
IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan

Optimizing the Rodinia Benchmark for FPGAs

(Unrefereed Workshop Manuscript)

HAMID REZA ZOHOURI†1 NAOYA MARUYAMA†2

AARON SMITH†3 MOTOHIKO MATSUDA†2 SATOSHI MATSUOKA†1

Abstract: We evaluate the performance of a sub-set of the benchmarks available in the Rodinia Suite, namely the integer

benchmarks and some of the single-precision floating point benchmarks, using Altera’s OpenCL SDK and the Terasic DE5-Net

FPGA board, equipped with an Altera Stratix V GXA7 FPGA, and compare performance results with a modern CPU and GPU.

The results are presented for multiple versions of each benchmark, each with a varying degree of optimization for FPGAs, ranging

from direct ports from the initial OpenCL implementation to loop-pipelined kernels specifically optimized for FPGAs. Our results

show that, while it is possible to use a common programming language available for other more-widely used accelerators in HPC,

the implementation method optimal for FPGAs is significantly different from those for other accelerators such as GPUs.

Specifically, we find that multi-threaded kernels typically used for GPUs do not perform as efficiently as those optimized with

typical FPGA-specific optimizations such as sliding windows. However, by exploiting the FPGA-specific optimizations, FPGA

with OpenCL shows promising performance. Our results using the Altera Stratix V 5SGXA7 FPGA show that it is possible to

achieve similar or better performance in comparison to CPUs and up to only 1.5x slower than GPUs which means the FPGA

provides much better power efficiency.

Keywords: FPGA, OpenCL, Rodinia Suite, CUDA, OpenMP

1. Introduction

 Traditionally, FPGAs have been considered as a middle-

ground between ASICs and general-purpose processors, offering

better performance and performance per watt in comparison to

general-purpose processors for a wide range of applications, but

not as good as ASICs. On the other hand, FPGAs, due to their

reconfigurable nature, can be used to run a wide variety of

applications by reconfiguring them for each new application

while in contrast, ASICs are designed for a specific

algorithm/application and are considered to have very low

flexibility. For example, the Catapult project at Microsoft

demonstrates that it is possible to design an FPGA-based

datacenter architecture for various workloads including web

searches and machine learning [1].

 Using FPGAs has always been considered very challenging

due to the fact that Hardware Description Languages (HDL), like

Verilog and VHDL, work in a completely different manner in

comparison to software programming languages, mainly due to

the fact that they have little to no high-level constructs and their

programming model follows a parallel/data flow model rather

than a sequential model like conventional software programming

languages. Apart from this, very slow placement and routing

(part of the compilation process for FPGAs) and debugging has

always been considered as big challenges in FPGA-based

programming.

 Throughout the years, numerous attempts have been made to

make FPGAs more attractive to software programmers using C-

to-Gates or C-to-hardware converters which convert programs

written in a software programming language to HDL, for use on

FPGAs. This process is usually called High-level Synthesis

(HLS). Notable example of C-to-Gates converters are AutoESL

Autopilot [2], now acquired by Xilinx [3], Cadence Stratus High-

Level Synthesis [4] and Synopsys Synphony C Compiler [5], all

of which can convert C, C++ and System C to synthesizable HDL.

The main drawback of HLS is that most converters focus on

productivity and ease of programming for FPGAs and hence,

usually suffer from performance issues. Also always, as part of

 †1 Tokyo Institute of Technology

 †2 RIKEN Advanced Institute for Computational Science

 †3 Microsoft Research

the HLS flow, apart from verifying the original software code, an

additional verification step is required after conversion to HDL

to make sure the conversion has been done correctly [6].

 Recently, to make FPGAs more attractive to software

programmers, especially the HPC industry, both Altera [7] and

Xilinx [8] have enabled the possibility of using OpenCL, a

royalty-free, open source and portable programming language

initially created by Apple in 2008 [9] and now maintained by

Khronos Group [10], to program FPGAs. This new approach not

only enables the possibility of porting existing OpenCL code for

CPUs and GPUs onto FPGAs, but also since it is directly

supported by FPGA manufacturers and is already embedded in

their FPGA toolsets, is expected to have better performance and

conversion quality in comparison to third-party converters.

However, there are still few studies on benchmarking FPGA

performance with OpenCL.

 To evaluate the performance of Altera’s OpenCL SDK on

FPGAs and determine the effectiveness of using FPGAs in future

HPC systems, we chose the Rodinia Suite [11] and ported some

of the integer and floating-point benchmarks to the Terasic DE5-

Net FPGA board, equipped with an Altera Stratix V GXA7

FPGA, using Altera’s OpenCL SDK, and compared run time with

CPUs and GPUs.

