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Identification of aberrant gene expression associated with

aberrant promoter methylation in primordial germ cells

between E13 and E16 rat F3 generation vinclozolin lineage

Y-h. Taguchi1,a)

Abstract:

Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms

involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during

development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is

heritable between generations. However, because methylation is removed and then re-established during development,

it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to

exhibit TGE abnormalities.

Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature

extraction to previously reported and publically available gene expression/promoter methylation profiles of rat pri-

mordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE

abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during devel-

opment.

Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological

concepts including pathway analysis, gene ontology terms and protein–protein interactions.

1. Introduction

Transgenerational epigenetics (TGE) [1] describes the trans-

fer of phenotypes between generations without the modification

of genome sequences. Because the plant germline arises from

somatic cells, TGE is often observed in plants. However, TGE

was also reported in the offspring of mammals, when pregnant

females are exposed to endocrine disruptions. Many factors are

affected by TGE including male infertility [2], anxious behav-

ior [3], mate preference [4], various diseases [5], reprogramming

of primordial germ cells [6], and stress responses [7].

In contrast to reports studying the relationship of TGE to var-

ious abnormalities, few studies have investigated how TGE oc-

curs. The main difficulty of studying TGE mechanisms is that

epigenetic markers such as promoter methylation are not only

heritable, but also vary over time during development in the gen-

eration associated with TGE. For example, for promoter methy-

lation to affect development, it must be switched on/off during

various stages of development [1]. Thus, TGE that affects de-

velopment is expected to follow a similar time course. There-

fore, abnormalities caused by TGE must be related to the aber-

rant timing of promoter methylation/demethylation when com-

pared with normal organisms. Detecting small irregularities of

promoter methylation timing based on comparisons with normal

organisms is not easy. For example, Skinner et al [6] recently
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tried to identify aberrant gene expression associated with aber-

rant promoter methylation between E13 and E16 germ line in F3

generation vinclozolin lineages, where vinclozolin functions as

an endocrine disruptor. Endocrine disruption is thought to cause

various diseases especially in reproductive organs, because it is

often misrecognized as a hormone effect on the development of

reproductive organs. Thus, usage of endocrine disruptors is usu-

ally forbidden for public health. Furthermore, vinclozolin was

recently observed to cause TGE abnormalities. However, Skin-

ner et al failed to identify strict pairs of aberrant gene expression

and promoter methylation for specific genes. They concluded

“A comparison between the germ cell DMR (differential DNA

methylated regions) and the differentially expressed genes indi-

cated no significant overlap”. Thus, our understanding of the

mechanisms by which TGE occurs remains poor.

In the present study we applied the recently proposed principal

component analysis (PCA)-based unsupervised feature extraction

(FE) [8–17] to the data set obtained by Skinner et al [6] and

successfully identified a significant overlap between DMR and

differentially expressed genes. Various methods for enrichment

analyses supported the biological feasibility of the 48 identified

RefSeq mRNAs.

1.1 Previous usage of PCA-based unsupervised FE

Here, we briefly review previous studies [8–17] that used PCA-

based unsupervised FE. In Refs. [8–11], we applied PCA-based

unsupervised FE to microRNA expression for biomarker identi-
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fication between patients (of various diseases including various

cancers, chronic obstructive pulmonary disease, and Alzheimer’s

disease, etc) and healthy controls; microRNA extracted in an un-

supervised manner was combined with linear discriminant anal-

ysis. We found a combination of 10–20 microRNAs generally

achieved about 80% accuracy. It was also confirmed that the iden-

tified set of microRNAs were stable. Thus, this method is robust

for the selection of samples. In Ref. [12], we applied PCA-based

unsupervised FE to the proteome in a bacterial culture and iden-

tified critical proteins in an unsupervised manner. In Ref. [13],

we applied PCA-based unsupervised FE to mRNA and miRNA

expression of stressed mouse heart. After identifying potential

disease causing genes, we performed in silico drug discovery of

the identified genes. In Ref. [14], we performed integrated analy-

sis of promoter methylation profiles of three distinct autoimmune

diseases using PCA-based unsupervised FE and identified many

genes commonly associated with aberrant promoter methylation.

