and rS P ∈R RSE , and generates (ekP, dkP) ←
KeyGen(1κ, r), (ekS P, dkS P) ← wKeyGen(1κ, r′) and CTS P ←
wEnCapC(rS P). Party UP’s SSK is (dkP, dkS P, rS P) and SPK is
(ekP, ekS P,CTS P). Note that a party does not use all contents of
the SSK to generate KS in a session. Session State. The session
state of a session owned by UA contains ephemeral secret keys
(rA, rT A), encapsulated KEM key KA and ad-hoc decryption key
dkT . Other information that is computed after receiving the mes-
sage from the peer is immediately erased when the session key is
established. Similarly, the session state of a session owned by UB

contains ephemeral secret keys (rB, rT B) and encapsulated KEM
key KB.

Other intermediate values (e.g., decapsulated KEM keys, and
outputs of cExt) are not contained in the session state because
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Fig. 2 Our construction.

these values are simultaneously computed with the session key
and immediately erased after completing the session.

4.3 Security
We show the following theorem.
Theorem 4.1 If (KeyGen,EnCap,DeCap) is IND-CCA se-

cure and κ-min-entropy KEM, (wKeyGen,wEnCapC, wEnCapK

wDeCap) is IND-CPA secure and κ-min-entropy PKIC-KEM, G

is a PRF, and cExt is a cExt, then our generic construction is
CK+-secure.
Here, we give an overview of the security proof.

We have to consider the following four exposure patterns in the
CK+ security model (matching cases):

2-(c): S S KA and ES KB, 2-(d): ES KA and ES KB,

2-(e): S S KA and S S KB, 2-(f): ES KA and S S KB.

In case 2-(c), KA is protected by the security of CTA because
rA and dkB are not exposed. In case 2-(d), KS is protected by the
security of CTS because dkS A and rS B are not exposed. In case
2-(e), KT is protected by the security of CTT because dkT and rT B

are not exposed. In case 2-(f), KB is protected by the security of
CTB because rB and dkA are not exposed.

Then, we transform the CK+ security game, and the session
key in the test session is randomly distributed in the final game.
First, we change the protected KEM key into a random key for
each pattern; therefore, the input of cExt is randomly distributed
and has sufficient min-entropy. Next, we change the output of
cExt into randomly chosen values. Finally, we change one of the
PRFs (corresponding to the protected KEM) into a random func-
tion. Therefore, the session key in the test session is randomly
distributed; thus, there is no advantage to the adversary. We can
show a similar proof in non-matching cases.
Proof. Let κ be the security parameter, and let A be a PPT (in
κ) bounded adversary. S uc denotes the event that A wins. We
consider the following events that cover all cases of the behavior
ofA.
• Let E1 be the event that the test session sid∗ has no matching

session sid
∗
, the owner of sid∗ is the initiator and the static

secret key of the initiator is given toA.

• Let E2 be the event that the test session sid∗ has no match-
ing session sid

∗
, the owner of sid∗ is the initiator and the

ephemeral secret key of sid∗ is given toA.
• Let E3 be the event that the test session sid∗ has no matching

session sid
∗
, the owner of sid∗ is the responder and the static

secret key of the responder is given toA.
• Let E4 be the event that the test session sid∗ has no match-

ing session sid
∗
, the owner of sid∗ is the responder and the

ephemeral secret key of sid∗ is given toA.
• Let E5 be the event that the test session sid∗ has matching

session sid
∗
, and both static secret keys of the initiator and

the responder are given toA.
• Let E6 be the event that the test session sid∗ has matching

session sid
∗
, and both ephemeral secret keys of sid∗ and sid∗

are given toA.
• Let E7 be the event that the test session sid∗ has matching

session sid
∗
, and the static secret key of the owner of sid∗

and the ephemeral secret key of sid∗ are given toA.
• Let E8 be the event that the test session sid∗ has matching

session sid
∗
, and the ephemeral secret key of sid∗ and the

static secret key of the owner of sid∗ are given toA.
To finish the proof, we investigate events Ei ∧ S uc (i = 1, . . . , 8)
that cover all cases of event S uc. In this paper, we show the proof
of event E6 because it is most different from that of the FSXY
construction. The proof of other events can be proved by similar
ways, and we show the differences from event E6.
4.3.1 Event E6 ∧ Suc