 In addition to evaluating the original Rodinia benchmarks, we

also explore the effectiveness of FPGA-specific parallelization

and optimizations. The original Rodinia implementations are

meant to be used for GPU-like highly multi-threaded processors.

Although Altera FPGAs support executing such programs by

pipelining the execution of multiple threads, it is likely that such

programs will perform suboptimally due to barriers. A more

FPGA-friendly parallelization, as recommended in the Altera

programing and optimization guides [19, 20], is to parallelize

loops by pipelining iterations, where data dependency across

iterations can be resolved with sliding windows. Currently, we

are creating a single-threaded version of each Rodinia

benchmark as well as its optimized version with sliding windows.

In this paper, we report our current status of evaluations with five

benchmarks and three optimization case studies. We find that the

1

Vol.2015-HPC-152 No.16
2015/12/17

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan

original multi-threaded kernels do not perform as efficiently as

those optimized with sliding windows, indicating the importance

of FPGA-specific optimizations. However, with those

optimizations, FPGA achieves highly promising performance

Overall, our results using the Stratix V family of FPGAs show

that it is possible to achieve similar or better performance in

comparison to CPUs and up to only 1.5x slower than an Nvidia

K20x GPU which means the FPGA provides much better power

efficiency. Our study also indicates that, while the availability of

a standardized common programming language such as OpenCL

allows for portable programming across different accelerators

including FPGAs and GPUs, the problem of performance

portability is more critical. While many techniques such as auto-

tuning have been presented to solve the performance portability

issue, it is not clear such methods are effective for FPGAs since

the time to generate the final routed logic gates usually takes

hours rather than minutes for conventional processors.

 The rest of the paper is organized as follows. In Section 2, we

review related work. In section 3, our porting and optimization

methodology is explained. In section 4, a description of each of

the benchmarks alongside with the baseline optimization method

is detailed. In Section 5, our FPGA-specific advanced

optimization has been discussed. Our software and hardware

platform is detailed in section 6. In section 7, optimization

techniques and timing results are provided alongside with results

of comparison with CPU and GPU. Section 8 is also dedicated to

conclusion and future work.

2. Related Work

 One of the earliest attempts in utilizing OpenCL for FPGA-

based programming was presented in [12]. In this paper, the

authors have presented a source-to-source converter called

SOpenCL (Silicon-OpenCL) which is capable of producing

synthesizable HDL code from OpenCL kernels. Similarly, in [13],

the authors have presented another source-to-source converter

capable of converting CUDA programs to synthesizable code for

FPGAs. Both of these papers aim at creating a platform for

automatic conversion of GPU code to synthesizable code for

FPGAs.

 In [14], the authors have introduced an OpenCL-based

benchmark suite called OpenDwarfs and have presented their

results from running 4 benchmarks (GEM, NW, SRAD and BFS)

on a wide range of hardware including a Xilinx Virtex-6 LX760

FPGA. They have used SOpenCL for converting their OpenCL

kernels to HDL code. Since the paper uses the kernels originally

written for GPUs and does not discuss FPGA-specific

optimizations in detail, it is not clear yet what performance can

be obtained with FPGAs using OpenCL.

 In [15], the authors have presented an implementation of the

k-NN algorithm on the Terasic DE4 board with an Altera Stratix

IV 4SGX530 FPGA, using Altera OpenCL SDK. Speed and

performance per Watt comparison has also been provided with

CPU and GPU. In [16], an implementation of Binomial Option

Pricing has been presented on the same board using Altera

OpenCL SDK v13.0 SP1 and compared with CPU and GPU.

 In [17], Settle presented an implementation method of the

Smith-Waterman algorithm using Altera’s OpenCL SDK, which

is similar to Needleman-Wunsch studied in our work. Our

optimization using sliding windows is based on his method.

 In [18], three image processing kernels (Canny, Sobel, and

SURF) have been implemented on three OpenCL-capable FPGA

boards (Gidel ProceV, Nallatech PCIe385-D5 and BittWare

S5PH-Q) using Altera’s OpenCL SDK, and area usage, operating

frequency and productivity results have been compared with

HDL implementations of the same kernels on one of the boards.

In [19], Che et al. presented comparison of GPU, FPGA, and

CPU for three benchmarks, including Needleman-Wunsch,

which is also used as an evaluation workload in this paper. The

paper compared the number of cycles on each processor for a

given algorithm when implemented with CUDA, VHDL, and C

with OpenMP for GPU, FPGA, and CPU, respectively. It did not

investigate any processor-specific optimizations. Unlike their

paper, we use OpenCL instead of the gate-level description

language and show timing results with optimizations specific to

each of the architectures.

