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Abstract: We evaluate the performance of a sub-set of the benchmarks available in the Rodinia Suite, namely the integer 

benchmarks and some of the single-precision floating point benchmarks, using Altera’s OpenCL SDK and the Terasic DE5-Net 

FPGA board, equipped with an Altera Stratix V GXA7 FPGA, and compare performance results with a modern CPU and GPU. 

The results are presented for multiple versions of each benchmark, each with a varying degree of optimization for FPGAs, ranging 

from direct ports from the initial OpenCL implementation to loop-pipelined kernels specifically optimized for FPGAs. Our results 

show that, while it is possible to use a common programming language available for other more-widely used accelerators in HPC, 

the implementation method optimal for FPGAs is significantly different from those for other accelerators such as GPUs. 

Specifically, we find that multi-threaded kernels typically used for GPUs do not perform as efficiently as those optimized with 

typical FPGA-specific optimizations such as sliding windows. However, by exploiting the FPGA-specific optimizations, FPGA 

with OpenCL shows promising performance. Our results using the Altera Stratix V 5SGXA7 FPGA show that it is possible to 

achieve similar or better performance in comparison to CPUs and up to only 1.5x slower than GPUs which means the FPGA 

provides much better power efficiency. 

 

Keywords: FPGA, OpenCL, Rodinia Suite, CUDA, OpenMP 

1. Introduction 

    Traditionally, FPGAs have been considered as a middle-

ground between ASICs and general-purpose processors, offering 

better performance and performance per watt in comparison to 

general-purpose processors for a wide range of applications, but 

not as good as ASICs. On the other hand, FPGAs, due to their 

reconfigurable nature, can be used to run a wide variety of 

applications by reconfiguring them for each new application 

while in contrast, ASICs are designed for a specific 

algorithm/application and are considered to have very low 

flexibility. For example, the Catapult project at Microsoft 

demonstrates that it is possible to design an FPGA-based 

datacenter architecture for various workloads including web 

searches and machine learning [1]. 

    Using FPGAs has always been considered very challenging 

due to the fact that Hardware Description Languages (HDL), like 

Verilog and VHDL, work in a completely different manner in 

comparison to software programming languages, mainly due to 

the fact that they have little to no high-level constructs and their 

programming model follows a parallel/data flow model rather 

than a sequential model like conventional software programming 

languages. Apart from this, very slow placement and routing 

(part of the compilation process for FPGAs) and debugging has 

always been considered as big challenges in FPGA-based 

programming. 

    Throughout the years, numerous attempts have been made to 

make FPGAs more attractive to software programmers using C-

to-Gates or C-to-hardware converters which convert programs 

written in a software programming language to HDL, for use on 

FPGAs. This process is usually called High-level Synthesis 

(HLS). Notable example of C-to-Gates converters are AutoESL 

Autopilot [2], now acquired by Xilinx [3], Cadence Stratus High-

Level Synthesis [4] and Synopsys Synphony C Compiler [5], all 

of which can convert C, C++ and System C to synthesizable HDL. 

The main drawback of HLS is that most converters focus on 

productivity and ease of programming for FPGAs and hence, 

usually suffer from performance issues. Also always, as part of 
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the HLS flow, apart from verifying the original software code, an 

additional verification step is required after conversion to HDL 

to make sure the conversion has been done correctly [6]. 

    Recently, to make FPGAs more attractive to software 

programmers, especially the HPC industry, both Altera [7] and 

Xilinx [8] have enabled the possibility of using OpenCL, a 

royalty-free, open source and portable programming language 

initially created by Apple in 2008 [9] and now maintained by 

Khronos Group [10], to program FPGAs. This new approach not 

only enables the possibility of porting existing OpenCL code for 

CPUs and GPUs onto FPGAs, but also since it is directly 

supported by FPGA manufacturers and is already embedded in 

their FPGA toolsets, is expected to have better performance and 

conversion quality in comparison to third-party converters. 