In Ref. [15], we applied PCA-based unsupervised FE to genotyp-

ing/DNA methylation profiles of cancer and identified genotype

specific DNA methylation profiles that occurred in cancer genet-

ics. In Refs [16, 17], PCA-based unsupervised FE of mRNA ex-

pression and promoter methylation profiles of normal/treated can-

cer cell lines was investigated. Based upon the integrated analysis

of mRNA expression and promoter methylation profiles, we iden-

tified potential disease causing genes.

In summary, PCA-based unsupervised FE has mainly been

used to compare between patients (or cancer cell lines) and

healthy controls excluding one exception [12]. Because it is

likely that healthy controls and patients (or control and treated

cancer cell lines) exhibit distinct expressions, it is not surpris-

ing that PCA-based unsupervised FE detected significant differ-

ences, even if most of the biomarker/disease causing genes were

identified only by PCA-based unsupervised FE, but not by other

methodologies. In this study, we applied PCA-based unsuper-

vised FE to a different factor, the difference between two time

points (E13 and E16). These time points represent different devel-

opmental stages and thus some differences are expected; however,

the time points are separated by only 3 days, and therefore the dif-

ferences should be much smaller than between healthy controls

and patients (or control and treated cancer cell lines). Of note,

although Skinner et al [6] reported no aberrant gene expression

associated with aberrant promoter methylation between E13 and

E16 germ lines in F3 generation vinclozolin lineages, the study

was still published. Thus, from a methodological point of view,

the purpose of this study was to investigate whether PCA-based

unsupervised FE could identify slight differences; thus it is a new

challenge for this methodology.

2. Methods

2.1 Gene expression and promoter methylation profiles

Gene expression/promoter methylation profiles were re-

trieved from the gene expression omnibus (GEO) using GEO

ID GSE59511. This super series consists of two subseries,

GSE43559 and GSE59510, each of which includes gene

expression (using Affymetrix Rat Gene 1.0 ST Array) and

promoter methylation (using NimbleGen Rat CpG Island Plus

Table 1 Gene expression and promoter methylation profiles.

GEO ID Description

GSE43559 (gene expression)

GSM1065332 PGC E13 F3-Control biological rep1

GSM1065333 PGC E13 F3-Control biological rep2

GSM1065334 PGC E13 F3-Vinclozolin biological rep1

GSM1065335 PGC E13 F3-Vinclozolin biological rep2

GSM1065336 PGC E16 F3-Control biological rep1

GSM1065337 PGC E16 F3-Control biological rep2

GSM1065338 PGC E16 F3-Vinclozolin biological rep1

GSM1065339 PGC E16 F3-Vinclozolin biological rep2

GSE59510 (promoter methylation)

GSM1438556 E16-Vip2/Cip2

GSM1438557 E13-Vip2/Cip1

GSM1438558 E13-Vip1/Cip1

GSM1438559 E16-Vip1/Cip1

GSM1438560 E16-Vip2/Cip1

GSM1438561 E13-Vip2/Cip2

RefSeq Promoter 720k array) information, respectively. Gene

expression profiles were directly loaded from GEO to R [18]

by getGEO function while six files whose names ended with

ratio_peaks_mapToFeatures_All_Peaks.txt.gz were

downloaded and loaded into R using read.csv for promoter

methylation. Table 1 shows a list of the samples analyzed.

GSE43559 (gene expression) consists of eight samples classified

into four categories, E13 control, E13 treated, E16 control, and

E16 treated. GSE59510 (promoter methylation) consists of six

samples classified into two categories, E13 and E16 (all from

F3 generation primordial germ lines). Using the ratio between

treated and control groups, eight gene expression profiles were

converted to alternative eight profiles as follows:
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.