3. Methodology

 To understand the performance characteristics of FPGAs as an

accelerator for a wide range of parallel applications, we use the

Rodinia benchmark suite as a representative set of parallel

computations [11]. It consists of twenty-one benchmarks, each of

which represents one of the computation patterns compiled by

[20], with implementations in two kinds of parallelism: fork-join

coarse-grained parallelism based on OpenMP and fine-grained

highly-multi-threaded parallelism based on CUDA and OpenCL.

The former is intended to be used on multi-core CPUs, whereas

the latter is for GPUs.

 In this study, we use the multi-threaded OpenCL version as the

baseline implementation for each benchmark and incrementally

extend it with the optimizations suggested in the programming

and optimization guides by Altera [21, 22]. We port the original

benchmarks to comply with the restricted set of the OpenCL

specification supported in the Altera OpenCL SDK. Specifically,

since the SDK does not support the JIT compilation model, due

to hours of compilation time, and the original Rodinia

benchmarks all use JIT compilation, we rewrite the part of code

that deals with loading of kernels, to use pre-compiled binary

code.

 To understand the effectiveness and necessity of optimizations,

we first apply basic optimizations that give the compiler hints to

better exploit the resources of a given FPGA more effectively.

These optimizations do not require significant code restructuring,

and therefore, the extension from the original version can be

relatively straightforward. The basic optimizations evaluated in

this paper include:

 No pointer aliasing using restrict keyword

 Loop unrolling

 Static setting of work-group sizes

 Kernel-wide SIMD code generation

 Kernel pipeline replication

 The baseline and optimized versions use the fine-grained

multi-threading model (thread-pipelined) since they are

originally developed for GPUs. In contrast to GPUs, Altera’s

OpenCL Compiler does not automatically replicate processing

logic to parallelize execution of multiple threads. Instead,

multiple work-items and work-groups are processed in parallel

by a pipeline that corresponds to the kernel function.

 In addition to the explicit thread-based parallelization, Altera’s

OpenCL SDK provides another type of parallelism through

automatic loop pipelining. Loops in an OpenCL kernel are

processed in a pipeline-parallel fashion if the kernel is a single-

threaded OpenCL task kernel (loop-pipelined). If data

dependencies between loop iterations exist, a proper amount of

stall cycles are inserted between iterations based on the compiler

analysis. The programmer can optimize the pipeline efficiency

by manually resolving data dependencies with sliding windows

or shift registers implemented on registers and other on-chip

memories. Such locality of data accesses can be more efficiently

exploited with this model of parallelism since it does not require

explicit barriers to attain memory consistency, which cause a

large overhead due to pipeline flush. We create the baseline

versions either by following the corresponding OpenMP version

or by wrapping the multi-threaded OpenCL version with nested

loops. As for the multi-thread evaluation, we evaluate the

effectiveness of a set of non-restructuring basic optimizations

when applied to the loop-based versions. Furthermore, we

2

Vol.2015-HPC-152 No.16
2015/12/17

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan

attempt to improve the pipeline efficiency through, in most cases,

a sliding window.

 This paper reports an incomplete set of results since our

porting and optimization studies are still ongoing. Specifically,

we report the baseline versions of NW, NN, SRAD, Pathfinder

and Hotspot benchmarks, as well as their respective version with

the basic optimizations. For NW, Hotspot and Pathfinder, we

present how their loop-pipelined versions can be optimized with

sliding windows. Compared to our previous work, presented at

SWoPP 2015, this work includes new benchmark results and

discusses FPGA-specific optimizations.

4. Benchmarks

 In this section we will describe the benchmarks used in our

study.

4.1 Needleman-Wunsch

 Needleman-Wunsch (NW) is a dynamic programming

benchmark based on a sequence alignment algorithm. A pair of

strings is organized as the top-most row and the left-most column

of a 2-D matrix. The algorithm computes a score for each matrix

element from the top-left position to the bottom-right position.

Each score is computed based on its neighbor scores at the top,

left, and top-left positions, resulting in diagonal data dependency.

Wavefront parallelization is implemented in both the original

OpenMP and CUDA/OpenCL versions. No floating-point

arithmetic is used in this benchmark.

 We create the thread-pipelined version with minimal changes

from the original OpenCL version. For the loop-pipelined

versions, our baseline version computes the matrix with doubly-

nested loops, emulating a straightforward implementation

without FPGA-specific adaptation. We also evaluate the

effectiveness of basic optimizations for both thread-pipelined

and loop-pipelined versions.