However, there are still few studies on benchmarking FPGA 

performance with OpenCL. 

    To evaluate the performance of Altera’s OpenCL SDK on 

FPGAs and determine the effectiveness of using FPGAs in future 

HPC systems, we chose the Rodinia Suite [11] and ported some 

of the integer and floating-point benchmarks to the Terasic DE5-

Net FPGA board, equipped with an Altera Stratix V GXA7 

FPGA, using Altera’s OpenCL SDK, and compared run time with 

CPUs and GPUs. 

    In addition to evaluating the original Rodinia benchmarks, we 

also explore the effectiveness of FPGA-specific parallelization 

and optimizations. The original Rodinia implementations are 

meant to be used for GPU-like highly multi-threaded processors. 

Although Altera FPGAs support executing such programs by 

pipelining the execution of multiple threads, it is likely that such 

programs will perform suboptimally due to barriers. A more 

FPGA-friendly parallelization, as recommended in the Altera 

programing and optimization guides [19, 20], is to parallelize 

loops by pipelining iterations, where data dependency across 

iterations can be resolved with sliding windows. Currently, we 

are creating a single-threaded version of each Rodinia 

benchmark as well as its optimized version with sliding windows. 

In this paper, we report our current status of evaluations with five 

benchmarks and three optimization case studies. We find that the 
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original multi-threaded kernels do not perform as efficiently as 

those optimized with sliding windows, indicating the importance 

of FPGA-specific optimizations. However, with those 

optimizations, FPGA achieves highly promising performance 

Overall, our results using the Stratix V family of FPGAs show 

that it is possible to achieve similar or better performance in 

comparison to CPUs and up to only 1.5x slower than an Nvidia 

K20x GPU which means the FPGA provides much better power 

efficiency. Our study also indicates that, while the availability of 

a standardized common programming language such as OpenCL 

allows for portable programming across different accelerators 

including FPGAs and GPUs, the problem of performance 

portability is more critical. While many techniques such as auto-

tuning have been presented to solve the performance portability 

issue, it is not clear such methods are effective for FPGAs since 

the time to generate the final routed logic gates usually takes 

hours rather than minutes for conventional processors. 

    The rest of the paper is organized as follows. In Section 2, we 

review related work. In section 3, our porting and optimization 

methodology is explained. In section 4, a description of each of 

the benchmarks alongside with the baseline optimization method 

is detailed. In Section 5, our FPGA-specific advanced 

optimization has been discussed. Our software and hardware 

platform is detailed in section 6. In section 7, optimization 

techniques and timing results are provided alongside with results 

of comparison with CPU and GPU. Section 8 is also dedicated to 

conclusion and future work. 

2. Related Work 

    One of the earliest attempts in utilizing OpenCL for FPGA-

based programming was presented in [12]. In this paper, the 

authors have presented a source-to-source converter called 

SOpenCL (Silicon-OpenCL) which is capable of producing 

synthesizable HDL code from OpenCL kernels. Similarly, in [13], 

the authors have presented another source-to-source converter 

capable of converting CUDA programs to synthesizable code for 

FPGAs. Both of these papers aim at creating a platform for 

automatic conversion of GPU code to synthesizable code for 

FPGAs. 

    In [14], the authors have introduced an OpenCL-based 

benchmark suite called OpenDwarfs and have presented their 

results from running 4 benchmarks (GEM, NW, SRAD and BFS) 

on a wide range of hardware including a Xilinx Virtex-6 LX760 

FPGA. They have used SOpenCL for converting their OpenCL 

kernels to HDL code. Since the paper uses the kernels originally 

written for GPUs and does not discuss FPGA-specific 

optimizations in detail, it is not clear yet what performance can 

be obtained with FPGAs using OpenCL. 

    In [15], the authors have presented an implementation of the 

k-NN algorithm on the Terasic DE4 board with an Altera Stratix 

IV 4SGX530 FPGA, using Altera OpenCL SDK. Speed and 

performance per Watt comparison has also been provided with 

CPU and GPU. In [16], an implementation of Binomial Option 

Pricing has been presented on the same board using Altera 

OpenCL SDK v13.0 SP1 and compared with CPU and GPU. 