These were further normalized to have a mean of zero and

a variance of one within each sample. Because six sam-

ples in GSE59510 were already transformed to a ratio between

treated/control samples, these were not normalized. In total, 14

(8+6) samples that exhibited a ratio between control/treated sam-

ples were pooled and prepared for further analyses. The only

difference between control and treated samples was whether oil

or vinclozolin was injected to F1 pregnant rats between E8 and

E14. Any other treatments were identical between E13 and E16.

ⓒ 2015 Information Processing Society of Japan 2

Vol.2015-BIO-44 No.5
2015/12/7



IPSJ SIG Technical Report

2.2 Principal component analysis–based unsupervised fea-

ture extraction

Although this method was described in detail in a recently pub-

lished review article [19], this methodology is briefly introduced

here. Example: xi j is the gene expression/promoter methylation

of the ith gene (i = 1, . . . ,N) in the jth sample ( j = 1, . . . ,M).

For simplicity, it is assumed that the mean of xi j over i within

each j is zero. Then, in contrast to the ordinary usage of PCA

where samples are embedded into the low dimensional space,

genes are embedded into the low dimensional space by applying

PCA. Thus, principal component (PC) scores of the ℓth compo-

nent, xiℓ, (ℓ = 1, . . . ,M) are attributed to each gene while each

sample has contributed cℓ j to the ℓth component. By this defini-

tion, xiℓ is expressed as

xiℓ =
∑

j

cℓ jxi j

PCA-based unsupervised FE attempts to extract features (in this

specific application, genes) with larger absolute PC scores along

the specified ℓth PC.

In the specific application described in the present study,

N′
expression

probes using gene expression and N′
methylation

probes using

promoter methylation were selected, respectively. For the com-

putation of P-values of coincident analysis with binomial distri-

bution, N′
expression

= N′
methylation

= N′ for simplicity.

Although there are several ways to determine which PC is em-

ployed for FE, the most straightforward and intuitive strategy is

to identify PCs that are mostly coincident with categories by em-

ploying categorical regression:

cℓ j = aℓ +
∑

k

akℓδk j

where aℓ and akℓ are numerical (regression) coefficients. Then,

the ℓth PC associated with the (most) significant regression is em-

ployed as the PC for FE. Because this study only contained two

categories (E13 and E16), we used the t test instead of categorical

regression to measure the significance of coincidence between cℓ j

and categories.

2.3 Protein–protein interaction enrichment analysis

The obtained RefSeq mRNA IDs were converted to gene

names (“official gene symbol”) via a gene ID conversion tool im-

plemented in DAVID [20], and the obtained gene names were

uploaded to STRING [21] server. Then, “protein–protein interac-

tions” was selected among the pull-down menu of “enrichment”,

where the expected number of PPIs for the set of genes uploaded

and the P-value attributed to identified PPIs are available.

2.4 Gene ID identification for literature searches

Literature searches were performed using gene symbols that

were converted from RefSeq mRNAs using DAVID as explained

above.

3. Results and Discussion

3.1 Gene selection using PCA-based unsupervised FE

Fig. 1 illustrates the strategy to identify aberrant gene expres-
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Fig. 1 Schematics that illustrate the procedure of PCA-based unsupervised

FE applied to data set analyzed in the present study

sion associated with aberrant promoter methylation between con-

trols and vinclozolin treated samples during development from

E13 to E16. Gene expression and promoter methylation of vin-

clozolin treated F3 samples were normalized relative to con-

trols. Then, by separately applying PCA-based unsupervised FE

to each sample group, the top N′(≪ N) genes were indepen-

dently selected. The number of commonly selected genes N′′

was counted. If N′′ was much larger than expected, the selection

of aberrant gene expression associated with aberrant promoter

methylation was determined to be successful.

E13 E16
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−
0
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0
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PC2:mRNA
 P= 1.46e−03
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PC1:methylation
 P= 3.32e−02

Fig. 2 Boxplots of PCs used for FE in this study, PC2 for mRNA and PC1

for methylation. P-values are computed by t test.