4.2 Hotspot

 Hotspot is a structured grid benchmark. It simulates

microprocessor temperature based on a stencil computation on 2-

D structured grids. The stencil is an arithmetic computation using

single-precision floating-point values. In the original CUDA

version, the 2-D grid is decomposed into sub grids, each of which

is computed by a thread block. The Rodinia implementations

have an optimization that saves global memory accesses by

redundantly computing wider halo regions.

 Our thread-pipelined versions use the original OpenCL

version. The baseline loop-pipelined version consists of doubly

nested loops for the vertical and horizontal dimensions with

stencil computations contained inside the inner loop.

4.3 Pathfinder

 Pathfinder is a dynamic programming benchmark that

attempts to find a path with smallest accumulated weight, from

the bottom of a 2-D grid to its top. Movement direction is either

straight ahead or diagonally ahead and calculation is done row

by row. This benchmark has one kernel and is integer.

 We use the original OpenCL kernel as the baseline thread-

pipelined version. The baseline loop-pipelined version is based

on the OpenMP version and unlike the thread-pipelined case, all

the row-wise iterations are computed within a single kernel call

to reduce host-device interaction.

4.4 Nearest Neighbor

 Nearest Neighbor (NN) is a dense linear benchmark that finds

the k nearest valid locations to a certain point of interest, or as

per the author’s description, “computes the nearest location to a

specific latitude and longitude for a number of hurricanes”. The

kernel of this benchmark involves single-precision floating-point

addition, multiplication and square root.

 We use the original OpenCL kernel as the baseline thread-

pipelined version. The baseline loop-pipelined version is created

by wrapping the thread-pipelined kernel in a for loop.

4.5 SRAD

 SRAD is a structured grid benchmark that processes 2-D

medical images with PDE-based diffusion kernels. Similar to

Hotspot, its computation involves stencil computations with

single-precision floating-point values. Unlike Hotspot, it also

includes reduction of grids, which presents the compiler with a

different type of data dependency.

 We use the original OpenCL kernel as the baseline for thread-

pipelined versions and create loop-pipelined versions by

wrapping the thread-pipelined version with doubly nested loops.

5. FPGA-specific Optimization Using Sliding

Window

 The loop-pipelined versions of the aforementioned

benchmarks reflect implementations written in a straightforward

way in OpenCL. Their experimental results will demonstrate a

level of performance expected for programs written without

FPGA-specific code restructured from its sequential CPU

counterpart. While such results are useful as a performance

baseline, it is also important to explore the potential performance

limit for a given algorithm running on an FPGA. In this section,

we show optimization methods for three of the benchmarks, NW,

Hotspot, and Pathfinder, that attempt to improve pipeline

throughputs by exploiting on-chip memory as sliding windows.

 Note that our optimized implementations are still written in the

standard OpenCL language. Directly expressing the algorithms

in hardware description languages may allow us to achieve

higher performances than those written in OpenCL, which is

beyond the scope of this paper.

5.1 Needleman-Wunsch

 The NW benchmark computes a 2-D matrix with a neighbor

data dependency. The original OpenCL version computes the

matrix elements with wavefront parallelization, where the inter-

wave data dependency is resolved by using the OpenCL local

memory. This method is also applicable on FPGAs, where the

local memory is instantiated with the on-chip memory. However,

the cost of thread synchronizations, even though it is limited to a

work group, is known to be very expensive.

 As suggested by the optimization guide [21,22], a more

efficient way of using FPGA's on-chip memory is to implement

sliding windows with loop pipelining. In fact, such an

optimization for the Smith Waterman algorithm, which follows

almost the same computation as Needleman-Wunsch, is

presented by Settle [17]. We apply Settle's method to the NW

benchmark and create an optimized loop-pipelined version as

follows.

 Each matrix element depends on the above, left, and top left

elements. The baseline loop-pipelined version resolves the

dependencies through the OpenCL global memory, which incurs

significantly larger overhead than accesses to on-chip memory.

Among the three dependencies, the left neighbor point can be

obtained through a local register if consecutive row elements are

computed by a single pipeline.

 For the above and above-left elements, we use a sliding

window that initially holds the top-most one row and pipeline the

iterations of the vertical loop. Once the first element of the sliding

window is computed by the first iteration of the loop, the next

iteration can be started to compute the first element of the next

row with one cycle delay, achieving the optimal pipeline

throughput.

 Since the size of the sliding window is limited to available

FPGA resources, the OpenCL kernel uses 1-D column-wise

blocking of size N, which is called multiple times for all the

columns by the host code. In our current implementation, the

accesses to the block boundary column still use the global

memory. Although its cost is likely to be minor, it is possible to

3

Vol.2015-HPC-152 No.16
2015/12/17

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan

avoid reading from global memory for the neighbor block by

using remaining on-chip memory such as Altera's channel

extension or the OpenCL pipes. We plan to investigate such

further optimizations in our future study.