    In [17], Settle presented an implementation method of the 

Smith-Waterman algorithm using Altera’s OpenCL SDK, which 

is similar to Needleman-Wunsch studied in our work. Our 

optimization using sliding windows is based on his method. 

    In [18], three image processing kernels (Canny, Sobel, and 

SURF) have been implemented on three OpenCL-capable FPGA 

boards (Gidel ProceV, Nallatech PCIe385-D5 and BittWare 

S5PH-Q) using Altera’s OpenCL SDK, and area usage, operating 

frequency and productivity results have been compared with 

HDL implementations of the same kernels on one of the boards. 

In [19], Che et al. presented comparison of GPU, FPGA, and 

CPU for three benchmarks, including Needleman-Wunsch, 

which is also used as an evaluation workload in this paper. The 

paper compared the number of cycles on each processor for a 

given algorithm when implemented with CUDA, VHDL, and C 

with OpenMP for GPU, FPGA, and CPU, respectively. It did not 

investigate any processor-specific optimizations. Unlike their 

paper, we use OpenCL instead of the gate-level description 

language and show timing results with optimizations specific to 

each of the architectures. 

3. Methodology 

    To understand the performance characteristics of FPGAs as an 

accelerator for a wide range of parallel applications, we use the 

Rodinia benchmark suite as a representative set of parallel 

computations [11]. It consists of twenty-one benchmarks, each of 

which represents one of the computation patterns compiled by 

[20], with implementations in two kinds of parallelism: fork-join 

coarse-grained parallelism based on OpenMP and fine-grained 

highly-multi-threaded parallelism based on CUDA and OpenCL. 

The former is intended to be used on multi-core CPUs, whereas 

the latter is for GPUs. 

    In this study, we use the multi-threaded OpenCL version as the 

baseline implementation for each benchmark and incrementally 

extend it with the optimizations suggested in the programming 

and optimization guides by Altera [21, 22]. We port the original 

benchmarks to comply with the restricted set of the OpenCL 

specification supported in the Altera OpenCL SDK. Specifically, 

since the SDK does not support the JIT compilation model, due 

to hours of compilation time, and the original Rodinia 

benchmarks all use JIT compilation, we rewrite the part of code 

that deals with loading of kernels, to use pre-compiled binary 

code.  

    To understand the effectiveness and necessity of optimizations, 

we first apply basic optimizations that give the compiler hints to 

better exploit the resources of a given FPGA more effectively. 

These optimizations do not require significant code restructuring, 

and therefore, the extension from the original version can be 

relatively straightforward. The basic optimizations evaluated in 

this paper include: 

 No pointer aliasing using restrict keyword 

 Loop unrolling 

 Static setting of work-group sizes 

 Kernel-wide SIMD code generation 

 Kernel pipeline replication 

    The baseline and optimized versions use the fine-grained 

multi-threading model (thread-pipelined) since they are 

originally developed for GPUs. In contrast to GPUs, Altera’s 

OpenCL Compiler does not automatically replicate processing 

logic to parallelize execution of multiple threads. Instead, 

multiple work-items and work-groups are processed in parallel 

by a pipeline that corresponds to the kernel function.  

    In addition to the explicit thread-based parallelization, Altera’s 

OpenCL SDK provides another type of parallelism through 

automatic loop pipelining. Loops in an OpenCL kernel are 

processed in a pipeline-parallel fashion if the kernel is a single-

threaded OpenCL task kernel (loop-pipelined). If data 

dependencies between loop iterations exist, a proper amount of 

stall cycles are inserted between iterations based on the compiler 

analysis. The programmer can optimize the pipeline efficiency 

by manually resolving data dependencies with sliding windows 

or shift registers implemented on registers and other on-chip 

memories. Such locality of data accesses can be more efficiently 

exploited with this model of parallelism since it does not require 

explicit barriers to attain memory consistency, which cause a 

large overhead due to pipeline flush. We create the baseline 

versions either by following the corresponding OpenMP version 

or by wrapping the multi-threaded OpenCL version with nested 

loops. As for the multi-thread evaluation, we evaluate the 

effectiveness of a set of non-restructuring basic optimizations 

when applied to the loop-based versions. Furthermore, we 
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attempt to improve the pipeline efficiency through, in most cases, 

a sliding window.  