At first, the PCs used for FE shown in Fig. 1 were specified and
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a boxplot (PC2 for mRNA and PC1 for methylation) is shown in

Fig. 2. These two PCs exhibited a significant distinction between

the two categories, E13 and E16. Using the specified PCs, PCA-

based unsupervised FE was performed. Then, the most signifi-

cant N′ genes were extracted for gene expression and promoter

methylation, respectively. P-values to determine whether the co-

incidence and the number of commonly selected genes among

N′ genes occurred accidentally was computed by binomial distri-

bution. How the P-values varied dependent upon N′ was deter-

mined. Fig. 3 shows the dependence of P-values upon N′ when

N = 13324, the number of genes commonly included in gene

expression and promoter methylation profiles. P-values were

smaller for larger N′. However, the minimum N′ with P-values

less than 0.05 were selected (i.e., N′ = 1000) to validate the per-

formance of methodology by enrichment analysis performed in

the later part of this study, since smaller number of genes have

less abilities to be enhanced. Among the 1000 genes selected in

either gene expression or promoter methylation, 48 RefSeq mR-

NAs were commonly selected (a list of gene names are shown in

Table 2). The P-value for N′ = 1000 was 0.04 (see Fig. 3). Thus,

we successfully selected genes that were significantly associated

with simultaneous aberrant gene expression/promoter methyla-

tion.

Table 2 48 genes selected by PCA based unsupervised FE when N’=1000

Refseq gene symbol Refseq gene symbol

NM 021866 CCR2 NM 013025 CCL3

NM 030856 lrrn3 NM 001013952 RGD1566251

NM 001099492 Vom2r19 NM 001001053 Olr545

NM 013149 ahr NM 001024805 HBE2

NM 001000650 Olr624 NM 001000566 Olr542

NM 017061 lox NM 001000384 Olr408

NM 001109617 Pramel1 NM 022218 cmklr1

NM 012523 Cd53 NM 013158 DBH

NM 001033998 ITGAL NM 001109374 Lrrtm1

NM 001013177 Sult1c2 NM 021853 KCNT1

NM 053843 Fcgr2b NM 175586 Taar7b

NM 001109118 Elovl2 NM 001047891 RGD1310507

NM 001106056 TRIM52 NM 138537 LOC171573

NM 001007729 PF4 NM 001000896 Olr1726

NM 001000551 Olr218 NM 001080938 Tas2r124

NM 001000523 Olr1381 NM 001001017 Olr1143

NM 023968 NPY2R NM 020071 fgb

NM 001000080 Olr1583 NM 017105 BMP3

NM 053994 pdhA2 NM 012893 Actg2

NM 001111321 Vom2r80 NM 001000619 Olr727

NM 001107036 MPO NM 001012112 Ankrd9

NM 020104 MYL1 NM 012909 AQP2

NM 001000600 Olr796 NM 001108651 HEBP1

NM 022696 HAND2 NM 001014222 Dmrtc1c

To biologically validate these 48 RefSeq mRNAs, we uploaded

them to three enrichment analyses servers, DAVID [20], Tar-

getMine [22] and g:Profiler [23]. We observed some biological

terms were enriched among the selected genes (Table 3) in spite

of the selection of minimum number of significant genes. Almost

50% of the genes selected belonged to G-protein coupled recep-

tors (GPCR) or cell surface receptor pathways, which was ex-

pected because an endocrine disruptor such as vinclozolin targets

cell surface receptors. We also estimated PPI enrichment (see

methods). Because it is rare for proteins to function in the ab-

sence of collaboration with other proteins, enriched PPIs among

the selected genes (proteins) can provide supporting evidence for
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g
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)
Fig. 3 Dependence of logarithmic P-values that represent the significance

of commonly selected genes between gene expression and promoter

methylation upon N′ when PCA-based unsupervised FE was em-

ployed. Horizontal broken red line represents P = 0.05.

the biological significance of selected genes. There were seven

PPIs although the expected number of PPIs was three. This re-

sulted in P = 0.05; thus there was significant PPI enrichment

among the genes selected by PCA-based unsupervised FE.