5.2 Hotspot

 Hotspot iteratively updates a 2-D matrix using a 5-point stencil.

Double buffering allows all the computations of one time step to

be done in parallel. Exploiting data reuse for neighbor accesses

is a well-known optimization for stencil computations, and is

implemented in the original and our baseline thread-pipelined

versions using OpenCL local memory. In FPGAs, since it is

possible to achieve data reuse with a sliding window as shown in

the example code distributed by Altera [23], we study its

effectiveness in the Hotspot benchmark.

 Similar to [23], we create a sliding window of size (N * 2 + P),

where N represents the blocking size along the x dimension, and

P represents the number of elements computed by a single

iteration within each block. Our implementation assumes that N

is divisible by P, and the loop across the sub region of N columns

and the entire rows is pipelined with the maximum throughput.

The host code calls the pipelined kernel multiple times to cover

the entire 2-D matrix, and iterates this for the given number of

time steps.

 Although the original OpenCL version also implements a

temporal blocking optimization for GPUs, our current

implementation is limited to spatial blocking. Such aggressive

blocking can be also effective for FPGAs since the benchmark

algorithm is memory access intensive, and is a subject of our

future study.

5.3 Pathfinder

 The computation pattern and data dependency of Pathfinder is

similar to those of NW. More specifically, it updates a 2-D matrix

element using three neighbor elements located in the bottom,

bottom left, and bottom right positions. The benchmark starts

from the bottom row and iteratively computes all the rows by

using the previous one line of row. Unlike NW, since it depends

on both the bottom left and bottom right elements, it is not

possible to use the same 1-D blocking method. Instead, we divide

the problem space with sloped parallelograms so that the

dependencies of each parallelogram can be resolved internally or

using the previous parallelogram. We then use a sliding window

of size N, where N represents the blocking factor along the row

direction, and pipeline the loop across rows in a parallelogram

with no pipeline stall. The kernel is then called by the host code

multiple times to compute the whole problem space.

6. Software and Hardware Platform

 Our hardware platforms consist of two machines, one for the

FPGA board and one for CPU and GPU benchmarking. The

FPGA board information are detailed in Table 1, and Table 2

contains information about the two systems.

Table 1 FPGA board Specifications

Manufacturer Terasic

Board Name DE5-Net

FPGA Stratix V 5SGXA7

ALM 234,720

Register 938,880

M20K 2,560

DSP 256

Table 2 Test System

Machine 1 2

CPU
Intel i7-920

(4x 2.67 GHz)

Intel Xeon

E5-2670

(8x 2.6 GHz)

GPU -- Tesla K20X

FPGA

Board
DE5-Net --

Memory 12 GB DDR3 32 GB DDR3

OS CentOS 6.6 CentOS 6.5

 Our software platform consists of Altera Quartus v15.0.2,

Altera OpenCL SDK v15.0.2 and Terasic Board Support Package

14.0/14.1 for the DE5-Net board. For GPU performance

evaluation, we use the CUDA versions of the original Rodinia

benchmark with CUDA v7.0.28 and Tesla K20X on machine 2.

For CPU performance evaluation, we use the 8-core Xeon on

machine 2 with GCC v4.9.2.

7. Results and Comparison

 In this work we will only report kernel run time and disregard

host to device memory transfer at this stage. Run times have been

extracted using the default execution settings from the Rodinia

Suite unless stated otherwise.

 It should be noted that version 0 in all benchmarks is the

original kernel from the Rodinia Suite, odd versions are single-

threaded (loop-pipelined) with version 1 being the base-line

version, and even versions are multi-threaded (thread-pipelined).

Higher numbers reflect higher optimization effort (odd or even

numbers are only comparable with their own group).

7.1 Needleman-Wunsch

 Table 3 shows timing results for the NW benchmark. The

length of strings is 2048 in our evaluation. Versions 2 and 3

represent the kernels with the basic optimizations. Specifically,

version 2 adds 4-way SIMD and, if possible, restrict keyword for

the input parameters to version 0 while version 3 uses only the

restrict keyword on top of version 1. Version 5 is the loop-

pipelined kernel with the advanced sliding window optimization.

Table 3 NW Results

Version Fmax Run Time (ms)

0 277.23 258.265

1 243.48 1831.253

2 194.7 29.229

3 249.19 1818.112

5 148.06 3.721

 As shown in the table, the sliding window-based version

performs the most efficiently among all five versions. The

baseline multi-threaded kernel (version 0) performs

approximately 70x slower than the fastest (version 5), and while

its performance is substantially improved with the basic

optimizations as shown as version 2, the gap between the thread-

pipelined and the optimized loop-pipelined versions is

significant. Since they use different types of parallelism with

different data-locality optimizations, optimizing performance

requires the programmer to write completely different versions

for FPGAs and GPU-like accelerators.