    This paper reports an incomplete set of results since our 

porting and optimization studies are still ongoing. Specifically, 

we report the baseline versions of NW, NN, SRAD, Pathfinder 

and Hotspot benchmarks, as well as their respective version with 

the basic optimizations. For NW, Hotspot and Pathfinder, we 

present how their loop-pipelined versions can be optimized with 

sliding windows. Compared to our previous work, presented at 

SWoPP 2015, this work includes new benchmark results and 

discusses FPGA-specific optimizations. 

4. Benchmarks 

    In this section we will describe the benchmarks used in our 

study. 

4.1 Needleman-Wunsch 

    Needleman-Wunsch (NW) is a dynamic programming 

benchmark based on a sequence alignment algorithm. A pair of 

strings is organized as the top-most row and the left-most column 

of a 2-D matrix. The algorithm computes a score for each matrix 

element from the top-left position to the bottom-right position. 

Each score is computed based on its neighbor scores at the top, 

left, and top-left positions, resulting in diagonal data dependency. 

Wavefront parallelization is implemented in both the original 

OpenMP and CUDA/OpenCL versions. No floating-point 

arithmetic is used in this benchmark. 

    We create the thread-pipelined version with minimal changes 

from the original OpenCL version. For the loop-pipelined 

versions, our baseline version computes the matrix with doubly-

nested loops, emulating a straightforward implementation 

without FPGA-specific adaptation. We also evaluate the 

effectiveness of basic optimizations for both thread-pipelined 

and loop-pipelined versions. 

4.2 Hotspot 

    Hotspot is a structured grid benchmark. It simulates 

microprocessor temperature based on a stencil computation on 2-

D structured grids. The stencil is an arithmetic computation using 

single-precision floating-point values. In the original CUDA 

version, the 2-D grid is decomposed into sub grids, each of which 

is computed by a thread block. The Rodinia implementations 

have an optimization that saves global memory accesses by 

redundantly computing wider halo regions.  

    Our thread-pipelined versions use the original OpenCL 

version.  The baseline loop-pipelined version consists of doubly 

nested loops for the vertical and horizontal dimensions with 

stencil computations contained inside the inner loop. 

4.3 Pathfinder 

    Pathfinder is a dynamic programming benchmark that 

attempts to find a path with smallest accumulated weight, from 

the bottom of a 2-D grid to its top. Movement direction is either 

straight ahead or diagonally ahead and calculation is done row 

by row. This benchmark has one kernel and is integer. 

    We use the original OpenCL kernel as the baseline thread-

pipelined version. The baseline loop-pipelined version is based 

on the OpenMP version and unlike the thread-pipelined case, all 

the row-wise iterations are computed within a single kernel call 

to reduce host-device interaction. 

4.4 Nearest Neighbor 

    Nearest Neighbor (NN) is a dense linear benchmark that finds 

the k nearest valid locations to a certain point of interest, or as 

per the author’s description, “computes the nearest location to a 

specific latitude and longitude for a number of hurricanes”. The 

kernel of this benchmark involves single-precision floating-point 

addition, multiplication and square root.  

    We use the original OpenCL kernel as the baseline thread-

pipelined version. The baseline loop-pipelined version is created 

by wrapping the thread-pipelined kernel in a for loop. 

4.5 SRAD 

    SRAD is a structured grid benchmark that processes 2-D 

medical images with PDE-based diffusion kernels. Similar to 

Hotspot, its computation involves stencil computations with 

single-precision floating-point values. Unlike Hotspot, it also 

includes reduction of grids, which presents the compiler with a 

different type of data dependency. 