Table 3 Enrichment analysis of 48 RefSeq mRNAs commonly selected in

the top most 1000 genes by applying PCA-based unsupervised FE

to gene expression and promoter methylation. # = the number of

genes included.

Biological terms # description P-values

DAVID

GO BP

GO:0007186 19 G-protein coupled receptor protein

signaling pathway

5.35E-03

GO:0007166 21 Cell surface receptor linked signal

transduction

4.19E-03

g:proflier

GO BP

GO:0003008 17 System process 4.37E-02

GO:0007166 22 Cell surface receptor signaling path-

way

8.91E-03

GO MF

GO:0060089 17 Molecular transducer activity 4.49E-02

GO:0004871 17 Signal transducer activity 1.82E-02

GO:0004872 17 Receptor activity 1.13E-02

GO:0038023 17 Signaling receptor activity 3.98E-03

GO:0004888 16 Transmembrane signaling receptor

activity

1.08E-02

GO:0004930 14 G-protein coupled receptor activity 4.43E-02

P-values shown in Fig. 3 remained significant even when N′

increased from 1000 to 2000. Thus, we tried to obtain more

genes by setting N′ = 2000, because the greater number of genes

uploaded would have a tendency to enhance enrichment. There

were 179 mRNAs commonly selected between gene expression

and promoter methylation (gene names are not shown here). Up-

loading these genes to three enrichment analyses servers resulted

in greater enrichment for these 179 genes as expected (Tables 4,
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Table 4 Enrichment analysis of 179 genes commonly selected in the top

most 2000 genes by applying PCA-based unsupervised FE to gene

expression and promoter methylation. # = the number of genes

included.

Biological terms # description P-values

DAVID

KEGG

rno04740 50 Olfactory transduction 1.63E-15

GO BP

GO:0007186 79 G-protein coupled receptor protein

signaling pathway

2.04E-20

GO:0007166 85 Cell surface receptor linked signal

transduction

2.39E-18

GO:0050911 59 Detection of chemical stimulus in-

volved in sensory perception of

smell

1.99E-18

GO:0050907 59 Detection of chemical stimulus in-

volved in sensory perception

2.22E-18

GO:0009593 59 Detection of chemical stimulus 3.09E-18

GO:0007608 59 Sensory perception of smell 3.38E-18

GO:0050906 59 Detection of stimulus involved in

sensory perception

3.26E-18

GO:0007606 60 Sensory perception of chemical

stimulus

2.89E-18

GO:0051606 60 Detection of stimulus 2.88E-18

GO:0007600 61 Sensory perception 3.31E-16

GO:0050890 62 Cognition 2.44E-15

GO:0050877 62 Neurological system process 1.94E-12

GO CC

GO:0016021 101 Integral to membrane 3.57E-12

GO:0031224 101 Intrinsic to membrane 1.65E-11

GO:0031983 7 Vesicle lumen 1.49E-03

GO:0060205 6 Cytoplasmic membrane-bounded

vesicle lumen

7.41E-03

GO:0031091 6 Platelet alpha granule 1.59E-02

GO:0031093 5 Platelet alpha granule lumen 3.82E-02

GO MF

GO:0004984 60 Olfactory receptor activity 1.59E-19

5, and 6).

GPCR and cell surface receptors were enhanced and olfac-

tory transduction related biological terms were vastly enriched.

Careful investigation of the selected genes indicated that many

olfactory receptor proteins were newly identified when N′ was

increased from 1000 to 2000. Olfactory receptor proteins were

also recognized by Skinner et al [6]. Thus, the identification of

many olfactory receptor proteins suggested the correctness and

superiority of our methodology, because Skinner et al [6] did

not identify reciprocal relationships between gene expression and

promoter methylation, probably owing to a lack of suitable statis-

tical methods, although they noted their importance.