We change the interface of oracle queries and the computation
of the session key. These instances are gradually changed over
six hybrid experiments, depending on specific sub-cases. In the
last hybrid experiment, the session key in the test session does not
contain information of the bit b. Thus, the adversary can clearly
only output a random guess. We denote these hybrid experiments
by H0, . . . ,H5 and the advantage of the adversaryA when partic-
ipating in experiment Hi by Adv(A,Hi).
Hybrid experiment H0: This experiment denotes the real ex-
periment for CK+ security and in this experiment the environment
forA is as defined in the protocol. Thus, Adv(A,H0) is the same
as the advantage of the real experiment.
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Fig. 3 Implementation image of FSXY construction and our construction.

Hybrid experiment H1: In this experiment, if session identities
in two sessions are identical, the experiment halts. When two ci-
phertexts from different randomness are identical and two public
keys from different randomness are identical, session identities
in two sessions are also identical. In any IND-CCA secure KEM
and IND-CPA secure PKIC-KEM, such an event occurs with neg-
ligible probability. Thus, |Adv(A,H1) − Adv(A,H0)| ≤ negl.
Hybrid experiment H2: In this experiment, the experiment se-
lects a party UA and integer i ∈ [1, �] randomly in advance. If A
poses a Test query to a session except i-th session of UA, the ex-
periment halts. Since a guess of the test session matches withA’s
choice with probability 1/N�, Adv(A,H2) ≥ 1/N� ·Adv(A,H1).
Without loss of generality, we can suppose that the intended peer
of the i-th session of UA is UB.
Hybrid experiment H3: In this experiment, the computa-
tion of KS in the test session is changed. Instead of computing
KS ← wDeCapdkS A

(CTS B) or KS ← wEnCapKekS A
(CTS B; rS B),

it is changed as choosing KS ← KS randomly. We construct an
IND-CPA adversary S from A in H2 or H3. S performs the fol-
lowing steps. Init. S receives (ek∗,K∗b ,CT ∗0 ) as the challenge of
IND-CPA game for PKIC-KEM.
Setup. S chooses PRF G : {0, 1}∗ × FS → {0, 1}k, where FS is
the key space of PRFs, and cExt cExt : S alt × KS → FS with
random salt s ∈ S alt, where S alt is the salt space. These are pro-
vided as a part of the public parameters. Also, S sets all N users’
static secret and public keys except UA and UB.

For UP (except UA and UB), S selects r, r′ ∈R RSG and rS P ∈R

RSE , and generates (ekP, dkP)← KeyGen(1κ, r), (ekS P, dkS P)←
wKeyGen(1κ, r′) and CTS P ← wEnCapC(rS P). Party UP’s SSK
is (dkP, dkS P, rS P) and SPK is (ekP, ekS P,CTS P).

For UA, S selects r ∈R RSG and rAP ∈R RSE , and generates
(ekA, dkA)← KeyGen(1κ, r) and CTAP ← wEnCapC(rAP). Party
UA’s SSK is (dkA, ∗, rAP) and SPK is (ekA, ek∗,CTAP), where ∗ is
unknown part for S.

For UB, S selects r, r′ ∈R RSG, and generates (ekB, dkB) ←
KeyGen(1κ, r) and (ekBP, dkBP) ← wKeyGen(1κ, r′). Party UB’s

SSK is (dkB, dkBP, ∗) and SPK is (ekB, ekBP,CT ∗0 ), where ∗ is un-
known part for S.
Simulation. S maintains the list LS K that contains queries and
answers of SessionKeyReveal. S simulates oracle queries byA
as follows. We suppose that P sorts before P̄ lexicographically.
( 1 ) Send(Π,UP,UP̄): S computes the ephemeral public key

(UP,UP̄,CTP, ekT ) obeying the protocol, returns it and
records (Π,UP,UP̄, (UP,UP̄,CTP, ekT )).

( 2 ) Send(Π,UP̄,UP): S computes the ephemeral public key
(UP̄,UP,CTP̄, CTT ) obeying the protocol, returns it and
records (Π,UP,UP̄, (UP̄,UP,CTP̄,CTT )).