    We use the original OpenCL kernel as the baseline for thread-

pipelined versions and create loop-pipelined versions by 

wrapping the thread-pipelined version with doubly nested loops. 

5. FPGA-specific Optimization Using Sliding 

Window 

    The loop-pipelined versions of the aforementioned 

benchmarks reflect implementations written in a straightforward 

way in OpenCL. Their experimental results will demonstrate a 

level of performance expected for programs written without 

FPGA-specific code restructured from its sequential CPU 

counterpart. While such results are useful as a performance 

baseline, it is also important to explore the potential performance 

limit for a given algorithm running on an FPGA. In this section, 

we show optimization methods for three of the benchmarks, NW, 

Hotspot, and Pathfinder, that attempt to improve pipeline 

throughputs by exploiting on-chip memory as sliding windows.  

    Note that our optimized implementations are still written in the 

standard OpenCL language. Directly expressing the algorithms 

in hardware description languages may allow us to achieve 

higher performances than those written in OpenCL, which is 

beyond the scope of this paper. 

5.1 Needleman-Wunsch 

    The NW benchmark computes a 2-D matrix with a neighbor 

data dependency. The original OpenCL version computes the 

matrix elements with wavefront parallelization, where the inter-

wave data dependency is resolved by using the OpenCL local 

memory. This method is also applicable on FPGAs, where the 

local memory is instantiated with the on-chip memory. However, 

the cost of thread synchronizations, even though it is limited to a 

work group, is known to be very expensive.  

    As suggested by the optimization guide [21,22], a more 

efficient way of using FPGA's on-chip memory is to implement 

sliding windows with loop pipelining. In fact, such an 

optimization for the Smith Waterman algorithm, which follows 

almost the same computation as Needleman-Wunsch, is 

presented by Settle [17]. We apply Settle's method to the NW 

benchmark and create an optimized loop-pipelined version as 

follows.  

    Each matrix element depends on the above, left, and top left 

elements. The baseline loop-pipelined version resolves the 

dependencies through the OpenCL global memory, which incurs 

significantly larger overhead than accesses to on-chip memory. 

Among the three dependencies, the left neighbor point can be 

obtained through a local register if consecutive row elements are 

computed by a single pipeline. 

    For the above and above-left elements, we use a sliding 

window that initially holds the top-most one row and pipeline the 

iterations of the vertical loop. Once the first element of the sliding 

window is computed by the first iteration of the loop, the next 

iteration can be started to compute the first element of the next 

row with one cycle delay, achieving the optimal pipeline 

throughput.  

    Since the size of the sliding window is limited to available 

FPGA resources, the OpenCL kernel uses 1-D column-wise 

blocking of size N, which is called multiple times for all the 

columns by the host code. In our current implementation, the 

accesses to the block boundary column still use the global 

memory. Although its cost is likely to be minor, it is possible to 
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avoid reading from global memory for the neighbor block by 

using remaining on-chip memory such as Altera's channel 

extension or the OpenCL pipes. We plan to investigate such 

further optimizations in our future study. 

5.2 Hotspot 

    Hotspot iteratively updates a 2-D matrix using a 5-point stencil. 

Double buffering allows all the computations of one time step to 

be done in parallel. Exploiting data reuse for neighbor accesses 

is a well-known optimization for stencil computations, and is 

implemented in the original and our baseline thread-pipelined 

versions using OpenCL local memory. In FPGAs, since it is 

possible to achieve data reuse with a sliding window as shown in 

the example code distributed by Altera [23], we study its 

effectiveness in the Hotspot benchmark. 

    Similar to [23], we create a sliding window of size (N * 2 + P), 

where N represents the blocking size along the x dimension, and 

P represents the number of elements computed by a single 

iteration within each block. Our implementation assumes that N 

is divisible by P, and the loop across the sub region of N columns 

and the entire rows is pipelined with the maximum throughput. 