PPI enrichment significance was also enhanced when N′ in-

creased from 1000 to 2000. There were 360 PPIs among 179

genes while the expected number of PPIs was 191. This resulted

in P = 0 (within the numerical accuracy adopted); thus the signif-

icance of PPI enrichment was enhanced. The increase of PPIs was

mostly due to the newly identified olfactory receptor proteins.

These data suggest the biological suitability of our methodol-

ogy.

4. Conclusions

This study re-analyzed the gene expression/promoter methyla-

tion profiles of primordial germ cells between E13 and E16 rat

F3 generation vinclozolin lineage [6]. In contrast to analyses per-

formed previously [6], we successfully identified various genes

associated with aberrant promoter methylation/gene expression

Table 5 Enrichment analysis of 179 genes commonly selected in the top

most 2000 genes by applying PCA-based unsupervised FE to gene

expression and promoter methylation. # = the number of genes

included.

Biological terms # description P-values

g:profiler

GO BP

GO:0007606 54 Sensory perception of chemical

stimulus

9.14E-21

GO:0007186 65 G-protein coupled receptor signal-

ing pathway

7.61E-20

GO:0050911 50 Detection of chemical stimulus in-

volved in sensory perception of

smell

1.44E-19

GO:0007600 58 Sensory perception 2.89E-19

GO:0050907 50 Detection of chemical stimulus in-

volved in sensory perception

5.26E-19

GO:0007608 50 Sensory perception of smell 5.65E-19

GO:0009593 50 Detection of chemical stimulus 1.72E-18

GO:0050906 50 Detection of stimulus involved in

sensory perception

3.39E-18

GO:0007166 84 Cell surface receptor signaling path-

way

4.19E-18

GO:0003008 69 System process 8.92E-18

GO:0051606 51 Detection of stimulus 1.26E-17

GO:0050877 59 Neurological system process 3.82E-16

GO:0051716 106 Cellular response to stimulus 6.09E-13

GO:0042221 84 Response to chemical 9.54E-13

GO:0050896 116 Response to stimulus 4.65E-12

GO:0007154 98 Cell communication 4.91E-12

GO:0007165 92 Signal transduction 2.84E-11

GO:0044700 95 Single organism signaling 6.05E-11

GO:0023052 95 Signaling 6.70E-11

GO:0065007 131 Biological regulation 3.40E-10

GO:0050789 128 Regulation of biological process 3.48E-10

GO:0050794 120 Regulation of cellular process 1.92E-07

GO:0044707 94 Single-multicellular organism pro-

cess

9.54E-07

GO:0032501 94 Multicellular organismal process 8.75E-06

GO:0044763 129 Single-organism cellular process 1.17E-05

GO:0044699 135 Single-organism process 1.86E-04

GO:0046010 3 Positive regulation of circadian

sleep/wake cycle, non-REM sleep

2.21E-02

GO CC

GO:0016021 88 Integral component of membrane 1.13E-12

GO:0031224 88 Intrinsic component of membrane 3.85E-12

GO:0071944 79 Cell periphery 1.19E-08

GO:0044425 92 Membrane part 1.43E-08

GO:0005886 77 Plasma membrane 3.24E-08

GO:0016020 97 Membrane 1.09E-02

GO MF

GO:0038023 70 Signaling receptor activity 5.11E-023

GO:0004930 64 G-protein coupled receptor activity 5.42E-023

GO:0004888 68 Transmembrane signaling receptor

activity

1.3E-022

GO:0004871 72 Signal transducer activity 1E-021

GO:0004872 70 Receptor activity 4.63E-021

GO:0060089 72 Molecular transducer activity 5.95E-020

GO:0004984 50 Olfactory receptor activity 1.39E-019

KEGG

KEGG:04740 42 Olfactory transduction 6.46E-014

KEGG:05144 5 Malaria 1.96E-02

using treated and control samples. Identified genes were related

to previously reported diseases in F3 generation vinclozolin lin-

eage. The success of the study methodology suggests the possi-

bility that abnormalities in F3 generation vinclozolin lineage are

mediated by heritable aberrant promoter methylation during de-

velopment between generations.
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