( 3 ) Send(Π,UP̄,UP, (UP̄,UP,CTP̄, CTT )): If P = A, P̄ =

B, the session is i-th session of A, then S sets KT :=
K∗b , computes the session key S K∗ obeying the protocol,
and records (Π,UA,UB, (UA,UB,CTA, ekT ), (UB,UA,CTB,

CTT )) as the completed session and S K∗ in the list LS K .
Else if (Π,UP,UP̄, (UP,UP̄,CTP, ekT )) is not recorded,
S records the session (Π,UP,UP̄, ∗, (UP̄,UP,CTP̄, CTT ))
and waits Send(Π,UP,UP̄). Otherwise, S computes
the session key S K obeying the protocol, and records
(Π,UP,UP̄, (UP,UP̄,CTP, ekT ), (UP̄,UP,CTP̄, CTT )) as the
completed session and S K in the list LS K .

( 4 ) Send(Π,UP,UP̄, (UP,UP̄,CTP, ekT )): If P = A,
P̄ = B, the session is the matching session of i-th
session of A, then S sets KT := K∗b , computes the
session key S K∗ obeying the protocol, and records
(Π,UB,UA, (UA,UB,CTA, ekT ), (UB,UA,CTB, CTT )) as the
completed session and S K∗ in the list LS K . Else if (Π,
UP̄, UP, (UP̄, UP,CTP̄, CTT )) is not recorded, S records
the session (Π,UP̄,UP, (UP,UP̄,CTP, ekT ), ∗) and waits
Send(Π, UP̄,UP). Otherwise, S computes the session key
S K obeying the protocol, and records (Π,UP̄,UP, (UP,UP̄,

CTP, ekT ), (UP̄,UP,CTP̄, CTT )) as the completed session
and S K in the list LS K .

( 5 ) SessionKeyReveal(sid):
( a ) If the session sid is not completed, S returns an error
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message.
( b ) Otherwise, S returns the recorded value S K.

( 6 ) SessionStateReveal(sid): S responds the ephemeral secret
key and intermediate computation results of sid as the defini-
tion. Note that the SessionStateReveal query is not posed
to the test session from the freshness definition.

( 7 ) Corrupt(UP): S responds the static secret key and all
unerased session states of UP as the definition.

( 8 ) Test(sid): S responds to the query as the definition.
( 9 ) IfA outputs a guess b′, S outputs b′.
Analysis. For A, the simulation by S is same as the experiment

H2 if the challenge is (K∗0 ,CT ∗0 ). Otherwise, the simulation by S
is same as the experiment H3. Also, both KT in two experiments
have κ-min-entropy because (wKeyGen,wEnCapC,wEnCapK,

wDeCap) is κ-min-entropy PKIC-KEM. Thus, if the advantage
of S is negligible, then |Adv(A,H3) − Adv(A,H2)| ≤ negl.
Hybrid experiment H4: In this experiment, the computa-
tion of K′4 in the test session is changed. Instead of computing
K′4 ← cExt(s,KS ), it is changed as choosing K′4 ∈ FS randomly.

Since KS is randomly chosen in H3, it has sufficient min-
entropy. Thus, by the definition of the cExt, |Adv(A,H4) −
Adv(A,H3)| ≤ negl.
Hybrid experiment H5: In this experiment, the computation
of S K in the test session is changed. Instead of computing
S K = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST) ⊕ GK′4 (ST), it is changed
as S K = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST) ⊕ x where x ∈ {0, 1}κ is
chosen randomly.

We construct a distinguisher D′ between PRF F∗ : {0, 1}∗ ×
FS → {0, 1}k and a random function RF from A in H4 or H5.
D′ performs the following steps.
Setup. D′ sets G = F∗, and chooses cExt cExt : KS → FS.
These are provided as a part of the public parameters. Also,
D′ sets all N users’ static secret and public keys. S selects
r, r′ ∈R RSG and rS P ∈R RSE , and generates (ekP, dkP) ←
KeyGen(1κ, r), (ekS P, dkS P) ← wKeyGen(1κ, r′) and CTS P ←
wEnCapC(rS P). Party UP’s SSK is (dkP, dkS P, rS P) and SPK is
(ekP, ekS P,CTS P).