 Figure 1 shows comparison of the fastest version of this

benchmark (version 5) with CPU and GPU. Note that the

rectangles represent execution time and lower is better.

4

Vol.2015-HPC-152 No.16
2015/12/17

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan

Figure 1 NW FPGA vs. CPU vs. GPU

 In this benchmark, FPGA offers 9.6x speed-up against CPU

and is only 1.55x slower than the K20X GPU. While the absolute

performance of the FPGA is lower than the GPU, it indicates that

the FPGA can achieve higher performance per Watt than the

GPU.

7.2 Hotspot

 Table 4 shows timing results for the Hotspot benchmark. The

size of computed grids is 1024x1024 for our evaluation. For this

benchmark, version 2 is a thread-pipelined version that builds on

version 0 and uses 4-way SIMD and the restrict keyword for the

input parameters if possible. Version 3 applies the restrict

keyword and unrolling of the inner loop to the version 1 kernel,

and version 5 uses the sliding window optimization.

Table 4 Hotspot Results

Version Fmax Run Time (ms)

0 302.48 18.691

1 258.86 1635.237

2 269.685 6.562

3 196.19 9.729

5 227.84 1.701

 Similar to the results of NW, there is a wide spectrum of

performance depending on the parallelism and optimization

used; however, the fastest performance is also achieved with the

loop-pipelined version with the sliding window optimization.

Although the thread-pipelined version with the basic

optimization (version 2) performs better than the loop-pipelined

version with the basic optimization (version 3), the effect of the

sliding window optimization is significant as shown in version 5.

These results indicate that for parallel programs exhibiting the

structured grid pattern, the sliding window optimization should

be used instead of the common method for GPUs using the local

memory.

 Figure 2 shows comparison of the fastest version of this

benchmark (version 5) with CPU and GPU.

Figure 2 Hotspot FPGA vs. CPU vs. GPU

 In this benchmark, the FPGA is 3.2x faster than CPU but is

3.2x slower than GPU. Even in this case, the FPGA most likely

offers the best performance per watt.

7.3 Pathfinder

 Table 5 shows timing results for the Pathfinder benchmark. In

this benchmark, the lengths of each row and column are 100,000

and 100, respectively. For base-line single-threaded version, the

for loop on the matrix rows was moved from host code to device

code and the restrict keyword was added. Version 2, on the other

hand, retains the structure of version 0 but uses the restrict

keyword, 16-way SIMD, and 2 compute units; more compute

units were not used for version 2 to avoid disabling the automatic

local memory sharing between the compute units by the compiler,

due to lack of enough on-chip memory. Version 3 uses loop

unrolling both on the outer loop and the two inner loops. Version

4, in comparison to version 2, uses 4 compute units and does not

have local memory sharing between compute units. Finally,

version 5 uses the advanced sliding windows optimization.

Table 5 Pathfinder Results

Version Fmax Run Time (ms)

0 302.48 151.227

1 285.87 41.927

2 164.74 115.337

3 194.32 18.477

4 148.76 120.607

5 142.49 4.569

 As shown in Table 5, the results again demonstrate the

importance of the FPGA-specific optimization. Compared to the

original baseline code of version 0, the fastest version achieves

more than 30x improvement of performance.

Figure 3 shows comparison of the fastest version of this

benchmark (version 5) with CPU and GPU.

Figure 3 Pathfinder FPGA vs. CPU vs. GPU

 In this benchmark FPGA offers nearly the same speed as CPU

while but is 6x slower than GPU. Even in this case it is probable

that the FPGA offers best power efficiency.

7.4 Nearest Neighbor

 Table 6 shows performance results for the NN benchmark. For

this benchmark, rather than using the original workload from the

Rodinia Suite, we used a bigger workload with 33,554,432

hurricanes and a size of ~1.6 GB, generated by the input

generator available in the benchmark.

35.656

2.4 3.721

0

10

20

30

40

CPU GPU FPGA

E
x

ec
u

ti
o

n
 T

im
e

(s
)

5.412

0.527

1.701

0

1

2

3

4

5

6

CPU GPU FPGA

E
x

ec
u

ti
o
n

 T
im

e
(s

)

4.305

0.763

4.569

0.0

1.0

2.0

3.0

4.0

5.0

CPU GPU FPGA

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

5

Vol.2015-HPC-152 No.16
2015/12/17

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan

Table 6 NN Results

Version Fmax Run Time (ms)

0 304.59 110.249

1 303.58 124.306

2 253.16 18.099

3 215.7 21.433

4 227.37 18.534

5 229.41 20.166

 Version 2 here uses strict, 16-wide SIMD and 3 compute units,

version 3 uses strict and unroll factor of 48, version 4 is the same

as version 2 but with 4 compute units and version 5 is the same

as version 3 with unroll factor 64.