The host code calls the pipelined kernel multiple times to cover 

the entire 2-D matrix, and iterates this for the given number of 

time steps. 

    Although the original OpenCL version also implements a 

temporal blocking optimization for GPUs, our current 

implementation is limited to spatial blocking. Such aggressive 

blocking can be also effective for FPGAs since the benchmark 

algorithm is memory access intensive, and is a subject of our 

future study. 

5.3 Pathfinder 

    The computation pattern and data dependency of Pathfinder is 

similar to those of NW. More specifically, it updates a 2-D matrix 

element using three neighbor elements located in the bottom, 

bottom left, and bottom right positions. The benchmark starts 

from the bottom row and iteratively computes all the rows by 

using the previous one line of row. Unlike NW, since it depends 

on both the bottom left and bottom right elements, it is not 

possible to use the same 1-D blocking method. Instead, we divide 

the problem space with sloped parallelograms so that the 

dependencies of each parallelogram can be resolved internally or 

using the previous parallelogram. We then use a sliding window 

of size N, where N represents the blocking factor along the row 

direction, and pipeline the loop across rows in a parallelogram 

with no pipeline stall. The kernel is then called by the host code 

multiple times to compute the whole problem space.  

6. Software and Hardware Platform 

    Our hardware platforms consist of two machines, one for the 

FPGA board and one for CPU and GPU benchmarking. The 

FPGA board information are detailed in Table 1, and Table 2 

contains information about the two systems. 

 

Table 1 FPGA board Specifications 

Manufacturer Terasic 

Board Name DE5-Net 

FPGA Stratix V 5SGXA7 

ALM 234,720 

Register 938,880 

M20K 2,560 

DSP 256 

 

 

 

 

Table 2 Test System 

Machine 1 2 

CPU 
Intel i7-920 

(4x 2.67 GHz) 

Intel Xeon 

E5-2670 

(8x 2.6 GHz) 

GPU -- Tesla K20X 

FPGA 

Board 
DE5-Net -- 

Memory 12 GB DDR3 32 GB DDR3 

OS CentOS 6.6 CentOS 6.5 

 

    Our software platform consists of Altera Quartus v15.0.2, 

Altera OpenCL SDK v15.0.2 and Terasic Board Support Package 

14.0/14.1 for the DE5-Net board. For GPU performance 

evaluation, we use the CUDA versions of the original Rodinia 

benchmark with CUDA v7.0.28 and Tesla K20X on machine 2. 

For CPU performance evaluation, we use the 8-core Xeon on 

machine 2 with GCC v4.9.2. 

7. Results and Comparison 

    In this work we will only report kernel run time and disregard 

host to device memory transfer at this stage. Run times have been 

extracted using the default execution settings from the Rodinia 

Suite unless stated otherwise. 

    It should be noted that version 0 in all benchmarks is the 

original kernel from the Rodinia Suite, odd versions are single-

threaded (loop-pipelined) with version 1 being the base-line 

version, and even versions are multi-threaded (thread-pipelined). 

Higher numbers reflect higher optimization effort (odd or even 

numbers are only comparable with their own group). 

7.1 Needleman-Wunsch 

    Table 3 shows timing results for the NW benchmark. The 

length of strings is 2048 in our evaluation. Versions 2 and 3 

represent the kernels with the basic optimizations. Specifically, 

version 2 adds 4-way SIMD and, if possible, restrict keyword for 

the input parameters to version 0 while version 3 uses only the 

restrict keyword on top of version 1. Version 5 is the loop-

pipelined kernel with the advanced sliding window optimization. 