Simulation. D′ maintains the list LS K that contains queries and
answers of SessionKeyReveal. D′ simulates oracle queries by
A as follows.
( 1 ) Send(Π,UP,UP̄): D′ computes the ephemeral public key

(UP,UP̄,CTP, ekT ) obeying the protocol, returns it and
records (Π,UP,UP̄, (UP,UP̄,CTP, ekT )).

( 2 ) Send(Π,UP̄,UP): D′ computes the ephemeral public key
(UP̄,UP,CTP̄, CTT ) obeying the protocol, returns it and
records (Π,UP,UP̄, (UP̄,UP,CTP̄,CTT )).

( 3 ) Send(Π,UP̄,UP, (UP̄,UP,CTP̄, CTT )): If P = A,
P̄ = B, the session is i-th session of A, then D′
poses ST to his oracle (i.e., F∗ or a random function
RF), obtains x ∈ {0, 1}κ, computes the session key
S K = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST) ⊕ x, and records
(Π,UA,UB, (UA,UB,CTA, ekT ), (UB,UA,CTB, CTT )) as
the completed session and S K∗ in the list LS K . Else if
(Π,UP,UP̄, (UP,UP̄,CTP, ekT )) is not recorded, D′ records
the session (Π,UP,UP̄, ∗, (UP̄,UP,CTP̄, CTT )) and waits

Send(Π, UP,UP̄). Otherwise, D′ computes the session key
S K obeying the protocol, and records (Π,UP,UP̄, (UP,UP̄,

CTP, ekT ), (UP̄,UP,CTP̄, CTT )) as the completed session
and S K in the list LS K .

( 4 ) Send(Π,UP,UP̄, (UP,UP̄,CTP, ekT )): If P = A, P̄ = B,
the session is the matching session of i-th session of A,
then D′ poses ST to his oracle (i.e., F∗ or a random func-
tion RF), obtains x ∈ {0, 1}κ, computes the session key
S K = GK′1 (ST) ⊕ GK′2 (ST) ⊕ GK′3 (ST) ⊕ x, and records
(Π,UB,UA, (UA,UB,CTA, ekT ), (UB,UA,CTB, CTT )) as the
completed session and S K∗ in the list LS K . Else if (Π,
UP̄, UP, (UP̄, UP,CTP̄, CTT )) is not recorded, D′ records
the session (Π,UP̄,UP, (UP,UP̄,CTP, ekT ), ∗) and waits
Send(Π, UP̄,UP). Otherwise, D′ computes the session key
S K obeying the protocol, and records (Π,UP̄,UP, (UP,UP̄,

CTP, ekT ), (UP̄,UP,CTP̄, CTT )) as the completed session
and S K in the list LS K .

( 5 ) SessionKeyReveal(sid):
( a ) If the session sid is not completed, D′ returns an error

message.
( b ) Otherwise,D′ returns the recorded value S K.

( 6 ) SessionStateReveal(sid): D′ responds the ephemeral se-
cret key and intermediate computation results of sid as the
definition. Note that the SessionStateReveal query is not
posed to the test session from the freshness definition.

( 7 ) Corrupt(UP): D′ responds the static secret key and all
unerased session states of UP as the definition.

( 8 ) Test(sid): D′ responds to the query as the definition.
( 9 ) IfA outputs a guess b′ = 0,D′ outputs that the oracle is the

PRF F∗. Otherwise, D′ outputs that the oracle is a random
function RF.

Analysis. ForA, the simulation byD′ is same as the experiment
H4 if the oracle is the PRF F∗. Otherwise, the simulation by D′
is same as the experiment H5. Thus, if the advantage of D′ is
negligible, then |Adv(A,H5) − Adv(A,H4)| ≤ negl.

In H5, the session key in the test session is perfectly random-
ized. Thus,A cannot obtain any advantage from Test query.