 As the results show, this benchmark does not scale well with

unrolling, most likely due to lack of enough memory bandwidth.

Version 2 is the fastest version of this kernel. Here, the thread-

pipelined kernels are slightly faster than their loop-pipelined

counterparts due to working in parallel rather than in a pipelined

fashion.

 Figure 4 shows comparison of the fastest version of this

benchmark (version 2) with GPU.

Figure 4 NN FPGA vs. GPU

 The timing result we obtained from CPU using the OpenMP

version of the benchmark is around 8700 ms since it uses

formatted I/O routines within the innermost loop and hence, we

find it is not a fair comparison with GPU and FPGA and avoided

including CPU results in the chart. In this benchmark, FPGA is

7.44x slower than GPU.

7.5 SRAD

 Table 7 shows performance results for the SRAD benchmark

with 502x458 2-D matrices. In this benchmark, version 2 uses 2-

way SIMD and restrict and version 3 uses restrict and unrolling.

Table 7 SRAD Results

Version Fmax Run Time (s)

0 233.42 1.307

1 242.83 103.050

2 233.69 1.228

3 200.92 9.647

Figure 5 shows comparison of the fastest version of this

benchmark (version 2) with CPU and GPU.

Figure 5 SRAD FPGA vs. CPU vs. GPU

 In this benchmark, FPGA offers 4.4x speed-up against CPU

while being 4.2x slower than GPU. This benchmark is the only

benchmark that performs well on FPGAs with just simple

optimizations.

8. Conclusion and Future Work

 In this work we presented the results of porting a subset of the

Rodinia benchmark suite to the FPGA platform using Altera’s

OpenCL SDK, and compared run time with an Nvidia Tesla

K20X GPU and an Intel E5-2670 CPU.

 Based on our findings, even though we could not match the

speed of the K20X GPU in any of our benchmarks, we can

predict that the FPGA would offer better power efficiency in

comparison to GPU, in most cases. While we expect that using

hardware description languages would allow us to achieve

further better performance, it is still highly promising that such

performance can be achieved on FPGAs, even with a “high-level”

language such as OpenCL.

 Our work is still ongoing and we will continue porting the rest

of the benchmarks from the Rodinia Suite for FPGAs and apply

more aggressive optimizations on the benchmarks that only have

gone through baseline optimization so far. We are also evaluating

methods to measure power consumption of all the platforms so

that power efficiency of these platforms can be calculated and

reported with acceptable accuracy.

 Meanwhile, we are awaiting support for the Arria 10 FPGAs

in Altera’s OpenCL SDK so that we can evaluate the performance

of floating-point benchmarks on this new FPGA family. The

release of Startix 10 in near future can also potentially turn

around the performance of FPGAs in floating-point benchmarks

and pave the way for widespread adoption of this platform into

future HPC systems.

9. References

[1] Putnam, A. Caulfield, A.M. Chung, E.S. Chiou, D.

Constantinides, K. Demme, J. Esmaeilzadeh, H. Fowers, J.

Gopal, G.P. Gray, J. Haselman, M. Hauck, S. Heil, S.

Hormati, A. Kim, J.-Y. Lanka, S. Larus, J. Peterson, E.

Pope, S. Smith, A. Thong, J. Xiao, P.Y. Burger, D.: A

reconfigurable fabric for accelerating large-scale

datacenter services, In ACM/IEEE 41st International

Symposium on Computer Architecture, Minneapolis, MN,

USA, pp. 13-24, (2014).

[2] Zhang, Z. Fan, Y. Jiang, W. Han, G. Yang, C. and Cong, J.:

AutoPilot: A platform-based ESL synthesis system, In

High-Level Synthesis: From Algorithm to Digital Circuit,

Springer, pp. 99-112, (2008).