 

Table 3 NW Results 

Version Fmax Run Time (ms) 

0 277.23 258.265 

1 243.48 1831.253 

2 194.7 29.229 

3 249.19 1818.112 

5 148.06 3.721 
  

 

    As shown in the table, the sliding window-based version 

performs the most efficiently among all five versions. The 

baseline multi-threaded kernel (version 0) performs 

approximately 70x slower than the fastest (version 5), and while 

its performance is substantially improved with the basic 

optimizations as shown as version 2, the gap between the thread-

pipelined and the optimized loop-pipelined versions is 

significant. Since they use different types of parallelism with 

different data-locality optimizations, optimizing performance 

requires the programmer to write completely different versions 

for FPGAs and GPU-like accelerators. 

    Figure 1 shows comparison of the fastest version of this 

benchmark (version 5) with CPU and GPU. Note that the 

rectangles represent execution time and lower is better. 
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Figure 1  NW FPGA vs. CPU vs. GPU 

 

    In this benchmark, FPGA offers 9.6x speed-up against CPU 

and is only 1.55x slower than the K20X GPU. While the absolute 

performance of the FPGA is lower than the GPU, it indicates that 

the FPGA can achieve higher performance per Watt than the 

GPU. 

7.2 Hotspot 

    Table 4 shows timing results for the Hotspot benchmark. The 

size of computed grids is 1024x1024 for our evaluation. For this 

benchmark, version 2 is a thread-pipelined version that builds on 

version 0 and uses 4-way SIMD and the restrict keyword for the 

input parameters if possible. Version 3 applies the restrict 

keyword and unrolling of the inner loop to the version 1 kernel, 

and version 5 uses the sliding window optimization. 

 

Table 4 Hotspot Results 

Version Fmax Run Time (ms) 

0 302.48 18.691 

1 258.86 1635.237 

2 269.685 6.562 

3 196.19 9.729 

5 227.84 1.701 
 

 

    Similar to the results of NW, there is a wide spectrum of 

performance depending on the parallelism and optimization 

used; however, the fastest performance is also achieved with the 

loop-pipelined version with the sliding window optimization. 

Although the thread-pipelined version with the basic 

optimization (version 2) performs better than the loop-pipelined 

version with the basic optimization (version 3), the effect of the 

sliding window optimization is significant as shown in version 5. 

These results indicate that for parallel programs exhibiting the 

structured grid pattern, the sliding window optimization should 

be used instead of the common method for GPUs using the local 

memory. 

    Figure 2 shows comparison of the fastest version of this 

benchmark (version 5) with CPU and GPU. 

 

 
Figure 2  Hotspot FPGA vs. CPU vs. GPU 

 

    In this benchmark, the FPGA is 3.2x faster than CPU but is 

3.2x slower than GPU. Even in this case, the FPGA most likely 

offers the best performance per watt. 

7.3 Pathfinder 

    Table 5 shows timing results for the Pathfinder benchmark. In 

this benchmark, the lengths of each row and column are 100,000 

and 100, respectively. For base-line single-threaded version, the 

for loop on the matrix rows was moved from host code to device 

code and the restrict keyword was added. Version 2, on the other 

hand, retains the structure of version 0 but uses the restrict 

keyword, 16-way SIMD, and 2 compute units; more compute 

units were not used for version 2 to avoid disabling the automatic 

local memory sharing between the compute units by the compiler, 

due to lack of enough on-chip memory. Version 3 uses loop 

unrolling both on the outer loop and the two inner loops. Version 

4, in comparison to version 2, uses 4 compute units and does not 

have local memory sharing between compute units. Finally, 

version 5 uses the advanced sliding windows optimization. 

 

Table 5 Pathfinder Results 

Version Fmax Run Time (ms) 

0 302.48 151.227 

1 285.87 41.927 

2 164.74 115.337 

3 194.32 18.477 

4 148.76 120.607 

5 142.49 4.569 

 

    As shown in Table 5, the results again demonstrate the 

importance of the FPGA-specific optimization. Compared to the 

original baseline code of version 0, the fastest version achieves 

more than 30x improvement of performance. 

Figure 3 shows comparison of the fastest version of this 

benchmark (version 5) with CPU and GPU. 