Therefore, Adv(A,H5) = 0 and Pr[E5 ∧ S uc] is negligible.
�

4.3.2 Event E1 ∧ Suc
The proof in this case is similar to the event E6 ∧ S uc. There

is a difference in the experiment H3. In the event E6 ∧ S uc,
instead of computing KS ← wDeCapdkS A

(CTS B) or KS ←
wEnCapKekS A

(CTS B; rS B), it is changed as choosing KS ← KS,
where we suppose that UB is the intended partner of UA in
the test session. In the event E1 ∧ S uc, instead of computing
(CTA,KA)← EnCapekB

(rA), it is changed as KA ← KS. SinceA
cannot obtain rA and dkB by the freshness definition in this event,
we can construct an adversary S fromA in the similar manner in
the proof of the event E6 ∧ S uc. Note that ifA poses Send query
to UB other than the test session, S simulates KA by posing the
decryption oracle.
4.3.3 Event E2 ∧ Suc

The proof in this case is almost same as the event E6 ∧ S uc.
4.3.4 Event E3 ∧ Suc

The proof in this case is similar to the event E6 ∧ S uc. There
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is a difference in the experiment H3. In the event E6 ∧ S uc,
instead of computing KS ← wDeCapdkS A

(CTS B) or KS ←
wEnCapKekS A

(CTS B; rS B), it is changed as choosing KS ← KS,
where we suppose that UB is the intended partner of UA in
the test session. In the event E3 ∧ S uc, instead of computing
(CTB,KB)← EnCapekA

(rB), it is changed as KB ← KS. SinceA
cannot obtain rB and dkA by the freshness definition in this event,
we can construct an adversary S fromA in the similar manner in
the proof of the event E6 ∧ S uc. Note that ifA poses Send query
to UA other than the test session, S simulates KB by posing the
decryption oracle.
4.3.5 Event E4 ∧ Suc

The proof in this case is almost same as the event E6 ∧ S uc.
4.3.6 Event E5 ∧ Suc

The proof in this case is similar to the event E6 ∧ S uc. There
is a difference in the experiment H3. In the event E6 ∧ S uc,
instead of computing KS ← wDeCapdkS A

(CTS B) or KS ←
wEnCapKekS A

(CTS B; rS B), it is changed as choosing KS ← KS,
where we suppose that UB is the intended partner of UA in
the test session. In the event E5 ∧ S uc, instead of computing
KT ← wDeCapdkT

(CTT ) or KT ← wEnCapKekT
(CTT ; rT B), it is

changed as KT ← KS. SinceA cannot obtain rT A and rT B by the
freshness definition in this event, we can construct an adversary S
fromA in the similar manner in the proof of the event E6 ∧ S uc.
4.3.7 Event E7 ∧ Suc

The proof in this case is almost same as the event E1 ∧ S uc.
4.3.8 Event E8 ∧ Suc

The proof in this case is almost same as the event E2 ∧ S uc.

4.4 Instantiations
We can instantiate IND-CCA secure KEM by various schemes.

For example, we can use efficient IND-CCA KEM schemes
from the decisional DH [5] (DDH), computational DH [13], [14],
hashed DH [15], bilinear DH [3], the McEliece and LPN [10], and
the (ring-)LWE [18], [24] assumptions. We can easily show that
these schemes have κ-min-entropy KEM keys. The KEM part of
the Cramer-Shoup PKE consists of gzr

1 ∈ G, where G is a finite
cyclic group of order prime p, gz

1 is part of ek, and r is uniformly
chosen randomness, and |r| is 2κ. Thus, gzr

1 has min-entropy larger
than κ. Similarly, other schemes are also κ-min-entropy KEM.

Conversely, instantiations of IND-CPA secure PKIC-KEM are
limited. The ElGamal KEM is the representative instantiation
from the DDH assumption. Also, we can use lattice-based KEM
like the Regev’s KEM [25] from the LWE assumption, or code-
based KEM like the Nojima et al.’s KEM [22] from the LPN as-
sumption. However, to ignore non-negligible error of decasu-
lation, a very large parameter size is necessary; and thus, these
schemes become inefficient.

5. Concluding Remark

This paper studied the exposure-resilience of AKE schemes in
terms of implementation tricks. It was shown that some AKE
schemes are not exposure-resilient if implementation tricks do
not work. We also gave a generic construction that is exposure-
resilient without implementation tricks.

A remaining problem of future researches is to clarify security

models capturing the difference between security with/without
implementation tricks.
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