[3] Xilinx High-Level Synthesis (HLS) 2012.2,

http://www.xilinx.com/tools/autoesl_instructions.htm

[4] Cadence Stratus High-Level Synthesis Datasheet,

https://www.cadence.com/rl/Resources/datasheets/Stratus_

ds.pdf

[5] Synopsis Synphony C Compiler Datasheet,

2.553

18.099

0

5

10

15

20

GPU FPGA

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

5.432

0.295

1.23

0

1

2

3

4

5

6

CPU GPU FPGA

E
x

ec
u

ti
o

n
 T

im
e

(s
)

6

Vol.2015-HPC-152 No.16
2015/12/17

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan

https://www.synopsys.com/Tools/Implementation/RTLSyn

thesis/Documents/synphonyc-compiler-ds.pdf

[6] John Sanguinetti: High-level synthesis, verification and

language, EE Times,

http://www.eetimes.com/document.asp?doc_id=1276220

[7] Altera SDK for OpenCL,

https://www.altera.com/products/design-

software/embedded-software-

developers/opencl/overview.html

[8] Xilinx SDAccel, http://www.xilinx.com/products/design-

tools/software-zone/sdaccel.html

[9] Apple Previews Mac OS X Snow Leopard to Developers,

http://www.apple.com/pr/library/2008/06/09Apple-

Previews-Mac-OS-X-Snow-Leopard-to-Developers.html

[10] Khronos OpenCL Working Group: The OpenCL

Specification: Version 1.0 (2010).

[11] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J., Lee,

S.-H. and Skadron, K.: Rodinia: A benchmark suite for

heterogeneous computing, In IEEE International

Symposium on Workload Characterization, Austin, TX,

USA, pp. 44-54, (2009).

[12] Owaida, M., Bellas, N., Daloukas, K. and Antonopoulos,

C.D.: Synthesis of Platform Architectures from OpenCL

Programs, In IEEE 19th Annual International Symposium

on Field-Programmable Custom Computing Machines,

Salt Lake City, UT, USA, pp. 186-193, (2011).

[13] Papakonstantinou, A. Gururaj, K. Stratton, J.A. Deming

Chen Cong, J. Hwu, W.-M.W.: FCUDA: Enabling efficient

compilation of CUDA kernels onto FPGAs, In IEEE 7th

Symposium on Application Specific Processors, San

Francisco, CA, USA, pp. 35-42, (2009).

[14] Krommydas, K. Wu-chun Feng Owaida, M. Antonopoulos,

C.D. Bellas, N.: On the characterization of OpenCL dwarfs

on fixed and reconfigurable platforms, In IEEE 25th

International Conference on Application-specific Systems,

Architectures and Processors, Zurich, Switzerland, pp 153-

160, (2014).

[15] Yuliang Pu. Jun Peng. Letian Huang. Chen, J.: An Efficient

KNN Algorithm Implemented on FPGA Based

Heterogeneous Computing System Using OpenCL, In

IEEE 23rd Annual International Symposium on Field-

Programmable Custom Computing Machines, Vancouver,

BC, Canada, pp. 167-170, (2015).

[16] Morales, V.M. Horrein, P.-H. Baghdadi, A. Hochapfel, E.

Vaton, S.: Energy-efficient FPGA implementation for

binomial option pricing using OpenCL, In Design,

Automation and Test in Europe Conference and Exhibition,

Dresden, Germany, pp.1-6, (2014).

[17] Settle S.: High-performance Dynamic Programming on

FPGAs with OpenCL, In IEEE High Performance Extreme

Computing Conference, Waltham, MA, USA (2013).

[18] Hill, Kenneth. Craciun, Stefan. George, Alan. Lam,

Herman: Comparative analysis of OpenCL vs. HDL with

image-processing kernels on Stratix-V FPGA, In IEEE

26th International Conference on Application-specific

Systems, Architectures and Processors, Toronto, ON,

Canada, pp. 189-193, (2015).

[19] Che S. Li J. Sheaffer J.W. Skadron K. Lach J.:

Accelerating Compute-Intensive Applications with GPUs

and FPGAs, In Symposium on Application Specific

Processors, Anaheim, CA, USA, 2008, pp. 101-107,

(2008).

[20] Asanovic K. Bodik R. Demmel J. Keaveny T. Keutzer K.

Kubiatowicz J. Morgan N. Patterson D. Sen K.

Wawrzynek J. Wessel D. and Yelick K.: A view of the

parallel computing landscape, Communications of the

ACM, Vol. 52, No. 10, pp. 56-67, (2009).

[21] Altera Corporation: Altera SDK for OpenCL:

Programming Guide,

https://www.altera.com/literature/hb/opencl-

sdk/aocl_programming_guide.pdf

[22] Altera Corporation: Altera SDK for OpenCL: Best

Practices Guide,

https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/literature/hb/opencl-

sdk/aocl_optimization_guide.pdf

[23] Altera Corporation: Finite Difference Computation (3D)

Design Example, https://www.altera.com/support/support-

resources/design-examples/design-software/opencl/fdtd-

3d.html

7

Vol.2015-HPC-152 No.16
2015/12/17