 

 
Figure 3  Pathfinder FPGA vs. CPU vs. GPU 

 

    In this benchmark FPGA offers nearly the same speed as CPU 

while but is 6x slower than GPU. Even in this case it is probable 

that the FPGA offers best power efficiency. 

7.4 Nearest Neighbor 

    Table 6 shows performance results for the NN benchmark. For 

this benchmark, rather than using the original workload from the 

Rodinia Suite, we used a bigger workload with 33,554,432 

hurricanes and a size of ~1.6 GB, generated by the input 

generator available in the benchmark. 
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Table 6 NN Results 

Version Fmax Run Time (ms) 

0 304.59 110.249 

1 303.58 124.306 

2 253.16 18.099 

3 215.7 21.433 

4 227.37 18.534 

5 229.41 20.166 
 

     

    Version 2 here uses strict, 16-wide SIMD and 3 compute units, 

version 3 uses strict and unroll factor of 48, version 4 is the same 

as version 2 but with 4 compute units and version 5 is the same 

as version 3 with unroll factor 64. 

    As the results show, this benchmark does not scale well with 

unrolling, most likely due to lack of enough memory bandwidth. 

Version 2 is the fastest version of this kernel. Here, the thread-

pipelined kernels are slightly faster than their loop-pipelined 

counterparts due to working in parallel rather than in a pipelined 

fashion.  

    Figure 4 shows comparison of the fastest version of this 

benchmark (version 2) with GPU. 

 

 
Figure 4  NN FPGA vs. GPU 

 

    The timing result we obtained from CPU using the OpenMP 

version of the benchmark is around 8700 ms since it uses 

formatted I/O routines within the innermost loop and hence, we 

find it is not a fair comparison with GPU and FPGA and avoided 

including CPU results in the chart. In this benchmark, FPGA is 

7.44x slower than GPU. 

7.5 SRAD 

    Table 7 shows performance results for the SRAD benchmark 

with 502x458 2-D matrices. In this benchmark, version 2 uses 2-

way SIMD and restrict and version 3 uses restrict and unrolling. 

 

Table 7 SRAD Results 

Version Fmax Run Time (s) 

0 233.42 1.307 

1 242.83 103.050 

2 233.69 1.228 

3 200.92 9.647 

     

Figure 5 shows comparison of the fastest version of this 

benchmark (version 2) with CPU and GPU. 

 
Figure 5  SRAD FPGA vs. CPU vs. GPU 

 

    In this benchmark, FPGA offers 4.4x speed-up against CPU 

while being 4.2x slower than GPU. This benchmark is the only 

benchmark that performs well on FPGAs with just simple 

optimizations. 

8. Conclusion and Future Work 

    In this work we presented the results of porting a subset of the 

Rodinia benchmark suite to the FPGA platform using Altera’s 

OpenCL SDK, and compared run time with an Nvidia Tesla 

K20X GPU and an Intel E5-2670 CPU.  

    Based on our findings, even though we could not match the 

speed of the K20X GPU in any of our benchmarks, we can 

predict that the FPGA would offer better power efficiency in 

comparison to GPU, in most cases. While we expect that using 

hardware description languages would allow us to achieve 

further better performance, it is still highly promising that such 

performance can be achieved on FPGAs, even with a “high-level” 

language such as OpenCL. 

    Our work is still ongoing and we will continue porting the rest 

of the benchmarks from the Rodinia Suite for FPGAs and apply 

more aggressive optimizations on the benchmarks that only have 

gone through baseline optimization so far. We are also evaluating 

methods to measure power consumption of all the platforms so 

that power efficiency of these platforms can be calculated and 

reported with acceptable accuracy. 

    Meanwhile, we are awaiting support for the Arria 10 FPGAs 

in Altera’s OpenCL SDK so that we can evaluate the performance 

of floating-point benchmarks on this new FPGA family. The 

release of Startix 10 in near future can also potentially turn 

around the performance of FPGAs in floating-point benchmarks 

and pave the way for widespread adoption of this platform into 

future HPC systems. 
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